Shears

Shear operation

$$
\operatorname{Sh}(z, a, b)=\left[\begin{array}{cccc}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

How about shears w.r.t. x-axis and y-axis

Example

3D transformations are non-commutative in general

Consider

(1) $\mathbf{A}=\mathbf{T}(2,3,0)$
(2) $\mathrm{B}=\mathrm{R}\left(z,-90^{\circ}\right)$

$$
\begin{aligned}
& \mathbf{A} \star \mathbf{B}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
&=\left[\begin{array}{cccc}
0 & 1 & 0 & 2 \\
-1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{B} \star \mathbf{A}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cccc}
0 & 1 & 0 & 3 \\
-1 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note that,

$$
A \star B \neq B \star A
$$

Transformation Inverse

Translation

$$
\mathbf{T}^{-1}(\delta x, \delta y, \delta z)=\mathbf{T}(-\delta x,-\delta y,-\delta z)
$$

Rotation

$$
\begin{aligned}
& \mathbf{R}^{-1}(x, \theta)=\mathbf{R}(x,-\theta) \\
& \mathbf{R}^{-1}(y, \theta)=\mathbf{R}(y,-\theta) \\
& \mathbf{R}^{-1}(z, \theta)=\mathbf{R}(z,-\theta)
\end{aligned}
$$

Scaling

$$
\mathbf{S}^{-1}(a, b, c)=\mathbf{S}\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)
$$

More complicated examples

$$
\begin{aligned}
& \left(\mathbf{T}(\delta x, \delta y, \delta z) \mathbf{R}\left(z,-90^{0}\right)\right)^{-1} \\
= & \mathbf{R}^{-1}\left(z,-90^{0}\right) \mathbf{T}^{-1}(\delta x, \delta y, \delta z) \\
= & \mathbf{R}\left(z, 90^{0}\right) \mathbf{T}(-\delta x,-\delta y,-\delta z)
\end{aligned}
$$

$(\mathbf{T}(a, b, c) \mathbf{R}(z, \alpha) \mathbf{R}(y, \beta))^{-1}$
$=\mathbf{R}^{-1}(y, \beta) \mathbf{R}^{-1}(z, \alpha) \mathbf{T}^{-1}(a, b, c)$
$=\mathbf{R}(y,-\beta) \mathbf{R}(z,-\alpha) \mathbf{T}(-a,-b,-c)$

Positive Rotation

General Rotation

Rotation about an arbitrary axis $\mathbf{R}(\mathbf{d}, \theta)$
The axis is defined by a vector d

$$
d=b-a
$$

Translate d to the origin
(now, d becomes d')

$$
\mathbf{T}\left(-\mathbf{a}_{x},-\mathbf{a}_{y},-\mathbf{a}_{z}\right)
$$

Rotate about x-axis to bring d^{\prime} to stay on $x-z$ plane (now, d^{\prime} becomes $\mathrm{d}^{\prime \prime}$)

$$
\mathbf{R}(x, \alpha)
$$

How to determine α ?
α is determined by looking at projection on the y-z plane
α needs not to be actually calculated, only $\sin (\theta)$ and $\cos (\theta)$ matter, they can be evaluated directly!

Rotate about y-axis to align $\mathrm{d}^{\prime \prime}$ with z-axis
(now, $\mathrm{d}^{\prime \prime}$ becomes $\mathrm{d}^{\prime \prime \prime}$)
$\mathbf{R}(y, \beta)$
Again, we do not actually need to compute β !
Perform the desired rotation

$$
\mathbf{R}(z, \theta)
$$

Reverse all other steps

Overall

(1) $\mathrm{T}(-\mathrm{a})$
(2) $\mathbf{R}(x, \alpha)$
(3) $\mathbf{R}(y, \beta)$
(4) $\mathbf{R}(z, \theta)$
(5) $\mathbf{R}(y,-\beta)$
(6) $\mathrm{R}(x,-\alpha)$
(7) $\mathrm{T}(\mathrm{a})$

Let's put them together

$$
\mathbf{R}(\mathbf{d}, \theta)=
$$

$$
\mathbf{T}(\mathbf{a}) \mathbf{R}(x,-\alpha) \mathbf{R}(y,-\beta) \mathbf{R}(z, \theta)(y, \beta) \mathbf{R}(x, \alpha) \mathbf{T}(-\mathbf{a})
$$

Arbitrary Rotation

Arbitrary Rotation

Arbitrary Rotation

Coordinate Systems

Transformation among coordinate systems
Transformation can be thought of as a change in coordinate system

How can we determine (different) coordinate values of the (same) object in (different) coordinate systems

Consider point p

$$
\begin{aligned}
& \mathbf{p}\left(x_{1}, y_{1}, z_{1}\right) \\
& \mathbf{p}\left(x_{2}, y_{2}, z_{2}\right)
\end{aligned}
$$

In CS-2

$$
\mathbf{p}\left(x_{2}, y_{2}, z_{2}\right)=x_{2} \mathbf{l}+y_{2} \mathbf{m}+z_{2} \mathbf{n}
$$

In CS-1

$$
\mathbf{p}\left(x_{1}, y_{1}, z_{1}\right)=x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}
$$

Connection

$$
\mathbf{p}\left(x_{1}, y_{1}, z_{1}\right)=\left[\begin{array}{l}
\mathbf{t}_{x} \\
\mathbf{t}_{y} \\
\mathbf{t}_{z}
\end{array}\right]+x_{2} \mathbf{l}+y_{2} \mathbf{m}+z_{2} \mathbf{n}
$$

Consider

$$
\begin{aligned}
\mathbf{l} & =\left[\begin{array}{l}
\mathbf{l}_{x} \\
\mathbf{l}_{y} \\
\mathbf{l}_{z}
\end{array}\right] \\
\mathbf{m} & =\left[\begin{array}{l}
\mathbf{m}_{x} \\
\mathbf{m}_{y} \\
\mathbf{m}_{z}
\end{array}\right] \\
\mathbf{n} & =\left[\begin{array}{l}
\mathbf{n}_{x} \\
\mathbf{n}_{y} \\
\mathbf{n}_{z}
\end{array}\right]
\end{aligned}
$$

Let's put them together

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{l}_{x} & \mathbf{m}_{x} & \mathbf{n}_{x} & \mathbf{t}_{x} \\
\mathbf{l}_{y} & \mathbf{m}_{y} & \mathbf{n}_{y} & \mathbf{t}_{y} \\
\mathbf{l}_{z} & \mathbf{m}_{z} & \mathbf{n}_{z} & \mathbf{t}_{z} \\
0 & 0 & 0 & \mathbf{1}
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2} \\
1
\end{array}\right]
$$

Basis vectors of the local coordinate system
expressed in the coordinates of the new (global) coordinate system

RH vs. LH

RH vs. LH

Conversion to left-handed system

$$
\left[\begin{array}{c}
x_{l} \\
y_{l} \\
z_{l} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{r} \\
y_{r} \\
z_{r} \\
1
\end{array}\right]
$$

