Basic Data Representations for Visualization

Data Representations

- There are many ways to represent datasets
- Points (e.g., 3D raster, point cloud)
- Lines
- Vectors
- These are all discrete data representations
- Data can be regular or irregular
- Regular = relationship exists between data points
- Compare: 3D raster vs. point cloud
- Data also has dimension: 1, 2, 3, ..., n, ...

Dataset = Structure + Attributes

- Structure = topology and geometry
- Topology refers to characteristics unchanged by transformations (holes, handles, branches)
- Geometry refers to (x,y,z) positions of data points

STATE UNIVERSITY OF NEW YORK

Here cells define topology, points define geometry

There could be a large variety of different cell types

Linear cell types and non-linear cell types

Department of Computer Science

 CSE564 Loctures

Center for Visual Computing

Cell Topology (Connectivity)

Department of Compu Center for Visual Co Y BR K RSITY OF NEW YORK

Cell Example: Hexahedron

Vertices listed in special order define topology

Department of Computer Science Center for Visual Computing

Non-Linear Cell Decomposition

- Non-linear cells must be linearized for visualization
- Break non-linear cells into linear cells

Non-Linear Cell Decomposition

Department of Computer Science Center for Visual Computing

CSE564 Lectures

ST NY BR K

Attribute Data

- Data values (attributes) usually assigned to vertices, as opposed to edges or faces
- Why?
- Interpolation concept easy to apply across edges and faces
- Common attributes include:
 - Temperature, density, velocity, pressure, heat flux, chemical concentration, others
- Scalars, vectors, tensors

Department of Computer Science Center for Visual Computing

Attribute Data

- Scalar data is data that is single-valued at all locations in a data-set
- Examples: temperature, stock price, elevation
- Vector data is data with magnitude and direction
- Examples: position, velocity, acceleration
- Normals (direction vectors) are vectors of magnitude 1
- Texture coordinates map a point from Cartesian space into a 1-D, 2-D or 3-D texture space
- Textures let us add color, transparency and other details to geometric shapes

Department of Computer Science Center for Visual Computing

Attribute Data

- **Tensors** are mathematical generalizations of vectors and scalars
- Usually written as matrices
- Tensor visualization is extremely difficult

Types of Data-sets

- Regular vs. irregular structure refers to topology of data-set
- Data-sets with regular topology, we do not need to store connectivity information
- Points themselves can be regular or irregular
- If irregular, we need to store the positions
- Unstructured data must be explicitly represented
- High computational and storage costs usually

Center for Visual Computing

(e) Polygonal Data

TATE UNIVERSITY OF NEW YORK

Polygonal Data

- Vertices, edges, polygons, polylines, triangle strips, etc.
- Triangle strips can represent *n* triangles using only *n*+2 points, vs. 3*n* points normally required

Image Data

- Collection of points and cells on a regular, rectangular grid
- Also called a "raster"
- (Book uses word "lattice" avoid!)
- 2D grid \rightarrow image
- 3D grid \rightarrow volume
- *i-j-k* coordinate system parallel to global *x-y-z* coordinate system
- Simple representation, but "curse of dimensionality"

Rectilinear Grid

- Regular grid, but spacing along axes can vary
- Need to store 3 extra arrays of length n_x, n_y, n_z dimensions of the grid
- Each array stores spacing, basically

Structured Grid

- Regular topology, irregular geometry
- Curvilinear grids most common type

Unstructured Points

- No topology, irregular geometry
- Also called **point clouds**

Unstructured Grid

- Irregular topology and geometry
- Any combination of cells permitted
- Encountered in relatively few applications
- e.g., computational geometry

VTK Data Representations

- vtkFloat Array
- vtkImageData
- vtkRectilinearGrid
- vtkStructuredGrid
- vtkPolyData
 vtkCellArray

Figure 5–13 The data structure of the class vtkUnstructuredGrid. (This is a subset of the complete structure. See Chapter 8 for complete details.)

Department of Computer Science Center for Visual Computing

VTK Data Representations

Figure 5–14 Dataset object diagram. The five datasets (shaded) are implemented in VTK.

Department of Computer Science Center for Visual Computing

VTK Cell Types

Figure 5–15 Object diagram for twenty concrete cell types in VTK. vtkEmptyCell represents NULL cells. vtkGenericCell can represent any type of cell. Three-dimensional cells are subclasses of vtkCell3D. Higher order cells are subclasses of vtkNonLinearCell.

Department of Computer Science Center for Visual Computing ST NY BR K

Example: Cube.cxx

Figure 5–17 Creation of polygonal cube (Cube.cxx).

Department of Computer Science Center for Visual Computing

Example: Vol.cxx

ST NY BR K

Department of Computer Science Center for Visual Computing

Example: SGrid.cxx

Example: RGrid.cxx

ST NY BR K

Department of Computer Science Center for Visual Computing

Example: UGrid.cxx

ST NY BR K

Department of Computer Science Center for Visual Computing

From 3D data clouds to surface meshes: Triangulation of data sets

Mesh Objects

Why Triangular Meshes are Needed?

- A simple piecewise linear approximation of 3D shapes of complex objects
- Appropriate for processing in graphics hardware
- Suitable for deformation and manipulation of the object surfaces

Department of Computer Science Center for Visual Computing

Main Topics

- Planar triangulation
 - Voronoi diagram
 - Delaunay triangulation
- 3D triangulation based on a physical model
 ---- balloon inflation
- Marching cubes

Department of Computer Science Center for Visual Computing

Planar Triangulation

Voronoi Diagrams

Dual Graph of a Voronoi Diagram

Triangulation of Terrain Data

Edge Flipping

 p_i Di Pi Рj (l_3) α'_4 α_2 edge flip α_6 α'_{2} α_5 α'_{ϵ} α_6 Q, 0.204 Figure 9.4 Flipping an edge p_k p_k

ST NY BR K

Incremental Triangulation Algorithm

Progressive Balloon Inflation

• Balloon inflation for surface fitting

Physical Model for Balloon Inflation

NY BR

NIVERSITY OF NEW YORK

Subdivision of Triangular Faces

Department of Compute Center for Visual Con

Touching of Balloon at Data

Approximating Errors

BR
K

Department of Center for V

Adaptation of Local Fitting

Subdivision for Fitting

Hierarchy of Triangular Meshes

Meshes with triangles of different sizes

Contouring Using Marching Squares

R C K OF NEW YORK

Center for

Marching Squares Cases

ST NY BR K

Ambiguity in Connecting Edges

ST**●**NY BR●●K

STATE UNIVERSITY OF NEW YORK

(b) Join contour

Marching Cubes

K

YORK

Center

Marching Cubes Cases

Case 0 Case 1

Case 2

Case 3

Marching Cubes Cases

Case 9

Case 10

Case 11

Ambiguity in Connecting Edges

An Example of Extracted Isosurfaces

(b) Isosurface of human skull

Marching Cubes for 3-D Data Clouds

ST NY BR K

TATE UNIVERSITY OF NEW YORK

An Example of Extracted Meshes

ST NY BR K