Scan Conversion

Simple Algorithms

We start from a triangle T
(r1,y1), (z2,92), and (x3,y3)

Find all pixels inside T

Method 1 (the worst algorithm)
For each pixel p do

If p ¢ T then draw-pixel (p) end if
End for

Method 2 (a slight improvement)
B = bounding — box(T")

For each pixel p € B do

If p ¢ T then draw-pixel (p) end if
End for

The given previous algorithims suggest
an important sub-problem:

Given a triangle T, and p = (pgz, py)
How to determine: pc T

Ray Firing

» Here’s a simple approach to test if pe T
(1) draw a ray from p outward in any direction
(2) count number of intersections of this ray with
boundaries of T
(3) If odd, then p € T, otherwise, p is not in T

o IS this method correct?
What happens if the ray crosses at a vertex?

Polygon Scan Conversion

Implicit Line Formula

A slightly easier method
Consider the edge vivo

Write down the implicit function of this line

l12(z,y) = a1 2z + b1 2y +c1.2
Pick the sign of [; 5 so that [; >(z3,y3) <O

This defines a half-plan hq >

hi1o={(z,y) : l12(z,y) <=0}

Apply the similar process shown above to
l1,3 and l2’3

Construct half-planes h; 3 and hy 3

The important observation

T'=hypNhi3Nho3

» Therefore, p c T is equivalent to
(p€hy12) and (p € hy3) and (p € ho 3)

o It is the same to say

l1,2(pz,py) <=0
l1,3(pz,py) <=0
l2,3(p$7py) <= O

e Question:
does this algorithm work for concave polygon 7?7

Sweep-line Algorithm

Observation

If p €T, then neighboring pixels are probably
in the triangle, too

(Coherence)

Idea

(1) sweep from top to bottom

(2) maintain intersections of T' and sweep-line ‘“span’
(3) paint pixels in the span

Algorithm
Initialize z; and z,
For each scan line covered by 7T do Paint pixels

(z1,4)y-..y...,(xr,y) ON the current span
Incrementally update z; and z,
End for

Question: how do we update z; and z, ?

Answer: midpoint algorithm !

Polygon Scan Conversion

Given a simple polygon P with vertices

(ZIZ]_, y1)7 (ZUQ, y2)7 I (xn, yn)
Find all pixels inside P

Polygon classification

simple convex

simple concave

non-simple (self-intersection)

Once again, we could compute a bounding box
and use ray casting

B = bounding — box(P)

For each pixel p € B do

If p € P then paint (p) end if

End for

But this would NOT take advantage of coherence

Coherence
Adjacent pixels in image space are likely sharing the
similar graphic properties such as color

Polygon Scan Conversion

Polygon Classification

Scan Conversion

» More efficient algorithm
For each scanline
Identify all intersections xg,x1,...,2_1
Sort intersections from left to right
Fill pixels between consecutive pairs of intersection

(2:,9), (241,Y)

» Ve must deal with “special cases’” !

— horizontal lines
— intersecting a vertex (double intersection)
— unwanted intersection

s WWe must speed up the eddge intersection detection

» Data structure for efficient implementation
A sorted edge table
The active edge list
From bottom to the top

Figure 3.39

s Practical polygon scan conversion
Many implementations just triangulate the polygon
and then convert the triangles

» Extremely easy to do for convex polygons

s Triangles are often particularly nice to work with
because they are always planar and simple

Special Cases

