
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Key Elements of Cameras and
Geometric Coordinate Systems

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Image Formation

• Camera

• Light, shape, reflectance, texture

CSE564 Lectures

Image formation

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Cameras
• We have light sources that illuminate 3D objects

(or datasets) in our virtual scene within the
graphics system

• Light rays interact with surface properties and
generate colors according to the illumination
model

• But how do we view the scene, select the position
and orientation of the viewpoint?

• This is where the virtual camera comes in

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Basic Camera Attributes and
Architecture

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Basic Camera Attributes

• Position – given in (x,y,z) coordinates

• Up-vector – orients the camera, given in (x,y,z)

• Direction of projection – points the camera in

some (x,y,z) direction; also called viewing

direction

• Why is the up-vector needed if we have a

direction of projection?

• Why is the direction of projection needed if we

have an up-vector?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Basic Camera Attributes
• Front and back clipping planes – determine which

objects might be visible

• Planes perpendicular to viewing direction

• Specified as distances along viewing direction

• Also called near and far clipping planes

• Objects on near side of front clipping plane and on far

side of back clipping plane are invisible

• Objects between the clipping planes may occlude each

other and may be fully visible, partially visible, or

invisible

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Camera Manipulation

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Camera Manipulation
• Nuisance to manipulate the camera by changing all those

parameters

• Usually its easier to specify camera movements with

respect to the camera’s focal point, the position in space

at which the camera is pointing

• Consider taking a portrait (physical analogy):

– Move around the person

– Move forward and backward w.r.t. to person

– Move camera up and down

– Rotate camera while standing still

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Camera Manipulation
• Changing azimuth = rotating camera’s position around its

view vector w.r.t. focal point

• Changing elevation = rotating camera’s position around

cross-product of view direction and up-vector

• Cross-product of two

vectors provides vector

in dir. perpendicular to

two original vectors

• Changing roll = rotate camera’s up-vector about the

viewing direction (twisting the camera)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Camera Manipulation
• Changing yaw = rotating focal point about the up-vector

• Changing pitch = rotating focal point about cross

product of view vector and up vector

• Dollying – moves camera position along view vector

(dollying in and out)

• Once camera attributes are set, objects are projected

from 3D onto the 2D image plane

• Camera attributes determine which rays of light (that

bounced off objects) will enter the camera and

contribute to the rendered image

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Systems

• Two kinds of Cartesian coordinate systems:

right-handed and left-handed

• Use whichever coordinate system seems most

natural in the given context
y

x

z
right-handed system

x

y
z

left-handed system

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Systems
• You might be familiar with different types of coordinate

systems:

– Cartesian

– Polar

– Spherical

– Cylindrical

• Computer graphics and visualization applications use

several distinct coordinate systems: model, world, view

and display

• Usually they use Cartesian coordinates

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Model Coordinate System

• Coordinate system used to define an object (or

actor)

• Coordinate system will be a natural choice

– Example: A football might be described using a

cylindrical coordinate system

– What coordinate system might we use for a planet?

• System choice of person who created the object

• Units are application-dependent: inches, meters,

cubits, etc.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

World Coordinate System
• 3D space in which our actors are positioned

• Each actor’s model coordinate system has some position

and orientation inside the world space

• Many model coordinate systems, only one world

coordinate system

• Each actor rotates, scales, and translates itself into the

world coordinate system

• Lights and cameras are specified with respect to the

world coordinate system

• Does a camera have its own coordinate system?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

World Coordinate System

• Example:

– Specify each of our bodies with a cylindrical

coordinate system with the head as the origin

– We position ourselves in the room (the world

coordinate system) by giving the position of our

heads w.r.t. the origin of the room (perhaps some

corner)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

View Coordinate System
• Represents what is visible to the camera

• Given by (x,y,z) values

• x, y in [-1, 1]

• z is some depth > 0

• x, y give location of some object in the image plane

• z give distance of object from camera

• A matrix is used to convert from world coordinates into

view coordinates (i.e., projection!)

• Perspective effect can be accommodated by this matrix

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Display Coordinate System

• x, y are pixel values on screen

• z is still the depth

• What are restrictions on x and y?

• Window size helps determine valid range for x, y

• Display can be divided into multiple viewports,

each of which has its own coordinate system

• Must select which viewport is used for

rendering

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Coordinate
Systems

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Systems (Computer
Graphics Pipeline)

1. Model coordinates are transformed into

2. World coordinates, which are transformed into

3. View coordinates, which are transformed into

4. Display coordinates, which correspond to pixel

positions on the screen

• Transformations from one coordinate system to

another take place via coordinate

transformations, which we’ll look at now

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations
• Coordinate transformations allow us to translate,

scale, and rotate our models in our virtual scene

• In Computer Graphics and Visualization, objects are
often represented as meshes consisting of polygons,
edges, and vertices

• Two vertices define an edge

• Three or more edges define
a polygon

• To transform an object, we
apply the transformations to
the vertices of the mesh

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Object Representations
• List of vertices: v1, v2, …, vn, each given as (xi, yi, zi)

• List of edges: (v1, v3), (v4, v7), …, (vi, vj), …

• List of faces: (e1, e3, e4), (e2, e5, e8), …OR

• List of faces: (v1, v3, v5), (v6, v7, v9), …

• When a vertex’s position is changed due to

transformation, all edges and polygons that include the

vertex are consequently changed

• If we apply the same transformations to all vertices, the

entire polygonal mesh moves as a unit, which is what

we want

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations
• Rather than representing 3D points using three

coordinates (x,y,z), we will use four: (x,y,z,w)

• This approach is called homogeneous coordinates

• Transformations will be represented by (4 x 4) matrices

• Why not (3 x 3)?

• Because some transformations – including translation –

cannot be represented by (3 x 3) matrices

• Most of the time w = 1, but there are special

transformations for which w ≠ 1

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Coordinate Transformations:
Translation

• Suppose we wish to translate the point (x,y,z) by

the vector (tx, ty, tz)

• This translation transformation can be

described by the translation matrix:

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations:
Translation

• The new position is given by post-multiplying

our point by the translation matrix:

• The new position of our point is (x’, y’, z’)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations:
Translation

• We can see that the matrix-vector multiplication

is equivalent to the following formulas:

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations:
Scaling

• We can scale a mesh by applying the scaling

transformation to each of its vertices:

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations:
Scaling

• When sx = sy = sz, we call it uniform scaling

• Otherwise, we have non-uniform scaling

• Suppose someone said to you

that it makes no sense to

apply scaling to vertices

• After all, how do you scale a 3D

point, which has no width, height

or depth?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations:
Rotation

• We can rotate a vertex about one of the major

axes by some angle θ using one of the rotation

matrices:

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations
• Transformations can be composed by right-

multiplying transformation matrices

• Example: a sequence (S Rz T Ry) would indicate:

1. A rotation about the Y axis, followed by

2. A translation, followed by

3. A rotation about the Z axis, followed by

4. A scaling

• So beware and remember: matrix multiplication is

associative but it isn’t commutative

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Coordinate Transformations
• The above transformations can be applied to objects in the

scene – these are referred to as the modeling

transformations

• The camera (viewpoint) can also be transformed by the

viewing transformation

• What transformation(s) might not make sense to apply to

the viewpoint?

• Projection transformation is applied after modeling

transformations to project the 3D actors onto the screen

• We won’t study projection transformations in greater

details in this course

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Actor Geometry: Modeling

• In computer graphics, modeling refers to

geometric representations of 3D objects

• Often these objects are manually constructed

• We looked at one type: polygonal meshes

• Many, many other representations exist

• Can you remember some? (consider some of the

applications of visualization)

• In visualization, modeling means something

slightly different

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Actor Geometry: Modeling
• In graphics, models are computed by some graphics

algorithm

• Note the semantic distinction:

– Computer graphics: object X is represented as a

collection of triangles

– Visualization: object X represents the surface of

patient Y’s skull and it just happens to be made of

triangles

• The model (triangles) is simple, but complex

visualization algorithms were used to obtain that model

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Actor Geometry:
Actor Location and Orientation
• The modeling transformations

we looked at earlier allow us

to change the location and

orientation of objects

• It’s often useful to associate

(i.e., store) an orientation

vector (Ox, Oy, Oz) for each

actor

• This vector implicitly defines

the three rotation matrices

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Actor Geometry:
Actor Location and Orientation
• Rotations take place around

the origin of the actor

• They are applied as a camera

azimuth, elevation and roll,

in that order – remember,

order counts!

• VTK uses this orientation

vector-based approach since it

is very natural to manipulate

objects in this fashion

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Camera Attributes

• Projection – method of projection determines

how 3D objects are drawn on the image plane,

or screen

• Orthographic projection – all rays of light are

parallel to the projection vector

• 3D points are projected onto the screen along the

same direction

• The perceived size of an object is not a function

of its distance from the camera

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE564 Lectures

Camera Attributes
• Perspective projection – all light rays travel through a

central point, such as the viewpoint

• Objects appear smaller as their distances increase from

the viewpoint, and vice versa

• This is what happens in real life

• Simulating perspective projection requires a view angle

• View angle and clipping planes define a view frustum, a

truncated pyramid; one type of viewing volume

• In orthographic projection, we have a rectangular view

volume instead because the light rays are parallel!!!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Orthographic Camera Model

CSE528 Lectures

Infinite Projection matrix - last row is (0,0,0,1)

Good Approximations – object is far from the camera (relative to its size)

P
p

Image plane

Direction of projection



















1000

0010

0001

orthP

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Projective Camera Model

CSE564 Lectures

43:  PPXx

  33:  KRK Xtx Camera matrix (int. parameters)

Rotation, translation (ext. parameters)t,R

Projection matrix

