Scan Conversion

Simple Algorithms

- We start from a triangle T $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3)
- Find all pixels inside T
- Method 1 (the worst algorithm)
 For each pixel p do
 If p ∈ T then draw-pixel (p) end if
 End for
- Method 2 (a slight improvement) B = bounding - box(T)
 For each pixel p ∈ B do
 If p ∈ T then draw-pixel (p) end if
 End for
- The given previous algorithms suggest an important sub-problem: Given a triangle *T*, and *p* = (*p_x*, *p_y*) How to determine: *p* ∈ *T*

Ray Firing

Here's a simple approach to test if p ∈ T
(1) draw a ray from p outward in any direction
(2) count number of intersections of this ray with boundaries of T

(3) If odd, then $p \in T$, otherwise, p is not in T

Is this method correct?
 What happens if the ray crosses at a vertex?

Polygon Scan Conversion

Implicit Line Formula

- A slightly easier method
- Consider the edge v_1v_2
- Write down the implicit function of this line

$$l_{1,2}(x,y) = a_{1,2}x + b_{1,2}y + c_{1,2}$$

- Pick the sign of $l_{1,2}$ so that $l_{1,2}(x_3, y_3) < 0$
- This defines a half-plan $h_{1,2}$

$$h_{1,2} = \{(x,y) : l_{1,2}(x,y) <= 0\}$$

- Apply the similar process shown above to $l_{1,3}$ and $l_{2,3}$
- Construct half-planes $h_{1,3}$ and $h_{2,3}$
- The important observation

 $T = h_{1,2} \cap h_{1,3} \cap h_{2,3}$

- Therefore, $p \in T$ is equivalent to $(p \in h_{1,2})$ and $(p \in h_{1,3})$ and $(p \in h_{2,3})$
- It is the same to say

$$l_{1,2}(p_x, p_y) <= 0$$

 $l_{1,3}(p_x, p_y) <= 0$
 $l_{2,3}(p_x, p_y) <= 0$

• Question:

does this algorithm work for concave polygon ?

Sweep-line Algorithm

Observation

If $p \in T$, then neighboring pixels are probably in the triangle, too (Coherence)

- Idea
 - (1) sweep from top to bottom
 - (2) maintain intersections of T and sweep-line "span"
 - (3) paint pixels in the span
- Algorithm

Initialize x_l and x_r

For each scan line covered by T do Paint pixels $(x_l, y), \ldots, \ldots, (x_r, y)$ on the current span Incrementally update x_l and x_r End for

- Question: how do we update x_l and x_r ?
- Answer: midpoint algorithm !

Polygon Scan Conversion

- Given a simple polygon P with vertices $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ Find all pixels inside P
- Polygon classification simple convex simple concave non-simple (self-intersection)
- Once again, we could compute a bounding box and use ray casting B = bounding - box(P)
 For each pixel p ∈ B do
 If p ∈ P then paint (p) end if
 End for
- But this would NOT take advantage of coherence
- Coherence
 Adjacent pixels in image space are likely sharing the similar graphic properties such as color

Polygon Scan Conversion

Polygon Classification

Scan Conversion

More efficient algorithm
 For each scanline
 Identify all intersections x₀, x₁,..., x_{k-1}
 Sort intersections from left to right
 Fill pixels between consecutive pairs of intersection

 $(x_{2i}, y), (x_{2i+1}, y)$

- We must deal with "special cases" !
 - horizontal lines
 - intersecting a vertex (double intersection)
 - unwanted intersection
- We must speed up the edge intersection detection
- Data structure for efficient implementation
 A sorted edge table
 The active edge list
 From bottom to the top

Figure 3.39

- Practical polygon scan conversion
 Many implementations just triangulate the polygon and then convert the triangles
- Extremely easy to do for convex polygons
- Triangles are often particularly nice to work with because they are always planar and simple

Special Cases

