2D and 3D Transformations

Overview

- 2D Transformations
 - -Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - -Basic 3D transformations
 - -Same as 2D (basically)

Model Coordinates Scale

Translate

Scale

Rotate

Translate

World Coordinates

Model Coordinates

Let's look at this in details...

World Coordinates

Model Coordinates

Initial location at (0, 0) with x- and y-axes aligned

Model Coordinates

Scale .3, .3

Rotate -90

Translate 5, 3

Model Coordinates

Scale .3, .3

Rotate -90

Translate 5, 3

Model Coordinates

Scale .3, .3

Rotate -90

Translate 5, &

World Coordinates

Model Coordinates and Transformations

- Specify transformations for objects
 - Allow definitions of objects in own coordinate systems
 - Allow the use of object definition multiple times in a scene
 - Remember how OpenGL provides a transformation stack because they are so frequently reused

(Chapter 5 from Hearn and Baker)

H&B Figure 109

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

• Non-uniform scaling: different scalars per component:

• How can we represent this in matrix form?

STATE UNIVERSITY OF NEW YORK

Scaling

• Scaling operation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

2-D Rotation

2-D Rotation

$$x = r \cos(\phi)$$

$$y = r \sin(\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

Trig Identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) \sin(\theta) + r \cos(\phi) \cos(\theta)$$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ
 - -x' is a linear combination of x and y
 - -y' is a linear combination of x and y

Translation:

$$- x^2 = x + t_x$$

$$-y'=y+t_{y}$$

- Scale:
 - $x' = x *_{s_x}$
 - $-y'=y*s_y$
- Shear:

$$- x' = x + h_x * y$$

$$-y'=y+h_{y}*x$$

- Rotation:
 - $-x'=x*\cos\Theta-y*\sin\Theta$
 - $-y'=x*\sin\Theta+y*\cos\Theta$

Transformations can be combined (with simple algebra)

• Translation:

$$- x' = x + t_{x} - y' = y + t_{y}$$

• Scale:

$$- x' = x * s_{x_x}$$

$$- y' = y * s_{y_y}$$

• Shear:

$$- x' = x + h_{x_i} * y_i - y' = y + h_{y_i} * x_i$$

$$-x'=x*\cos\Theta-y*\sin\Theta$$

$$- y' = x*\sin\Theta + y*\cos\Theta$$

• Translation:

$$- x' = x + t_{x} - y' = y + t_{y}$$

• Scale:

$$- x'' = x * s_x$$

$$-y'=y*s_{y_v}$$

• Shear:

$$- x'' = x + h_x * y$$

$$-y'=y+h_{y_y}*x$$

• Rotation:

$$-x'=x*\cos\Theta-y*\sin\Theta$$

$$- y' = x*\sin\Theta + y*\cos\Theta$$

$$x' = x*s_x$$
$$y' = y*s_y$$

STATE UNIVERSITY OF NEW YORK

• Translation:

$$- x' = x + t_x$$

$$-y'=y+t_{v_v}$$

• Scale:

$$-y'=y'*_ks_{y_v}$$

• Shear::

$$- x' = x + h_x * y$$

$$- y' = y + h_{y_v} x_v$$

$$-x'=x*\cos\Theta-y*\sin\Theta$$

$$- y'=x*\sin\Theta+y*\cos\Theta$$

$$x' = (x*s_x)*cos\theta - (y*s_y)*sin\theta$$

 $y' = (x*s_x)*sin\theta + (y*s_y)*cos\theta$

• Translation:

$$-x'=x+t_{t_x}$$

$$-y'=y+t_{y_v}$$

• Scale:

$$- x'' = x * s_{x}$$

$$-y'=y'*s_{y_v}$$

• Shear:

$$- x'' = x + h_{x} * y$$

$$-y'=y+h_{y}*x$$

$$-x'=x*\cos\Theta-y*\sin\Theta$$

$$- y' = x*\sin\Theta + y*\cos\Theta$$

$$x' = ((x*s_x)*cos\Theta - (y*s_y)*sin\Theta) + t_x$$

 $y' = ((x*s_x)*sin\Theta + (y*s_y)*cos\Theta) + t_y$

Translation:

$$- x' = x + t_x$$

$$- y' = y + t_{y}$$

• Scale:

$$-x'=x*s_x$$

$$-y'=y*s_{y_v}$$

• Shear:

$$- x' = x + h_x * y$$

$$- y' = y + h_{y_i} *_{x_i}$$

$$-x'=x*\cos\Theta-y*\sin\Theta$$

$$- y' = x*\sin\Theta + y*\cos\Theta$$

$$x' = ((x*s_x)*cos\Theta - (y*s_y)*sin\Theta) + t_x$$

$$y' = ((x*s_x)*sin\Theta + (y*s_y)*cos\Theta) + t_y$$

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - -Basic 3D transformations
 - -Same as 2D

Matrix Representation

Represent 2D transformation by a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Multiply matrix by column vector
 apply transformation to point

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = ax + by$$
$$y' = cx + dy$$

Matrix Representation

Transformations combined by multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Matrices are a convenient and efficient way to represent a sequence of transformations!

• What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$
 $y' = s_y * y$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

• What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{s} \mathbf{h}_{x} \\ \mathbf{s} \mathbf{h}_{y} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

• What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y-axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

Linear Transformations

- Linear transformations are combinations of
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations:
 - Satisfies:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved.
 - Closed under composition

$$T(s_1\mathbf{p}_1 + s_2\mathbf{p}_2) = s_1T(\mathbf{p}_1) + s_2T(\mathbf{p}_2)$$

- Homogeneous coordinates
 - represent coordinates in 2
 dimensions with a 3-vector

Homogeneous coordinates seem unintuitive, but they make graphics operations much easier

• Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

• Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

• A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & \boldsymbol{t}_x \\ 0 & 1 & \boldsymbol{t}_y \\ 0 & 0 & 1 \end{bmatrix}$$

Translation

- Example of translation

Homogeneous Coordinates

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \\ 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} + \mathbf{t}_x \\ \mathbf{y} + \mathbf{t}_y \\ 1 \end{bmatrix}$$

- Add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - -(x, y, 0) represents a point at infinity
 - -(0, 0, 0) is not allowed

Convenient coordinate system to represent many useful transformations

• Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \\ 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Affine Transformations

- Affine transformations are combinations of
 - Linear transformations, and
 - Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Projective Transformations

- Projective transformations
 - Affine transformations, and
 - Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - -Basic 3D transformations
 - -Same as 2D

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{v}}) \; \mathsf{R}(\Theta) \; \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{v}}) \qquad \mathbf{p}$$

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - General purpose representation
 - Hardware matrix multiply

$$p' = (T * (R * (S*p)))$$
 $p' = (T*R*S) * p$

- Be aware: order of transformations matters
 - Matrix multiplication is not commutative

- What if we want to rotate and translate?
 - Example: Rotate line segment by 45 degrees about endpoint
 a
 and lengthen

Multiplication Order – Wrong Way

- Our line is defined by two endpoints
 - Applying a rotation of 45 degrees, R(45), affects both points
 - We could try to translate both endpoints to return endpoint a to its original position, but by how much?

Multiplication Order - Correct

• Isolate endpoint a from rotation effects

− First translate line so a is at origin: T (-3)

- Then rotate line 45 degrees: R(45)

- Then translate back so a is where it was: T(3)

Will this sequence of operations work?

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ 1 \end{bmatrix} = \begin{bmatrix} a'_x \\ a'_y \\ 1 \end{bmatrix}$$

- After correctly ordering the matrices
- Multiply matrices together
- What results is one matrix store it (on stack)!
- Multiply this matrix by the vector of each vertex
- All vertices easily transformed with one matrix multiply

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - -Basic 3D transformations
 - -Same as 2D

3D Transformations

- Same idea as 2D transformations
 - Homogeneous coordinates: (x,y,z,w)
 - -4x4 transformation matrices

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Basic 3D Transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Identity

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Translation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 & 0 \\ 0 & 0 & \mathbf{s}_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

Scale

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Mirror about Y/Z plane

Basic 3D Transformations

Rotate around Z axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 & 0 \\ \sin\Theta & \cos\Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Rotate around Y axis:

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \cos\Theta & 0 & \sin\Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\Theta & 0 & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

Rotate around X axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta & 0 \\ 0 & \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Reverse Rotations

- Q: How do you undo a rotation of θ , $R(\theta)$?
- A: Apply the inverse of the rotation... $R^{-1}(\theta) = R(-\theta)$
- How to construct R-1(θ) = R(- θ)
 - Inside the rotation matrix: $cos(\theta) = cos(-\theta)$
 - The cosine elements of the inverse rotation matrix are unchanged
 - The sign of the sine elements will flip
- Therefore... $R^{-1}(\theta) = R(-\theta) = R^{T}(\theta)$

Summary

- Coordinate systems
 - World vs. modeling coordinates
- 2-D and 3-D transformations
 - Trigonometry and geometry
 - Matrix representations
 - Linear vs. affine transformations
- Matrix operations
 - Matrix composition