Line Drawing

Why line drawing
The line is the most fundamental drawing primitive with many uses

- charts, engineering drawings, illustrations, 2D pencil-based animation, curve approximation

Desired properties of line drawing algorithms

- line should be straight
- endpoint interpolation
- uniform density for all lines
- efficient

Our ultimate goal - efficient and correct line drawing algorithm draw-line $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$

Line Drawing

Algorithm Assumption

Point samples on 2D integer lattice
Bi-level display: on or off
Line endpoints are integer coordinates
All line slopes are: $|k|<=1$
Lines are ONE pixel thick

Simple Algorithm

Draw-line ($x_{0}, y_{0}, x_{1}, y_{1}$)

- let $\delta y=y_{1}-y_{0}, \delta x=x_{1}-x_{0}$
- for $x=x_{0}$ to x_{1}
$y=\operatorname{round}\left(y_{0}+\left(x-x_{0}\right)(\delta y / \delta x)\right)$
draw-point (x, y)
end for
Why does the above procedure work?
Explicit definition of the line

$$
y=\frac{\delta y}{\delta x}\left(x-x_{0}\right)+y_{0}
$$

where $\delta y=y_{1}-y_{0}$, and $\delta x=x_{1}-x_{0}$

Line Equations

Parametric equation

$$
\begin{aligned}
& x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y(t)=y_{0}+t\left(y_{1}-y_{0}\right)
\end{aligned}
$$

where $t \in[0,1]$
how about when $t<0$ or $t>1$
Vector expression

$$
\begin{aligned}
& \mathbf{p}(t)=\mathbf{p}_{0}+t\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
& \mathbf{p}(t)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
\end{aligned}
$$

where $\mathbf{p}=[x, y]^{\top}$, how about \mathbf{p}_{0} and \mathbf{p}_{1}
How do we improve the previous algorithm?
Observations

$$
y_{c u r r}=y_{0}+\left(x-x_{0}\right) \frac{\delta y}{\delta x}
$$

$$
\begin{gathered}
y_{n e x t}=y_{0}+\left(x+1-x_{0}\right) \frac{\delta y}{\delta x} \\
y_{n e x t}=y_{c u r r}+\frac{\delta y}{\delta x}
\end{gathered}
$$

A more efficient algorithm
$x=x_{0} ; y=y_{0}$
draw-point (x, y)
for x from $x_{0}+1$ to x_{1}
$y=y+\frac{\delta y}{\delta x}$
draw-point ($x, \operatorname{round}(y)$)
end for

Midpoint Algorithm

Implicit equation (expression)

$$
f(x, y)=\left(x-x_{0}\right) \delta y-\left(y-y_{0}\right) \delta x
$$

If $f(x, y)=0$, then (x, y) is on the line If $f(x, y)>0$, then (x, y) is below the line If $f(x, y)<0$, then (x, y) is above the line

Midpoint algorithm is a recursive algorithm!
Ideas!!!
Consider $d=f\left(x_{p}+1, y_{p}+0.5\right)$
There are three different cases

- if $d<0$, line is below midpoint, choose \mathbf{E}
- if $d>0$, line is above midpoint, choose NE
- if $d=0$, line is passing midpoint, either E or NE

For recursive algorithm, we MUST consider the subsequent step!

If \mathbf{E} is chosen, the NEW \mathbf{E} is $\left(x_{p}+2, y_{p}\right)$,
the NEW NE is $\left(x_{p}+2, y_{p}+1\right)$,
the NEW midpoint is $\left(x_{p}+2, y+0.5\right)$
$d_{\text {new }}=f\left(x_{p}+2, y+0.5\right)$
$d_{\text {new }}-d_{\text {old }}=\delta y$
$d_{\text {new }}=d_{\text {old }}+\delta y$
If NE is chosen, the NEW \mathbf{E} is $\left(x_{p}+2, y_{p}+1\right)$, the NEW NE is $\left(x_{p}+2, y_{p}+2\right)$, the NEW midpoint is $\left(x_{p}+2, y+1.5\right)$
$d_{\text {new }}=f\left(x_{p}+2, y_{p}+1.5\right)$
$d_{\text {new }}-d_{\text {old }}=\delta y-\delta x$
This process repeats recursively, stepping along x from x_{0} to x_{1}

How about initialization?
At the beginning, $x_{p}=x_{0}, y_{p}=y_{0}$
$d=f\left(x_{0}+1, y_{0}+0.5\right)=\delta y+\frac{\delta x}{2}$

Implicit Equation

Midpoint Motivation

Midpoint Initialization

Midpoint Algorithm

draw-line ($x_{0}, y_{0}, x_{1}, y_{1}$)
int $x_{0}, y_{0}, x_{1}, y_{1}$
$\{$ int $\delta x, \delta y, i n c E, i n c N E, x, y$,
real d
$\delta x=x_{1}-x_{0} \delta y=y_{1}-y_{0} d=\delta y-\frac{\delta x}{2}$
$i n c E=\delta y, i n c N E=d y-d x y=y_{0}$
for x from x_{0} to x_{1}
draw-point (x, y)
if $d>0$, then $d=d+\operatorname{incNE,} y=y+1$
else $d=d+i n c E$
end for \}
d is not an integer, however, only the sign matters!
We prefer an integer-only algorithm!!!
$f^{\prime}(x, y)=2 f(x, y)$
$d^{\prime}=2 d$
$d^{\prime}=2 \delta y-\delta x$

Midpoint (integer-only) Algorithm

draw-line $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$
int $x_{0}, y_{0}, x_{1}, y_{1}$
$\{$ int $\delta x, \delta y, i n c E, i n c N E, x, y, d$
$\delta x=x_{1}-x_{0}$
$\delta y=y_{1}-y_{0}$
$d=2 \delta y-\delta x$
$i n c E=2 \delta y, i n c N E=2(\delta y-\delta x)$
$y=y_{0}$
for x from x_{0} to x_{1}
draw-point (x, y)
if $d>0$, then $d=d+i n c N E, y=y+1$
else $d=d+i n c E$
end for \}

Assumptions

- slopes: $0<=\frac{\delta y}{\delta x}<=1$
- line endpoints are integer coordinates
- negative slope
- slope larger than 1

If the slope is larger than 1 , we use symmetry to switch x and y !

If negative slope, we use x and $-y$

Generalizations

Generalize to all cases for line drawing
Algorithms for circle-drawing
Algorithms for ellipses, conic section drawing
Line drawing: P84-P92
Circle-generating algorithms: P97-P102
Ellipse-generating algorithms: P102-P107

Circle

Implicit function

$$
f(x, y)=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}-r^{2}
$$

If $f(x, y)=0$, then (x, y) is on the circle
If $f(x, y)>0$, then (x, y) is outside the circle
If $f(x, y)<0$, then (x, y) is inside the circle
Explicit definition

$$
y=y_{0}+\sqrt{r^{2}-\left(x-x_{0}\right)^{2}}
$$

or

$$
y=y_{0}-\sqrt{r^{2}-\left(x-x_{0}\right)^{2}}
$$

where $-r<=\left(x-x_{0}\right)<=r$
Parametric definition

$$
x(\theta)=x_{0}+r \cos (\theta) ; y(\theta)=y_{0}+r \sin (\theta)
$$

where $\theta \in[0,2 \pi]$
Equations for ellipses!

