
Scan Conversion

a

b

c



Simple Algorithms

� We start from a triangle T

(x1; y1); (x2; y2), and (x3; y3)

� Find all pixels inside T

� Method 1 (the worst algorithm)

For each pixel p do

If p 2 T then draw-pixel (p) end if

End for

� Method 2 (a slight improvement)

B = bounding � box(T)

For each pixel p 2 B do

If p 2 T then draw-pixel (p) end if

End for

� The given previous algorithms suggest

an important sub-problem:

Given a triangle T , and p = (px; py)

How to determine: p 2 T



Ray Firing

� Here's a simple approach to test if p 2 T

(1) draw a ray from p outward in any direction

(2) count number of intersections of this ray with

boundaries of T

(3) If odd, then p 2 T , otherwise, p is not in T

� Is this method correct?

What happens if the ray crosses at a vertex?



Polygon Scan Conversion



Implicit Line Formula

� A slightly easier method

� Consider the edge v1v2

� Write down the implicit function of this line

l1;2(x; y) = a1;2x+ b1;2y+ c1;2

� Pick the sign of l1;2 so that l1;2(x3; y3) < 0

� This de�nes a half-plan h1;2

h1;2 = f(x; y) : l1;2(x; y) <= 0g

� Apply the similar process shown above to

l1;3 and l2;3

� Construct half-planes h1;3 and h2;3

� The important observation



T = h1;2 \ h1;3 \ h2;3

� Therefore, p 2 T is equivalent to

(p 2 h1;2) and (p 2 h1;3) and (p 2 h2;3)

� It is the same to say

l1;2(px; py) <= 0

l1;3(px; py) <= 0

l2;3(px; py) <= 0

� Question:

does this algorithm work for concave polygon ?



Sweep-line Algorithm

� Observation

If p 2 T , then neighboring pixels are probably

in the triangle, too

(Coherence)

� Idea

(1) sweep from top to bottom

(2) maintain intersections of T and sweep-line \span"

(3) paint pixels in the span

� Algorithm

Initialize xl and xr

For each scan line covered by T do Paint pixels

(xl; y); : : : ; : : : ; (xr; y) on the current span

Incrementally update xl and xr

End for

� Question: how do we update xl and xr ?

� Answer: midpoint algorithm !



Polygon Scan Conversion

� Given a simple polygon P with vertices

(x1; y1); (x2; y2); : : : ; (xn; yn)

Find all pixels inside P

� Polygon classi�cation

simple convex

simple concave

non-simple (self-intersection)

� Once again, we could compute a bounding box

and use ray casting

B = bounding � box(P)

For each pixel p 2 B do

If p 2 P then paint (p) end if

End for

� But this would NOT take advantage of coherence

� Coherence

Adjacent pixels in image space are likely sharing the

similar graphic properties such as color



Polygon Scan Conversion



Polygon Classi�cation



Scan Conversion

� More e�cient algorithm

For each scanline

Identify all intersections x0; x1; : : : ; xk�1

Sort intersections from left to right

Fill pixels between consecutive pairs of intersection

(x2i; y); (x2i+1; y)

� We must deal with \special cases" !

{ horizontal lines

{ intersecting a vertex (double intersection)

{ unwanted intersection

� We must speed up the edge intersection detection

� Data structure for e�cient implementation

A sorted edge table

The active edge list

From bottom to the top



Figure 3.39

� Practical polygon scan conversion

Many implementations just triangulate the polygon

and then convert the triangles

� Extremely easy to do for convex polygons

� Triangles are often particularly nice to work with

because they are always planar and simple



Special Cases




