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Geometric Modeling Motivation

» \Why geometric modeling

» Fundamental for visual computing
— Graphics, visualization
— Computer aided design and manufacturing
— Imaging
— Entertainment, etc.
o Critical for virtual engineering
o |nteraction

» Geometric information for decision making
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w Plane and Intersection
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From Curve to Surface
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Parametric Representations

» Hermit curves and surfaces (S.A.Coons|[63] and
J.C.Ferguson[64])

« Bezier curves and surfaces (P.Béezier[66] and
P.de Casteljau[59])

» B-Splines (W.J.Gordon and R.F.Riesenfeld 70s)
 NURBS (Versprille 75)

» Mathematical foundations (M.G.Cox[72], C.de
Boor[72], et al)
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w Parametric Representation

e Parametric curve functions

X =X(u),y = y(u),z=z(u)

e Parametric surface functions

X=x(u,v),y=y,v),z=1z(u,v)
e Piece-wise polynomial blending

/0= T pB—i)
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Surfaces

* From curves to surfaces
» A simple curve example (Bezier)

c(u) = Zpi B, (u)

u<[0,1]
 Consider each control point now becoming a
Bezier curve
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Surfaces

» Then, we have S(u,V)=Zs:(ipi,j8j(v))8(u)=-23:Zs:pi'j8i(u)5j(v)
e Matrix form

Po.o
S(U,V)=[Bo(u) B,(u) B,(u) B,(u) P1o

P20
P30

=UMPM V'
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Surfaces

 Further generalize to degree of n and m along
two parametric directions

s(u,v) = iipi,j B (u)B"(v)

o Question: which control points are interpolated?
» How about B-spline surfaces???
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Tensor-Product: Basic Concepts

 Direct generalization from two vectors:

& [E‘!L ba  bs h‘i] -

» Similarly, we can
define a surface as
the tensor product
of two CUrves....
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Tensor Product Surfaces

» Where are they from? _
. Monomial form S(“’V)=sz:ai,,-U'vJ

e Bezier surface

s(u,v) = Zzpi,jBim (UW)B; (V)

« B-spline surface ECREDIPNF=NOLNY

i=0 j=0

. General case s(u,v) =D 2 Vi ;R (UG (v)
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Bilinear Patch

 Perhaps the easiest example is bilinear

Interpolation
Bi-lerp a (typically non-planar) quadrilateral

Notation: L(P1, Po,a) = (1 — o) P + abs

Q(Svt) — L(L(PI?PQvt)v L(P?)a Pfil?t)?s)
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Bilinear Patch

« Smooth version of quadrilateral with
non-planar vertices... (four points are NOT on
the same plane
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— But will this help us model smooth surfaces?
)0.We have control of the derivative at the edges?sre «
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Tensor Product Surface

 Bezier Surface g——————0,
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Bicubic Bezier Patch

« How do we define a tensor-product bicubic
Bezier surface?
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Bicubic Bezier Patches
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'Bezier Surface Patch
| Corner Boundary Conditions

Four equations for each corner gives 16 total.

p(O’O) = Poo

Patch must interpolate the corner.

P 0.0) = 3(p.. —
2y \00) =3Py ~Poy)

Defines derivative in u direction.

P 0.0) = 3(p. —
o (0:0) = 3P0, ~Poo)

Defines derivative in v direction.

O
_p(o’o) — 9(poo —Por TPy — pll)

O/U é\/ “Twist”
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B-Splines

» B-spline curves _
» Tensor product B-splines

S(U’V):Z pi,jBi,k(u)Bj,l(V)

m
i=0 j=

 Question again: which control points are interpolated???

» Another question: can we get NURBS surface this
way???

« Answer: NO!!I' NURBS are not tensor-product surfaces

 Another question: can we have NURBS surface?

e YES!II
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NURBS Curves
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w NURBS Surface

« NURBS surface mathematics

anzm:pi,jwi,j B, (WB;,(v)

i=0 j=0

Zn:Zm:Wi,j B; « (U)Bj,l (V)

i=0 j=0

 Understand this geometric construction

 Question: why: Is It not the tensor-product
formulation??? Compare It with Bezier and B-

spline construction

s(u,v) =

Department of Computer Science

ST NY BR K
STATE UNIVERSITY OF

OF NEW YORK

Center for Visual Computing



NURBS Surfaces

p;W; Bi  (U)B; (V)
wW;; B; | (U)Bj,l (V)

i, j=1

Wii Vi

n

o i’j:]_Bi,k(u)Bj,l (V) W.. Z..
ij <ij

Department of Computer Science ST NYBR® K
STATE UNIVERSITY OF NEW YORK

Center for Visual Computing



NURBS Surface

e Parametric variables: u and v

» Control points and their associated weights:
(m+1)(n+1)

» Degrees of basis functions: (k-1) and (I-1)
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NURBS Surface

e The same principle to generate curves via
projection

» |dea: assoclate weights with control points
 Generalization of B-spline surface
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Modeling with Bicubic Bezier Patches

 Original Teapot specified with Bezier Patches




| Modeling Difficulties

 Original Teapot model Is not "watertight":

Intersecting surfaces at spout & handle, no bottom, a
hole at the spout tip, a gap between lid & base
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Trimming Curves for Patches

1)=(0,0 /,/////H\\
“ trimming Al e basic i

— trimmed
spline
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NURBS Surface Examples
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w NURBS Surfaces

« Good for

— Mechanical, manufactured parts
— Smooth free-form surface representation

« Bad for

— Non-genus-0 surfaces
— Interactive design of free-form surfaces
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Why NURBS

 Support free-form curves/surfaces modeling.
 Support standard analytic shapes precisely.

» Local support.

e Strong convex hull property.

o Affine transformation invariant

o Strict analytic form for evaluation (Important in
CAD/CAMICAE)
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Why NOT NURBS

Hard to model arbitrary topology.

Regularity of tensor-product control polygon
noses difficulty for level of detail.

Numerical instable for geometric operations such
as surface intersection.

Weights and'knots are less intuitive for shape
contraol.
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Rectangular Surface
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| Adjacent Bezier Patches

 Continuity conditions across the common,
shared boundary




w Hermite Surfaces

« How about Hermite surfaces???
« Hermite Curve

c(0)
cD)
c'(0)
c'(1)

cu)=[Ho(u) H,u) H,u) H,u)]

» C(0) 1s not a curve s(0,v) which Is also a Hermite

Curve: $(0,0)
s(0,2)
5,(0,0)
s, (0,

s(0,v) =[Ho(v) H(v) H,(v) Hy(v)
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w Hermite Surfaces

« Similarly, ¢(1) i1s now a curve s(1,v) which is
also a Hermite curve: S(L0)
s(1,1)

S(l,V)Z[Ho(V) H,(v) H,(v) H3(V)]S(10)

s, (1)

» The same are for ¢’(0) and c’(1):

s, (0,0)
s, (0.1
S, (0,0)

S, (O, Vv) = H (V)
s, (O,D

S uv (1’ O)
Suv (1’1)

|:Su (110):|
Su (1’1)
S, @ Vv) =H(NV)
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Hermite Surfaces

e |t Is time to put them together!

 Continuity conditions for surfaces

» Bezier surfaces, B-splines, NURBS, Hermite
surfaces

» C1 and G1 continuity
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Hermite Surfaces
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Hermite Surfaces

x0,0)  x(0, 1)

G, =| *LO D

d 0
asx(O, 0) aSx(O, 1)

0 0
aSx(l, 0) aSx(l, 1)

Department of Computer Science

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Rendering Curves and Surfaces

« One way of rendering a curve/surface Is to
compute Intersections with rays from the eye
through each pixel.

— costly for real-time rendering
» Another approach Is to evaluate the curve or

surface at enough points to approximate It with
standard flat objects (i.e. lines or polygons)

» Recursive subdivision techniques can also be
used and are very efficient - good for adaptive
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Surface Normal
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Normals

We can differentiate with respect to u and v to obtain the
normal at any point p

ox(u,v)/ou
‘9'02”"’) _| oy(u,v)/éu
- oz(u,v)/ou

ox(u,v)/ov
op(u,v)
oV

=| oy(u,v)/ov
oz(u,v)/ov

op(u,v) oJp(u,v)

Nn= X

ou oV

Department of Computer Science ST NYBR® K
Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Normals to Surfaces

"fh "fh

—Q(sr) T'eM' -G-W-—S'
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Surface Rendering

|« Parametric grids ([0,1]X[0,1]) as a set of
rectangles
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Surface (Patch) Rendering

 \We use bicubic as an example

The simplest (naive): convert curved patches into
primitives that we always know how to render

» From curved surfaces to polygon guadrilaterals (non-
planar) and/or triangles (planar)

Surface evaluation at grid points

This is straight forward but inefficient, because it
requires many times of evaluation of s(u,v)

The total number Is 3 1 1

A oV
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Surface Rendering

|« Parametric grids ([0,1]X[0,1]) as a set of
rectangles
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Surface Rendering

 Better approach: precomputation

* M Is constant throughout the entire patch. The
followings are the same along Isoparametric
lines —

u u u 1

Vv v v 1

» Use one dimensional array to compute and store
(evaluation only once)
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| Surface Rendering

» How about many patches: the array Is
unchanged, its sampling rate Is the same, this Is
more useful

« How about adaptive sampling based on
curvature information!!!

» How to computer normal at any grid point
(approximation)
s, (u,v)xs,(u,v)

(s(u+au,v)—s(u,v))x(s(u,v+v)—s(u,v))
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Reqgular Surface

 Generated from a set of control points.
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'Recursive Subdivision of Bezier
Curves
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'Rendering Bezier Patch by

Recursive Subdivision
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e Utah Teapot: ezier
Patches




'Utah Teapot: Polygon
Representation
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Displaying Bezier Patch

 Gilven 16 control points (Bicubic Bezier Patch)

and a tessellation resolution, create a triangle
OpenGL wlgwﬁ EFEEE ™ OpenGL Viewer ~ OpencL Viewer
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'Rendering the Teapot
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Curve Network
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side Hole

Transfinite Method and N

Filling
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W Coons Patch

s(O,v),s(1,v)

s(u,0),s(u,1)
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Coons Patch

s(O,v),s(1,v)
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Coons Patch

s(u,0),s(u,1)
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W Coons Patch

s(O,v),s(1,v)

s(u,0),s(u,1)
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Coons Patch

» Bilinearly blended Coons patch
(P =(RD®R)f =(F+PF, -RP,)f
(P)f =T(0,v)L; (u) +f (L V)L (u)

(P,)f =f(u,0)Ly(v) +f(ul)L(v)
 Bicubically blended Coons patch

(P)f =f(0,v)Hg (u) +f, (0, V)H/ (u) +F, (L v)H; (u) +F (L v)H; (u)

(P)f =f(U,0)H(v) +f,(U,0)H} (V) +f, (U H; (V) +f(uH; (V)
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W Coons Patch

s(0,v),s,(0,v)
s(1,v),s, (L, V)
s(u,0),s, (u,0)
s(u,1),s,(u,1)
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Gordon Surfaces

» Generalization of Coons technigues
A set of curves

» Boolean sum using Lagrange polynomials

(POf = > F(u,, VL] ()

(P)f = > F(u,v,)L] (V)

(P)f = (P, @ P,)f = (P, + P, — BP)f
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w Transfinite Methods

» Bilinearly blended Coons patch
— Interpolate four boundary curves

» Bicubically blended Coons patch

— Interpolate curves and their derivatives
» Gordon surfaces

— Interpolate a curve-network

» Triangular extension
— Interpolate over triangles
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Triangular Surfaces
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Recursive Subdivision Algorithm
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| Curve Mathematics (Cubic)

e Bezier curve

 Control points and basis functions
BS(u) = @A—u)’

B’(Uu) =3u(@—u)?

BS(u) =3u®(@—u)

B; (u) =u”
 Image and properties of basis functions
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Recursive Evaluation

 Recursive linear interpolation
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Properties

 Basis functions are non-negative
» The summation of all basis functions Is unity

» End-point interpolation p T =N

» Binomial expansion theorem

(A—u)+u)" = Zn:(?)f 1—u)""

» Convex hull: the curve Is bounded by the convex
hull defined by control points
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Properties

 Basis functions are non-negative
» The summation of all basis functions Is unity

» End-point interpolation p T =N

» Binomial expansion theorem

(A—u)+u)" = Zn:(?)f 1—u)""

» Convex hull: the curve Is bounded by the convex
hull defined by control points
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Derivatives

« Tangent vectors can easily evaluated at the end-

SRS ' (0) = 3(p, —p):C (1) = (P; —P,)
» Second derivatives at end-points can also be
easily computed:

c¢?(0) =2x3((p, —Pp;) — (P, —P,)) = 6(P, — 2P, +P,)

c? (@) =2x3((p;—p,)— (P, —P,)) =6(P; —2p, +Pp,)
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Derivative Curve

e The derivative of a cubic Bezier curve Is a
guadratic Bezier curve

¢'(u) =-3(1-u)"p, +3((L-u)’ - 2u(L-u))p, +3(2u(L-u)-u)p, +3u’p, =

3(P, —Po)(1-u)* +3(p, —p,)2u(l-u) +3(p; —p,)u°
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More Properties (Cubic)

e Two curve spans are obtained, and both of them
are standard Bezier curves (through

reparameterization) KASSERAASRESEEE
c(v),v [u,l]

c,(U),u ]0,1]
c, (u),u [0,1]

 The control points for the left and the right are

Po.Po-Ps-Po

Ps.P1,.P3,P3
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| Barycentric Coordinates

r+s+t=1
V =rR+sS+tT
tsr(S > T);srt(T —> S);rts(S > R)
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Triangular Bezier Patch

 Triangular Bezier surface

i+ j+k=n

s(u,Vv) = Zpi,j,kBir,]j,k(r’ s,t)

i,j,k>=0

» \Where r+s+t=1, and they are local barycentric
coordinates

 Basis functions are Bernstein polynomials of
degree n
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| Triangular Bezier Patch

» How many control points and basis functions:

%(n +1D)(Nn+ 2)

« Partition of Unity an (r,st)=1

i, j,k>=0

o Positivity B (r,5,) >=0;1,5,t [0/]

Department of Computer Science ST NY BR K
Center for Visual Computing TATE UNIVERSITY OF

OF NEW YORK



Recursive Evaluation

pio,j,k =Pi i«

-1 .

p:,j,k = rp:j,j,k T Sp:,_jl+1,k 1P s 1+ JHk=n=11, ],k >=0

s(u,V) = pg,o,o
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Properties

 Efficient algorithms

» Recursive evaluation
 Directional derivatives
» Degree elevation
 Subdivision

« Composite surfaces

Department of Computer Science ST NYBR® K
TATE UNIVERSITY OF R

Center for Visual Computing S UN SITY OF NEW YORK



Research Issues

 Continuity across adjacent patches
» Integral computation
 Triangular splines over regular triangulation

 Transform triangular splines to a set of piecewise
triangular Bezier patches

» Interpolation/approximation using triangular
splines
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Triangular Bezier Surface
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Recursive Evaluation
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| Control points (Cubic)
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| Basis Functions (Cubic)

SSS
3sst  3rss

3stt  6rst 3rrs
ttt 3rtt 3rrt rrr
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Triangular Patch Subdivision
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Triangular Domain
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| Triangular Coons-Gordon Surface

s=0; f(r,0,1)
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| Triangular Coons-Gordon Surface
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| Triangular Interpolation

(POf =1(r.0,t) Lo () +T(r,s,0) L5 (x)

S
o =
s+t

(P)f =1(r,s,0)L(B) +T(0,s, ) L1 (5)

r
a:
r+t

(P)f =1(0,s, )L () +T(r,0,)L;(»)
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Triangular Interpolation

* The Boolean sum of any two operators results
QERL I (P )T = (B, @ P,)f

(|313)f — (|31 D P3)f

(st)f — (Pz D Ps)f
 Use cubic blending functions for C1
Interpolation!

(Q)f =f(r,0,t)H; () + D f(r,0,t)H; (a) + D f(r,s,0)H; () +f(r,s,0)H. ()

Department of Computer Science ST NY BR
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Gregory’s Method

e Convex combination

(THFfF =F(r,0,t) + oD _FT(r,0,t)
(T)F

(T:)T

(T.2)f = (T, D T,)f

(T.DF (T, D T;)T

(Tzs)f — (Tz €|_>T3)f
(T )f — (aszs —+ a2T13 —+ a3T12)f

» Generalize to pentagonal patch!

Department of Computer Science ST NY BR K
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Surface Properties

* Inherit from their curve generators

* More!

 Efficient algorithms

 Continuity across boundaries

o |nterpolation and approximation tools
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Triangular B-splines
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Simplex Spline Basis Functions

« Multivariate Simplex
Splines

— Defined by projection of .

a simplex (in dimension

n) into lower dimension

(n—m)!vol(z (W) S)
n! volU (w)

NS(W):

— Recursive definition

Department of Computer Science ST NY BR K
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'Reverse Engineering (from
Points to Splines)
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Another Example

« Venus model: 50,002 points (parameterization data courtesy of Hugues
Hoppe)
« (C?surface:

— max error 0.64%, mean-square-root error 0.097%
— 4,381 control points, 1,668 knots, 1,055 domain triangles

Department of Computer Scienci 1\ . : T NY BR. K

Center for Visual Computing . ' STATE UNIVERSITY OF NEW YORK



Horse Example

» Horse head model: 24,236 points after up-sampling
(parameterization data courtesy of Hugues Hoppe)
« (C?surface:

— max error 1.04%, mean-square-root error 0.19%
— 1,663 control points, 573 knots, 364 domain triangles
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Solid
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w Parametric Solids

» Tricubic solid [N U

i=0 j=0 k=0

u,v,we|[0,1]

pu,v,w) = Zzzpijk B, (u)B,; (v)B, (w)

e Bezier solid

4 B-Spline solid p(u’V’W)zzzzpijkBi,l(U)Bj,J(V)Bk,K(W)

° NURBS SOI |d Zzzpijkqijk B (U)Bj,J (V) B, « (W)

pu,v,w) =—
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Parametric Solids

 Tricubic Hermite solid
In general

X(u, Vv, w)
p(u,v,w) = {y(u,v, W)}

z(u,v,w)

u,v,we|[0,1]

Also known as “hyperpatch”
Parametric solids represent both exterior and interior
Examples

— A rectangular sold, a trilinear solid

Boundary elements
— 8 corner points, 12 curved edges, and 6 curved faces
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Free-Form Deformation
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Free-form Deformation

* Any geometric objects can be embedded into a space

 The surrounding space Is represented by using
commonly-used, popular splines

 Free-form deformation of the surrounding space

» All the embedded (geometric) objects are deformed
accordingly, the quantitative measurement of
deformation is obtained from the displacement vectors
of the trivariate splines that define the surrounding
space

» Essentially, the deformation Is governed by the
trivariate, volumetric splines

 \ery popular in graphics and related fields
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Surrounding Space represented
by Parametric Solids

» Tricubic solid [N U

i=0 j=0 k=0

u,v,we|[0,1]

e Bezier solid

pu,v,w) = Zzzpijk B, (u)B,; (v)B, (w)

4 B-Spline solid p(u’V’W)zzzzpijkBi,l(U)Bj,J(V)Bk,K(W)

« NURBS solid 22222 Py By (DB, (VB i (W)

p(uvw>—m

Department of Computer Science ST NY BR K
STATE UNIVERSITY OF NEW YORK

Center for Visual Computing



Free-form Deformations
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W Curves, Surfaces, and Solids

» Non-isoparametric curves for surfaces

s(u, Vv)

e ~[ G5 |

» Non-isoparametric curves for solids EISRES!

s(u, v, w)

u(t)
c(t) — | v
ww(t)

sCu(t), v(t), w(t))

» Non-isoparametric surfaces for solids
s(u,v,w) =s(u(a,b),v(a,b),w(a,b))
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W Curves, Surfaces, and Solids

» |soparametric curves for surfaces

s(u,Vv),s(u;,Vv),s(u,v;)

U, = COnSt.;VJ- = const.

e |soparametric curves for solids
s(u,Vv,w),s(u;,V;,w),s(u;,v,w,),s(U,Vv;,w,)

» |soparametric surfaces for solids
s(u,Vv,w),s(u;,Vv,w),s(u,v;,w),s(u,Vv,w,)
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Solid Modeling

 Create unambiguous and complete geometric
representation of object
— B-reps (Boundary representations)
— Spatial partition
— Volumetric (Arie Kaufman)

— CSG (Constructive Solid Geometry, popular in
mechanics design)
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Surface of Revolution

X 4

Department of Computer Science ST NY BR. K

Center for Visual Computing STATE UNIVERSITY OF NEW YOR




W Surfaces of Revolution

 Geometric construction
— Specify a planar curve profile on y-z plane
— Rotate this profile with respect to z-axis

e Procedure-based model
 \What kinds of shape can we model?
e Review: three dimensional rotation w.r.t. z-axis

X' cos(@d) —sin(@) O x
y'l=|sin(@) cos(@d) O]y
z' 0 0 1| z
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W Surfaces of Revolution

 Mathematics: surfaces of revolution

0
c(u) =| y(u)
z(u)

— y(u)sin(v)
s(u,Vv) [ y(u) cos(Vv) ]

z(u)
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Frenet Frames

« Motivation: attach a smoothly-varying
coordinate system to any location of a curve

» Three independent direction vectors for a 3D
coordinate system: (1) tangent; (2) bi-normal; (3)
normal

t(u) = normalize(c, (u))

b(u) = normalize(c, (u) xc ,(u))
Nn(u) = normalize(b(u) xt(u))

 Frenet coordinate system (frame) (t,b,n) varies
smoothly, as we move along the curve c(u)
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Frenet Coordinate System
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Sweeping Surface
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General Sweeping Surfaces

 Surface of revolution Is a special case of a sweeping
surface

 |dea: a profile curve and a trajectory curve

c, (Uu)
C> (V)

» Move a profile curve along a trajectory curve to
generate a sweeping surface

» Question: how to orient the profile curve as it moves
along the trajectory curve?

« AnNswer: various options
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General Sweeping Surfaces

 Fixed orientation, simple translation of the
coordinate system of the profile curve along the
trajectory curve

 Rotation: If the trajectory curve Is a circle

» Move using the “Frenet Frame” of the trajectory
curve, smoothly varying orientation

» Example: surface of revolution

o Differential geometry fundamentals: Frenet
frame
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Frenet Swept Surfaces

 QOrient the profile Curve (C1(u)) using the Frenet frame
of C2(v)
— Put C1(u) on the normal plane (n,b)
— Place the original of C1(u) on C2(v)
— Align the x-axis of C1(u) with —n
— Align the y-axis of C1(u) with b
» Example: if C2(v) Is a circle
 Variation (generalization)
 Scale C1(u) as It moves
» Morph C1(u) into C3(u) as It moves
» Use your own imagination!
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Ruled surfaces
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Ruled Surfaces

« Move one straight line along a curve, or join two
parametric curves by straight lines

« Example: plane, cone, cylinder

O ITlo[g{e= NIV § =N < (U, v) = (1—v)a(u) + vb(u)

 Surface eguation s(u,v) = (1—Vv)s(u,0) +vs(u,1)
s(u,v) =p(u) +vq(u)

o |soparametric lines
» Generalized
» Bending by
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Developable Surfaces

« Deform a surface to planar shape without
length/area changes

 Unroll a surface to a plane without
stretching/distorting

» Example: cone, cylinder
» Developable surfaces vs. Ruled surfaces
e More examples???
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evelopable Surface

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Summary

e Parametric curves and surfaces
 Polynomials and rational polynomials
e Free-form curves and surfaces

» Other commonly-used geometric primitives
(e.q., sphere, ellipsoid, torus, superguadrics,
blobby, etc.)

» Motivation:

— Fewer degrees of freedom
— More geometric coverage
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Surfaces

« Plane

e Quadratic surfaces
 Tensor product surfaces.
o Surfaces of revolution.

e Sweeping surfaces.

o Subdivision surfaces.
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