CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu/~qin

Computer Graphics Systems

Graphical

Models

Rendering

Parameters

Rendering

Output Device

Output Devices

- Vector Devices
 - Lasers (for example)

- Raster Devices
 - CRT, LCD, bitmaps, etc.
 - Most output devices are 2D
 - Can you name any 3D output devices?

Graphical Models

- 2D and 3D objects
 - Triangles, quadrilaterals, polygons
 - Spheres, cones, boxes
- Surface characteristics
 - Color, reaction to light
 - Texture, material properties
- Composite objects
 - Other objects and their relationships to each other
- Lighting, fog, etc.
- Much, much, more....

Rendering

- Conversion of 3D model to 2D image
 - Determine where the surfaces "project" to
 - Determine what every screen pixel might see
 - Determine the color of each surface

Rendering Parameters

- Camera parameters
 - Location
 - Orientation
 - Focal length

STATE UNIVERSITY OF NEW YORK

2D Graphics vs. 3D Graphics

- 2D
 - -X, Y 2 dimensions only
 - We won't spend time on 2D graphics in this course
- 3D
 - -X, Y, and Z
 - Space

Rendering is typically the conversion of 3D to
 2D

3D Coordinate Systems

Right-Hand Coordinate System

OpenGL uses this!

Left-Hand Coordinate System

Direct3D uses this!

How to Model/Render This?

Transformation and Viewing

Cartesian Coordinate System

Right Handed

Euclidean Space

- Scalars
- Points: P = (x,y,z)
- Vectors: V = [x,y,z]
 - Magnitude or distance $||V|| = \sqrt{(x^2+y^2+z^2)}$
 - Direction
 - No position
- Position vector
 - Think of as magnitude and distance relative to a point, usually the origin of the coordinate system

Review of Common Vector Operations in 3D

- Addition of vectors
 - $V_1+V_2 = [x_1,y_1,z_1] + [x_2,y_2,z_2] = [x_1+x_2,y_1+y_2,z_1+z_2]$
- Multiply a scalar times a vector
 - sV = s[x,y,z] = [sx,sy,sz]
- Dot Product
 - $V_1 \bullet V_2 = [x_1, y_1, z_1] \bullet [x_2, y_2, z_2] = [x_1x_2 + y_1y_2 + z_1z_2]$
 - $V_1 \bullet V_2 = ||V_1|| ||v_2|| \cos \beta$ where β is the angle between V_1 and V_2
- Cross Product of two vectors
 - $V_1 \times V_2 = [x_1, y_1, z_1] \times [x_2, y_2, z_2] = [y_1 z_2 y_2 z_1, x_2 z_1 x_1 z_2, x_1 y_2 x_2 y_1]$ $= V_2 \times V_1$
 - Results in a vector that is orthogonal to the plane defined by V_1 and V_2

2D Geometric Transformations

- Translation
- Rotation
- Scaling
- Shear
- Homogenous Coordinates
- Matrix Representations
- Composite Transformations

Translation

- $x'=x+t_x$
- $y'=y+t_y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Rotation

- $x'=x \cdot \cos\theta y \cdot \sin\theta$
- $y' = x \cdot \sin\theta + y \cdot \cos\theta$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Scaling

•
$$x'=S_x \cdot x$$

•
$$y'=S_y$$
• y

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Shear

•
$$x'=x+h_x \cdot y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & h_x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Homogenous Coordinates

• Each position (x, y) is represented as (x, y, 1).

 All transformations can be represented as matrix multiplication.

Composite transformation becomes easier.

Translation in Homogenous Coordinates

•
$$x'=x+t_x$$

•
$$y'=y+t_y$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{T}(t_x , t_y) \cdot \mathbf{P}$$

Rotation in Homogenous Coordinates

- $x'=x \cdot \cos\theta y \cdot \sin\theta$
- $y'=x \cdot \sin\theta + y \cdot \cos\theta$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta - \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$P' = R(\theta) \cdot P$$

Scaling in Homogenous Coordinates

•
$$x'=s_x \cdot x$$

•
$$y'=s_y$$
• y

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{S}(s_x , s_v) \cdot \mathbf{P}$$

Shear in Homogenous Coordinates

•
$$x'=x+h_x \cdot y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & h_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$P' = SH_x \cdot P$$

2D Geometric Transformations

- Translation
- Rotation
- Scaling
- Shear
- Homogenous Coordinates
- Composite Transformations

2D Geometric Transformations

- Translation
- Rotation
- Scaling
- Shear
- Homogenous Coordinates
- Composite Transformations
 - Rotation about a fixed point

- 1. Translate the object to the origin.
- 2. Rotate around the origin.
- 3. Translate the object back.

- 1. Translate the object to the origin.
- 2. Rotate around the origin.
- 3. Translate the object back.

$$\begin{bmatrix} 1 & 0 & x_r \\ 0 & 1 & y_r \\ 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} \cos \theta - \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} 1 & 0 & -x_r \\ 0 & 1 & -y_r \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}(x_r, y_r) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}(-x_r, -y_r)$$

$$\mathbf{P'} = \mathbf{T}(x_r, y_r) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}(-x_r, -y_r) \cdot \mathbf{P}$$

3D Geometric Transformations

- Basic 3D Transformations
 - Translation
 - Rotation
 - Scaling
 - Shear
- Composite 3D Transformations
- Change of Coordinate systems

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = T \cdot P$$

Rotation about z-axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{R_z}(\mathbf{\theta}) \cdot \mathbf{P}$$

Rotation about x-axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 $\mathbf{P'} = \mathbf{R}_{\mathbf{x}}(\mathbf{\theta}) \cdot \mathbf{P}$

Rotation about y-axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{R}_{\mathbf{y}}(\mathbf{\theta}) \cdot \mathbf{P}$$

Rotation About a Fixed Point

- 1. Translate the object to the origin.
- 2. Rotate about the three axis, respectively.
- 3. Translate the object back.

$$\mathbf{P'} = \mathbf{T} (x_r, y_r, z_r) \cdot \mathbf{R1} \cdot \mathbf{R2} \cdot \mathbf{R3} \cdot \mathbf{T} (-x_r, -y_r, -z_r) \cdot \mathbf{P}$$

$$\mathbf{Ri} = \mathbf{R}_{\mathbf{x}}(\theta_{\mathbf{x},\mathbf{i}}) \cdot \mathbf{R}_{\mathbf{y}}(\theta_{\mathbf{y},\mathbf{i}}) \cdot \mathbf{R}_{\mathbf{z}}(\theta_{\mathbf{z},\mathbf{i}})$$

Rotation with Arbitrary Direction

- 1. We will have to translate an arbitrary vector so that its starting point starts from the origin
- 2. We will have to rotate w.r.t. x-axis so that this vector stays on x-z plane
- 3. We will then rotate w.r.t. y-axis so that this vector aligns with z-axis
- 4. We will then rotate w.r.t. z-axis
- 5. Reverse (3), (2), and (1)

Scaling

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = S \cdot P$$

Shear

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & h_x & 0 \\ 0 & 1 & h_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{SH}_{xy} \bullet \mathbf{P}$$

Change in Coordinate Systems

M can be a combination of translation, rotation and scaling.

If ONLY Translation is involved between the

two systems

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + (-\vec{\mathbf{v}})$$

What if there is Rotation involved

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \vec{i} x_1 + \vec{j} y_1 + \vec{k} z_1 = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \vec{1}x_2 + \vec{m}y_2 + \vec{n}z_2 = \begin{bmatrix} \vec{1} & \vec{m} & \vec{n} \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$$

If Rotation is involved

$$\begin{bmatrix} i & j & k \end{bmatrix} = \begin{bmatrix} 1 & m & n \end{bmatrix}$$

$$\begin{bmatrix} i & j & k \end{bmatrix} = \begin{bmatrix} 1 & m & n \end{bmatrix} \begin{bmatrix} i \cdot 1 & j \cdot 1 & k \cdot 1 \end{bmatrix}$$

$$\begin{bmatrix} i & j & k \end{bmatrix} = \begin{bmatrix} 1 & m & n \end{bmatrix} \begin{bmatrix} i \cdot m & j \cdot m & k \cdot m \\ i \cdot n & j \cdot n & k \cdot n \end{bmatrix}$$

Change of bases

$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} \mathbf{l} & \mathbf{m} & \mathbf{n} \end{bmatrix} \begin{bmatrix} \mathbf{i} \cdot \mathbf{l} & \mathbf{j} \cdot \mathbf{l} & \mathbf{k} \cdot \mathbf{l} \end{bmatrix} \begin{bmatrix} x_1 \\ \mathbf{i} \cdot \mathbf{m} & \mathbf{j} \cdot \mathbf{m} & \mathbf{k} \cdot \mathbf{m} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ \mathbf{i} \cdot \mathbf{n} & \mathbf{j} \cdot \mathbf{n} & \mathbf{k} \cdot \mathbf{n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & m & n \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$$

Changes of Bases

$$i = l(i \bullet l) + m(i \bullet m) + n(i \bullet n)$$

$$j = l(j \bullet l) + m(j \bullet m) + n(j \bullet n)$$

$$k = l(k \bullet l) + m(k \bullet m) + n(k \bullet n)$$

Changes of Bases

Homogeneous Representations

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{i} \cdot \mathbf{l} & \mathbf{j} \cdot \mathbf{l} & \mathbf{k} \cdot \mathbf{l} & \mathbf{v}_{\mathbf{x}} \\ \mathbf{i} \cdot \mathbf{m} & \mathbf{j} \cdot \mathbf{m} & \mathbf{k} \cdot \mathbf{m} & \mathbf{v}_{\mathbf{y}} \\ \mathbf{i} \cdot \mathbf{n} & \mathbf{j} \cdot \mathbf{n} & \mathbf{k} \cdot \mathbf{n} & \mathbf{v}_{\mathbf{z}} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{bmatrix}$$

Image Formation

- Camera
- Light, shape, reflectance, texture

Image formation

Viewing in 3D

- Planar Geometric Projections
- Parallel Orthographic Projections
- Perspective Projections
- Projections in OpenGL
- Clipping

Planar Geometric Projections

• Maps points from camera coordinate system to the screen (image plane of the virtual camera).

Orthographic Camera Model

Infinite Projection matrix - last row is (0,0,0,1)

Good Approximations – object is far from the camera (relative to its size)

$$P_{orth} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parallel Orthographic Projection

- Preserves X and Y coordinates.
- Preserves both distances and angles.

Parallel Orthographic Projection

•
$$x_p = x$$

- $y_p = y$
- $z_p = 0$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Defining the Parallel View Volume

glOrtho(xmin, xmax, ymin, ymax, near, far)

Projective Camera Model

 $\mathbf{x} = P\mathbf{X} \quad P: 3 \times 4$

Projection matrix

 $\mathbf{x} = K[R \quad \mathbf{t}]\mathbf{X} \quad K: 3 \times 3$

Camera matrix (int. parameters)

 R, \mathbf{t}

Rotation, translation (ext. parameters)

- Only preserves parallel lines that are parallel to the image plane.
- Line segments are shorten by distance.

- $z_p = d$
- $x_p = (x \cdot d)/z$

- $z_p = d$
- $y_p = (y \cdot d)/z$

•
$$x_p = (x \cdot d) / z = x/(z/d)$$

• $y_p = (y \cdot d) / z = y/(z/d)$

•
$$y_p = (y \cdot d) / z = y/(z/d)$$

•
$$z_p = d$$
 = $z/(z/d)$

$$\begin{bmatrix} x_h \\ y_h \\ z_h \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1/h & 0 & 0 & 0 \\ 0 & 1/h & 0 & 0 \\ 0 & 0 & 1/h & 0 \\ 0 & 0 & 0 & 1/h \end{bmatrix} \begin{bmatrix} x_h \\ y_h \\ z_h \\ h \end{bmatrix}$$

STATE UNIVERSITY OF NEW YORK

Viewing in 3D

- Planar Geometric Projections
- Parallel Orthographic Projections
- Perspective Projections
- Projections in OpenGL

Viewing in 3D

- Planar Geometric Projections
- Parallel Orthographic Projections
- Perspective Projections
- Projections in OpenGL
 - Positioning of the Camera
 - Define the view volume

Positioning the Camera

• By default, the camera is placed at the origin pointing towards the negative z-axis.

Positioning the Camera

- OpenGL Look-At Function gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)
- View-reference point (VRP)
- View-plane normal (VPN)
- View-up vector (VUP)

Defining the Perspective View Volume

glFrustum(left, right, bottom, top, near, far)

Defining the Perspective View Volume

gluPerspective(fovy, aspect, near, far)

Taking a Picture with a Camera

- Geometric Coordinate Systems: Local, World, Viewing
- ModelView
 - Matrix operations on models
- World coordinates to Viewing coordinates
 - Matrix operations (models or cameras)
- Projection with a Camera
- Graphics Rendering Pipeline

