Scan Conversion

Simple Algorithms

We start from a triangle T
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$
Find all pixels inside T
Method 1 (the worst algorithm)
For each pixel p do
If $p \in T$ then draw-pixel (p) end if
End for
Method 2 (a slight improvement)
$B=$ bounding - box (T)
For each pixel $p \in B$ do
If $p \in T$ then draw-pixel (p) end if
End for
The given previous algorithms suggest an important sub-problem:
Given a triangle T, and $p=\left(p_{x}, p_{y}\right)$
How to determine: $p \in T$

Ray Firing

Here's a simple approach to test if $p \in T$
(1) draw a ray from p outward in any direction
(2) count number of intersections of this ray with boundaries of T
(3) If odd, then $p \in T$, otherwise, p is not in T

Is this method correct?
What happens if the ray crosses at a vertex?

Polygon Scan Conversion

Implicit Line Formula

A slightly easier method
Consider the edge $v_{1} v_{2}$
Write down the implicit function of this line

$$
l_{1,2}(x, y)=a_{1,2} x+b_{1,2} y+c_{1,2}
$$

Pick the sign of $l_{1,2}$ so that $l_{1,2}\left(x_{3}, y_{3}\right)<0$
This defines a half-plan $h_{1,2}$

$$
h_{1,2}=\left\{(x, y): l_{1,2}(x, y)<=0\right\}
$$

Apply the similar process shown above to $l_{1,3}$ and $l_{2,3}$

Construct half-planes $h_{1,3}$ and $h_{2,3}$
The important observation

$$
T=h_{1,2} \cap h_{1,3} \cap h_{2,3}
$$

Therefore, $p \in T$ is equivalent to
($p \in h_{1,2}$) and ($p \in h_{1,3}$) and ($p \in h_{2,3}$)
It is the same to say

$$
\begin{aligned}
& l_{1,2}\left(p_{x}, p_{y}\right)<=0 \\
& l_{1,3}\left(p_{x}, p_{y}\right)<=0 \\
& l_{2,3}\left(p_{x}, p_{y}\right)<=0
\end{aligned}
$$

Question:
does this algorithm work for concave polygon ?

Sweep-line Algorithm

Observation

If $p \in T$, then neighboring pixels are probably in the triangle, too
(Coherence)
Idea
(1) sweep from top to bottom
(2) maintain intersections of T and sweep-line "span"
(3) paint pixels in the span

Algorithm
Initialize x_{l} and x_{r}
For each scan line covered by T do Paint pixels
$\left(x_{l}, y\right), \ldots, \ldots,\left(x_{r}, y\right)$ on the current span
Incrementally update x_{l} and x_{r}
End for
Question: how do we update x_{l} and x_{r} ?
Answer: midpoint algorithm !

Polygon Scan Conversion

Given a simple polygon P with vertices
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
Find all pixels inside P

Polygon classification
simple convex
simple concave
non-simple (self-intersection)
Once again, we could compute a bounding box and use ray casting
$B=$ bounding - box (P)
For each pixel $p \in B$ do
If $p \in P$ then paint (p) end if
End for

But this would NOT take advantage of coherence
Coherence
Adjacent pixels in image space are likely sharing the similar graphic properties such as color

Polygon Scan Conversion

Polygon Classification

Scan Conversion

More efficient algorithm
For each scanline
Identify all intersections $x_{0}, x_{1}, \ldots, x_{k-1}$
Sort intersections from left to right
Fill pixels between consecutive pairs of intersection

$$
\left(x_{2 i}, y\right),\left(x_{2 i+1}, y\right)
$$

We must deal with "special cases" !

- horizontal lines
- intersecting a vertex (double intersection)
- unwanted intersection

We must speed up the edge intersection detection
Data structure for efficient implementation
A sorted edge table
The active edge list
From bottom to the top

Figure 3.39
Practical polygon scan conversion Many implementations just triangulate the polygon and then convert the triangles

Extremely easy to do for convex polygons
Triangles are often particularly nice to work with because they are always planar and simple

Special Cases

