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Parametric Surfaces 
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Geometric Modeling Motivation 

• Why geometric modeling 

• Fundamental for visual computing 

– Graphics, visualization 

– Computer aided design and manufacturing 

– Imaging 

– Entertainment, etc. 

• Critical for virtual engineering 

• Interaction 

• Geometric information for decision making 
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Plane and Intersection 
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From Curve to Surface 
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Parametric Representations 

• Hermit curves and surfaces (S.A.Coons[63] and 
J.C.Ferguson[64]) 

• Bézier curves and surfaces (P.Bézier[66] and 
P.de Casteljau[59]) 

• B-Splines (W.J.Gordon and R.F.Riesenfeld 70s) 

• NURBS (Versprille 75) 

• Mathematical foundations (M.G.Cox[72], C.de 
Boor[72], et al) 
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Parametric Representation 

• Parametric curve functions 

 

• Parametric surface functions 

 

• Piece-wise polynomial blending 
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Surfaces 

• From curves to surfaces 

• A simple curve example (Bezier) 

 

 

• Consider each control point now becoming a 

Bezier curve 
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Surfaces 

• Then, we have 

• Matrix form 
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Surfaces 

• Further generalize to degree of n and m along 

two parametric directions 

 

 

• Question: which control points are interpolated? 

• How about B-spline surfaces??? 
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Tensor-Product: Basic Concepts 

• Direct generalization from two vectors: 

 

 

 

• Similarly, we can  

define a surface as  

the tensor product  

of two curves.... 
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Tensor Product Surfaces 

• Where are they from? 

• Monomial form 

• Bezier surface 

 

• B-spline surface  

 

• General case 
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Bilinear Patch 

• Perhaps the easiest example is bilinear 

interpolation 
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Bilinear Patch 

• Smooth version of quadrilateral with  

non-planar vertices... (four points are NOT on 

the same plane) 

 

 

 

 

 

– But will this help us model smooth surfaces? 

– Do we have control of the derivative at the edges? 
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Tensor Product Surface 

• Bezier Surface 
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Bicubic Bezier Patch 

• How do we define a tensor-product bicubic 

Bezier surface?  
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Editing Bicubic Bezier Patches 

Curve Basis Functions 

Surface Basis Functions 
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Bezier Surface Patch 
Corner Boundary Conditions 
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Patch must interpolate the corner. 

Defines derivative in u direction. 

Defines derivative in v direction. 

“Twist” 
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B-Splines 
• B-spline curves 

• Tensor product B-splines 

 

• Question again: which control points are interpolated??? 

• Another question: can we get NURBS surface this 

way??? 

• Answer: NO!!! NURBS are not tensor-product surfaces 

• Another question: can we have NURBS surface? 

• YES!!! 
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NURBS Curves 
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NURBS Surface 

• NURBS surface mathematics 

 

 

• Understand this geometric construction 

• Question: why is it not the tensor-product 

formulation??? Compare it with Bezier and B-

spline construction 

 





 

 


n

i

m

j

ljkiji

n

i

m

j

ljkijiji

vBuBw

vBuBw

vu

0 0

,,,

0 0

,,,,

)()(

)()(

),(

p

s



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

NURBS Surfaces 
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NURBS Surface 

• Parametric variables: u and v 

• Control points and their associated weights: 

(m+1)(n+1) 

• Degrees of basis functions: (k-1) and (l-1) 

• Knot sequence: 

 

• Parametric domain: 
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NURBS Surface 

• The same principle to generate curves via 

projection 

• Idea: associate weights with control points 

• Generalization of B-spline surface 
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Modeling with Bicubic Bezier Patches 

• Original Teapot specified with Bezier Patches 
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Modeling Difficulties 

• Original Teapot model is not "watertight": 
 

intersecting surfaces at spout & handle, no bottom, a 

hole at the spout tip, a gap between  lid & base  
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Trimming Curves for Patches 
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NURBS Surface Examples 
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NURBS Surfaces 

• Good for 

– Mechanical, manufactured parts 

– Smooth free-form surface representation 

• Bad for 

– Non-genus-0 surfaces 

– Interactive design of free-form surfaces 
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Why NURBS 

• Support free-form curves/surfaces modeling. 

• Support standard analytic shapes precisely. 

• Local support. 

• Strong convex hull property. 

• Affine transformation invariant 

• Strict analytic form for evaluation (important in 

CAD/CAM/CAE) 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Why NOT NURBS 

• Hard to model arbitrary topology. 

• Regularity of tensor-product control polygon 

poses difficulty for level of detail. 

• Numerical instable for geometric operations such 

as surface intersection. 

• Weights and knots are less intuitive for shape 

control. 
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Rectangular Surface 
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Adjacent Bézier Patches 

• Continuity conditions across the common, 

shared boundary 
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Hermite Surfaces 

• How about Hermite surfaces??? 

• Hermite Curve 

 

 

• C(0) is not a curve s(0,v) which is also a Hermite 

Curve: 
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Hermite Surfaces 

• Similarly, c(1) is now a curve s(1,v) which is 

also a Hermite curve: 

 

 

• The same are for c’(0) and c’(1): 

 

 





















)1,1(

)0,1(

)1,1(

)0,1(

)()()()(),1( 3210

v

v

vHvHvHvHvs

s

s

s

s









































)1,1(

)0,1(

)1,1(

)0,1(

)(),1(

)1,0(

)0,0(

)1,0(

)0,0(

)(),0(

uv

uv

u

u

u

uv

uv

u

u

u

vHv

vHv

s

s

s

s

s

s

s

s

s

s



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Hermite Surfaces 

• It is time to put them together! 

 

 

 

• Continuity conditions for surfaces 

• Bezier surfaces, B-splines, NURBS, Hermite 

surfaces 

• C1 and G1 continuity 
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Hermite Surfaces 
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Hermite Surfaces 
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Rendering Curves and Surfaces 

• One way of rendering a curve/surface is to 

compute intersections with rays from the eye 

through each pixel. 

– costly for real-time rendering 

• Another approach is to evaluate the curve or 

surface at enough points to approximate it with 

standard flat objects (i.e. lines or polygons) 

• Recursive subdivision techniques can also be 

used and are very efficient - good for adaptive 

rendering. 
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Surface Normal 
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Normals 
We can differentiate with respect to u and v to obtain the 

normal at any point p 
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Normals to Surfaces 
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Surface Rendering 

• Parametric grids ([0,1]X[0,1]) as a set of 

rectangles 
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Surface (Patch) Rendering 
• We use bicubic as an example 

• The simplest (naïve): convert curved patches into 

primitives that we always know how to render 

• From curved surfaces to polygon quadrilaterals (non-

planar) and/or triangles (planar) 

• Surface evaluation at grid points 

• This is straight forward but inefficient, because it 

requires many times of evaluation of s(u,v) 

• The total number is  

vu 
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Surface Rendering 

• Parametric grids ([0,1]X[0,1]) as a set of 

rectangles 
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Surface Rendering 
• Better approach: precomputation 

 

 

• M is constant throughout the entire patch. The 
followings are the same along isoparametric 
lines 

 

• Use one dimensional array to compute and store 
(evaluation only once) 
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Surface Rendering 

• How about many patches: the array is 

unchanged, its sampling rate is the same, this is 

more useful 

• How about adaptive sampling based on 

curvature information!!! 

• How to computer normal at any grid point 

(approximation) 
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Regular Surface 

• Generated from a set of control points.  
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Recursive Subdivision of Bezier 
Curves 

 

p
0

0

0

1p
p

2

0

p
3

0



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Rendering Bezier Patch by 
Recursive Subdivision 

First subdivide curves of 
constant v. 

Connect new control 
points to form new 
curves. 

Finally subdivide these curves to form 4 new patches. 
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The Utah Teapot:  32 Bezier 
Patches 
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Utah Teapot: Polygon 
Representation 
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Displaying Bezier Patch 

• Given 16 control points (Bicubic Bezier Patch) 

and a tessellation resolution, create a triangle 

mesh 

resolution: 

5x5 vertices 

resolution: 

11x11 vertices 

resolution: 

41x41 vertices 
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Rendering the Teapot 
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Curve Network 
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Transfinite Method and N-side Hole 
Filling 
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Coons Patch 
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Coons Patch 
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Coons Patch 
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Coons Patch 
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Coons Patch 

• Bilinearly blended Coons patch 

 

 

• Bicubically blended Coons patch 
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Coons Patch 
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Gordon Surfaces 

• Generalization of Coons techniques 

• A set of curves 

 

• Boolean sum using Lagrange polynomials 
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Transfinite Methods 

• Bilinearly blended Coons patch 

– Interpolate four boundary curves 

• Bicubically blended Coons patch 

– Interpolate curves and their derivatives 

• Gordon surfaces 

– Interpolate a curve-network 

• Triangular extension 

– Interpolate over triangles 
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Triangular Surfaces 
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Recursive Subdivision Algorithm 
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Curve Mathematics (Cubic) 

• Bezier curve 

 

• Control points and basis functions 

 

 

 

 

• Image and properties of basis functions 
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Recursive Evaluation 

• Recursive linear interpolation 
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Properties 

• Basis functions are non-negative 

• The summation of all basis functions is unity 

• End-point interpolation 

• Binomial expansion theorem 

 

 

• Convex hull: the curve is bounded by the convex 

hull defined by control points 
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Properties 

• Basis functions are non-negative 

• The summation of all basis functions is unity 

• End-point interpolation 

• Binomial expansion theorem 

 

 

• Convex hull: the curve is bounded by the convex 

hull defined by control points 

npc,pc  )1()0( 0

ini
n

i

n uu
i

n
uu 











  )1())1((

0



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Derivatives 

• Tangent vectors can easily evaluated at the end-

points 

• Second derivatives at end-points can also be 

easily computed: 
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Derivative Curve 

• The derivative of a cubic Bezier curve is a 

quadratic Bezier curve 
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More Properties (Cubic) 

• Two curve spans are obtained, and both of them 

are standard Bezier curves (through 

reparameterization) 

 

 

• The control points for the left and the right are 
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Barycentric Coordinates 
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Triangular Bezier Patch 

• Triangular Bezier surface 

 

• Where r+s+t=1, and they are local barycentric 

coordinates 

• Basis functions are Bernstein polynomials of 

degree n 
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Triangular Bezier Patch 

• How many control points and basis functions: 

 

• Partition of unity 

 

• Positivity 
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Recursive Evaluation 
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Properties 

• Efficient algorithms 

• Recursive evaluation 

• Directional derivatives 

• Degree elevation 

• Subdivision 

• Composite surfaces 
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Research Issues 

• Continuity across adjacent patches 

• Integral computation 

• Triangular splines over regular triangulation 

• Transform triangular splines to a set of piecewise 

triangular Bezier patches 

• Interpolation/approximation using triangular 

splines 
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Triangular Bezier Surface 
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Recursive Evaluation 
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Control points (Cubic) 
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Basis Functions (Cubic) 
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Triangular Patch Subdivision 
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Triangular Domain 
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Triangular Coons-Gordon Surface 
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Triangular Coons-Gordon Surface 
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Triangular Interpolation 
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Triangular Interpolation 

• The Boolean sum of any two operators results 

the same! 

 

• Use cubic blending functions for C1 

interpolation! 
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Gregory’s Method 
• Convex combination 

 

 

 

 

 

 

 

• Generalize to pentagonal patch! 
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Surface Properties 

• Inherit from their curve generators 

• More! 

• Efficient algorithms 

• Continuity across boundaries 

• Interpolation and approximation tools 
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Triangular B-splines 
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Simplex Spline Basis Functions 

• Multivariate Simplex 

Splines 

– Defined by projection of 

a simplex (in dimension 

n) into lower dimension 

m 

 

 

– Recursive definition 
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Reverse Engineering (from 
Points to Splines) 
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Another Example 
• Venus model: 50,002 points (parameterization data courtesy of Hugues 

Hoppe) 

• C2 surface: 

– max error 0.64%, mean-square-root error 0.097%  

– 4,381 control points, 1,668 knots, 1,055 domain triangles 
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Horse Example 

• Horse head model: 24,236 points after up-sampling  
(parameterization data courtesy of Hugues Hoppe) 

• C2 surface: 

– max error 1.04%, mean-square-root error 0.19%  

– 1,663 control points, 573 knots, 364 domain triangles 
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Solid 

 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Parametric Solids 

• Tricubic solid 

 

• Bezier solid 

 

• B-spline solid 

 

• NURBS solid 
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Parametric Solids 
• Tricubic Hermite solid 

• In general 

 

• Also known as “hyperpatch” 

• Parametric solids represent both exterior and interior 

• Examples 

– A rectangular sold, a trilinear solid 

• Boundary elements 

– 8 corner points, 12 curved edges, and 6 curved faces 
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Free-Form Deformation 
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Free-form Deformation 
• Any geometric objects can be embedded into a space 

• The surrounding space is represented by using 
commonly-used, popular splines 

• Free-form deformation of the surrounding space 

• All the embedded (geometric) objects are deformed 
accordingly, the quantitative measurement of 
deformation is obtained from the displacement vectors 
of the trivariate splines that define the surrounding 
space 

• Essentially, the deformation is governed by the 
trivariate, volumetric splines 

• Very popular in graphics and related fields 
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Surrounding Space represented 
by Parametric Solids 

• Tricubic solid 

 

• Bezier solid 

 

• B-spline solid 

 

• NURBS solid 
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Free-form Deformations 
 

 

(courtesy of Pauly et al.) 
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Curves, Surfaces, and Solids 

• Non-isoparametric curves for surfaces 

 

• Non-isoparametric curves for solids 

 

 

 

• Non-isoparametric surfaces for solids 
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Curves, Surfaces, and Solids 

• Isoparametric curves for surfaces 

 

 

• Isoparametric curves for solids 

 

• Isoparametric surfaces for solids 
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Solid Modeling 

• Create unambiguous and complete geometric 

representation of object 

– B-reps (Boundary representations) 

– Spatial partition 

– Volumetric (Arie Kaufman) 

– CSG (Constructive Solid Geometry, popular in 

mechanics design) 
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Surface of Revolution 
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Surfaces of Revolution 

• Geometric construction 

– Specify a planar curve profile on y-z plane 

– Rotate this profile with respect to z-axis 

• Procedure-based model 

• What kinds of shape can we model? 

• Review: three dimensional rotation w.r.t. z-axis 
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Surfaces of Revolution 

• Mathematics: surfaces of revolution 
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Frenet Frames 
• Motivation: attach a smoothly-varying 

coordinate system to any location of a curve 

• Three independent direction vectors for a 3D 
coordinate system: (1) tangent; (2) bi-normal; (3) 
normal 

 

 

• Frenet coordinate system (frame) (t,b,n) varies 
smoothly, as we move along the curve c(u) 
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Frenet Coordinate System 
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Sweeping Surface 
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General Sweeping Surfaces 
• Surface of revolution is a special case of a sweeping 

surface 

• Idea: a profile curve and a trajectory curve 

 

 

• Move a profile curve along a trajectory curve to 
generate a sweeping surface 

• Question: how to orient the profile curve as it moves 
along the trajectory curve? 

• Answer: various options 
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General Sweeping Surfaces 
• Fixed orientation, simple translation of the 

coordinate system of the profile curve along the 
trajectory curve 

• Rotation: if the trajectory curve is a circle 

• Move using the “Frenet Frame” of the trajectory 
curve, smoothly varying orientation 

• Example: surface of revolution 

• Differential geometry fundamentals: Frenet 
frame 
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Frenet Swept Surfaces 
• Orient the profile Curve (C1(u)) using the Frenet frame 

of C2(v) 

– Put C1(u) on the normal plane (n,b) 

– Place the original of C1(u) on C2(v) 

– Align the x-axis of C1(u) with –n 

– Align the y-axis of C1(u) with b 

• Example: if C2(v) is a circle 

• Variation (generalization) 

• Scale C1(u) as it moves 

• Morph C1(u) into C3(u) as it moves 

• Use your own imagination! 
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Ruled surfaces 
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Ruled Surfaces 
• Move one straight line along a curve, or join two 

parametric curves by straight lines 

• Example: plane, cone, cylinder 

• Cylindrical surface 

• Surface equation 

 

• Isoparametric lines 

• Generalized cylinder 

• Bending by roller 
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Developable Surfaces 

• Deform a surface to planar shape without 

length/area changes 

• Unroll a surface to a plane without 

stretching/distorting 

• Example: cone, cylinder 

• Developable surfaces vs. Ruled surfaces 

• More examples??? 
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Developable Surface 
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Summary 
• Parametric curves and surfaces 

• Polynomials and rational polynomials 

• Free-form curves and surfaces 

• Other commonly-used geometric primitives 
(e.g., sphere, ellipsoid, torus, superquadrics, 
blobby, etc.) 

• Motivation:  

– Fewer degrees of freedom 

– More geometric coverage 
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Surfaces 

• Plane 

• Quadratic surfaces 

• Tensor product surfaces. 

• Surfaces of revolution. 

• Sweeping surfaces. 

• Subdivision surfaces. 

 


