CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin Department of Computer Science State University of New York at Stony Brook (Stony **Brook University**) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.sunysb.edu http:///www.cs.sunysb.edu/~qin

Department of Computer Science Center for Visual Computing

Parametric Surfaces

Department of Computer Science Center for Visual Computing

Geometric Modeling Motivation

- Why geometric modeling
- Fundamental for visual computing
 - Graphics, visualization
 - Computer aided design and manufacturing
 - Imaging
 - Entertainment, etc.
- Critical for virtual engineering
- Interaction
- Geometric information for decision making

Plane and Intersection

Department of Computer Science Center for Visual Computing

From Curve to Surface

Department of Computer Science Center for Visual Computing

Parametric Representations

- Hermit curves and surfaces (S.A.Coons[63] and J.C.Ferguson[64])
- Bézier curves and surfaces (P.Bézier[66] and P.de Casteljau[59])
- B-Splines (W.J.Gordon and R.F.Riesenfeld 70s)
- NURBS (Versprille 75)
- Mathematical foundations (M.G.Cox[72], C.de Boor[72], et al)

Parametric Representation

• Parametric curve functions

$$x = x(u), y = y(u), z = z(u)$$

Parametric surface functions

$$x = x(u, v), y = y(u, v), z = z(u, v)$$

Piece-wise polynomial blending

- control points

OF NEW YORK

$$\gamma(t) = \sum_{i} p_{i} B(t-i)$$

Department of Comp Center for Visual (

Surfaces

- From curves to surfaces
- A simple curve example (Bezier)

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}(u)$$
$$u \in [0,1]$$

• Consider each control point now becoming a Bezier curve $r = \sum_{n=1}^{3} r_{n} R_{n}(n)$

$$\mathbf{p}_i = \sum_{j=0}^{3} \mathbf{p}_{i,j} B_j(v)$$
$$v \in [0,1]$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Surfaces

• Then, we have

$$\mathbf{s}(u,v) = \sum_{i=0}^{3} \left(\sum_{j=0}^{3} \mathbf{p}_{i,j} B_{j}(v)\right) B(u) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{p}_{i,j} B_{i}(u) B_{j}(v)$$

• Matrix form

$$\mathbf{s}(u,v) = \begin{bmatrix} B_0(u) & B_1(u) & B_2(u) & B_3(u) \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0,0} & \mathbf{p}_{0,1} & \mathbf{p}_{0,2} & \mathbf{p}_{0,3} \\ \mathbf{p}_{1,0} & \mathbf{p}_{1,1} & \mathbf{p}_{1,2} & \mathbf{p}_{1,3} \\ \mathbf{p}_{2,0} & \mathbf{p}_{2,1} & \mathbf{p}_{2,2} & \mathbf{p}_{2,3} \\ \mathbf{p}_{3,0} & \mathbf{p}_{3,1} & \mathbf{p}_{3,2} & \mathbf{p}_{3,3} \end{bmatrix} \begin{bmatrix} B_0(u) \\ B_1(u) \\ B_2(u) \\ B_3(u) \end{bmatrix}$$

$$= UMPM^{T}V^{T}$$

ST NY BR K

CSE528 Lectures

Department of Computer Science Center for Visual Computing

Surfaces

• Further generalize to degree of n and m along two parametric directions

$$\mathbf{s}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{p}_{i,j} B_i^n(u) B_j^m(v)$$

- Question: which control points are interpolated?
- How about B-spline surfaces???

Department of Computer Science Center for Visual Computing

Tensor-Product: Basic Concepts

• Direct generalization from two vectors:

						a_1b_1	a_2b_1	a_3b_1
$[a_1$	a_2	$a_3ig]\otimesig[b_1$	b_2	b_3	$b_4] =$	a_1b_2	a_2b_2	a_3b_2
						a_1b_3	a_2b_3	a_3b_3
						a_1b_4	a_2b_4	a_3b_4

 Similarly, we can define a surface as the tensor product of two curves....

Department of Computer Science Center for Visual Computing

Tensor Product Surfaces

- Where are they from?
- Monomial form
- Bezier surface

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{a}_{i,j} u^{i} v^{j}$$

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{p}_{i,j} B_i^m(u) B_j^n(v)$$

• B-spline surface

$$\mathbf{s}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i,j} B_{i,k}(u) B_{j,l}(v)$$

General case

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{v}_{i,j} F_i(u) G_j(v)$$

Department of Computer Science Center for Visual Computing

Bilinear Patch

• Perhaps the easiest example is bilinear interpolation

Bi-lerp a (typically non-planar) quadrilateral

Notation: $\mathbf{L}(P_1, P_2, \alpha) \equiv (1 - \alpha)P_1 + \alpha P_2$

 $Q(s,t) = \mathbf{L}(\mathbf{L}(P_1, P_2, t), L(P_3, P_4, t), s)$

Bilinear Patch

 Smooth version of quadrilateral with non-planar vertices... (four points are NOT on the same plane)

- But will this help us model smooth surfaces?

 $\overline{D_{\text{Com}}}$ be a set of the derivative at the edges \mathcal{P}_{BR}

Center for Visual Computing

Tensor Product Surface

Department of Computer Science Center for Visual Computing

Bicubic Bezier Patch

• How do we define a tensor-product bicubic Bezier surface? $Q(s,t) = CB(-CB(P_{00}, P_{01}, P_{02}, P_{03}, t),$

 $t) = CB(CB(P_{00}, P_{01}, P_{02}, P_{03}, t),$ $CB(P_{10}, P_{11}, P_{12}, P_{13}, t),$ $CB(P_{20}, P_{21}, P_{22}, P_{23}, t),$ $CB(P_{30}, P_{31}, P_{32}, P_{33}, t),$ s)

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

Editing Bicubic Bezier Patches

Curve Basis Functions

Surface Basis Functions

Department of Computer Science Center for Visual Computing

Bezier Surface Patch Corner Boundary Conditions

Four equations for each corner gives 16 total.

Department of Computer S

Center for Visual Computing

B-Splines

• B-spline curves

$$\mathbf{c}(u) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i,k}(u)$$

Tensor product B-splines

$$\mathbf{s}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i,j} B_{i,k}(u) B_{j,l}(v)$$

- Question again: which control points are interpolated???
- Another question: can we get NURBS surface this way???
- Answer: NO!!! NURBS are not tensor-product surfaces
- Another question: can we have NURBS surface?
 YES!!!

NURBS Curves

$$c(u) = \frac{\sum_{i=1}^{n} p_{i} w_{i} B_{i,k}(u)}{\sum_{i=1}^{n} w_{i} B_{i,k}(u)}$$

$$\begin{bmatrix} c_x / c_w \\ c_y / c_w \\ c_z / c_w \end{bmatrix} \Leftarrow \begin{bmatrix} c_x(u) \\ c_y(u) \\ c_z(u) \\ c_w(u) \end{bmatrix} = \sum_{i=1}^n B_{i,k}(u) \begin{bmatrix} w_i x_i \\ w_i y_i \\ w_i z_i \\ w_i \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

NURBS Surface

• NURBS surface mathematics

$$\mathbf{s}(u,v) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{p}_{i,j} w_{i,j} B_{i,k}(u) B_{j,l}(v)}{\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} B_{i,k}(u) B_{j,l}(v)}$$

- Understand this geometric construction
- Question: why is it not the tensor-product formulation??? Compare it with Bezier and Bspline construction

NURBS Surfaces

$$s(u) = \frac{\sum_{i,j=1}^{n} p_{ij} w_{ij} B_{i,k}(u) B_{j,l}(v)}{\sum_{i,j=1}^{n} w_{ij} B_{i,k}(u) B_{j,l}(v)}$$

$$\begin{bmatrix} s_x / s_w \\ s_y / s_w \\ s_z / s_w \end{bmatrix} \Leftarrow \begin{bmatrix} s_x(u) \\ s_y(u) \\ s_z(u) \\ s_w(u) \end{bmatrix} = \sum_{i,j=1}^n B_{i,k}(u) B_{j,l}(v) \begin{bmatrix} w_{ij} x_{ij} \\ w_{ij} y_{ij} \\ w_{ij} z_{ij} \\ w_{ij} \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

NURBS Surface

- Parametric variables: u and v
- Control points and their associated weights: (m+1)(n+1)
- Degrees of basis functions: (k-1) and (l-1)
- Knot sequence:

$$u_0 <= u_1 <= \dots <= u_{m+k}$$

 $v_0 <= v_1 <= \dots <= v_{n+l}$

• Parametric domain:

$$u_{k-1} \le u \le u_{m+1}$$

 $v_{l-1} \le v \le v_{n+1}$

Department of Computer Science Center for Visual Computing

NURBS Surface

- The same principle to generate curves via projection
- Idea: associate weights with control points
- Generalization of B-spline surface

Department of Computer Science Center for Visual Computing

Modeling with Bicubic Bezier Patches

• Original Teapot specified with Bezier Patches

Depart

K

Modeling Difficulties

• Original Teapot model is not "watertight":

intersecting surfaces at spout & handle, no bottom, a hole at the spout tip, a gap between lid & base

VERSITY OF NEW YORK

Department of Computer S Center for Visual Comp

Trimming Curves for Patches

Department of Computer Science Center for Visual Computing

NURBS Surface Examples

Department of Computer Science Center for Visual Computing

NURBS Surfaces

- Good for
 - Mechanical, manufactured parts
 - Smooth free-form surface representation

Bad for

- Non-genus-0 surfaces
- Interactive design of free-form surfaces

Department of Computer Science Center for Visual Computing

Why NURBS

- Support free-form curves/surfaces modeling.
- Support standard analytic shapes precisely.
- Local support.
- Strong convex hull property.
- Affine transformation invariant
- Strict analytic form for evaluation (important in CAD/CAM/CAE)

Why NOT NURBS

- Hard to model arbitrary topology.
- Regularity of tensor-product control polygon poses difficulty for level of detail.
- Numerical instable for geometric operations such as surface intersection.
- Weights and knots are less intuitive for shape control.

Department of Computer Science Center for Visual Computing

Rectangular Surface

Department of Computer Science Center for Visual Computing

Adjacent Bézier Patches

 Continuity conditions across the common, shared boundary

Department of Comp Center for Visual C

Hermite Surfaces

- How about Hermite surfaces???
- Hermite Curve

$$\mathbf{c}(u) = \begin{bmatrix} H_0(u) & H_1(u) & H_2(u) & H_3(u) \end{bmatrix} \begin{bmatrix} \mathbf{c}(0) \\ \mathbf{c}(1) \\ \mathbf{c}'(0) \\ \mathbf{c}'(1) \end{bmatrix}$$

 $\left[\mathbf{c}(0) \right]$

C(0) is not a curve s(0,v) which is also a Hermite
 Curve:

$$s(0,v) = \begin{bmatrix} H_0(v) & H_1(v) & H_2(v) & H_3(v) \end{bmatrix} \begin{vmatrix} \mathbf{s}(0,0) \\ \mathbf{s}(0,1) \\ \mathbf{s}_v(0,0) \\ \mathbf{s}_v(0,1) \end{vmatrix}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Hermite Surfaces

Similarly, c(1) is now a curve s(1,v) which is also a Hermite curve:

$$s(1,v) = \begin{bmatrix} H_0(v) & H_1(v) & H_2(v) & H_3(v) \end{bmatrix} \begin{bmatrix} s(1,1) \\ s_v(1,0) \\ s_v(1,1) \end{bmatrix}$$

• The same are for c'(0) and c'(1):

$$\mathbf{s}_{u}(0,v) = H(v) \begin{bmatrix} \mathbf{s}_{u}(0,0) \\ \mathbf{s}_{u}(0,1) \\ \mathbf{s}_{uv}(0,0) \\ \mathbf{s}_{uv}(0,1) \end{bmatrix}$$
$$\mathbf{s}_{uv}(0,1) \begin{bmatrix} \mathbf{s}_{u}(1,0) \\ \mathbf{s}_{u}(1,1) \\ \mathbf{s}_{uv}(1,0) \\ \mathbf{s}_{uv}(1,1) \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

Hermite Surfaces

• It is time to put them together!

 $\mathbf{s}(u,v) = H(u) \begin{bmatrix} \mathbf{s}(0,0) & \mathbf{s}(0,1) & \mathbf{s}_{v}(0,0) & \mathbf{s}_{v}(0,1) \\ \mathbf{s}(1,0) & \mathbf{s}(1,1) & \mathbf{s}_{v}(1,0) & \mathbf{s}_{v}(1,1) \\ \mathbf{s}_{u}(0,0) & \mathbf{s}_{u}(0,1) & \mathbf{s}_{uv}(0,0) & \mathbf{s}_{uv}(0,1) \\ \mathbf{s}_{u}(1,0) & \mathbf{s}_{u}(1,1) & \mathbf{s}_{uv}(1,0) & \mathbf{s}_{uv}(1,1) \end{bmatrix}} H(v)^{T}$

- Continuity conditions for surfaces
- Bezier surfaces, B-splines, NURBS, Hermite surfaces
- C1 and G1 continuity

Hermite Surfaces

Department of Computer Science Center for Visual Computing

Hermite Surfaces

$$\mathbf{G}_{H_x} = \begin{bmatrix} x(0,0) & x(0,1) & \frac{\partial}{\partial t}x(0,0) & \frac{\partial}{\partial t}x(0,1) \\ x(1,0) & x(1,1) & \frac{\partial}{\partial t}x(1,0) & \frac{\partial}{\partial t}x(1,1) \\ \frac{\partial}{\partial s}x(0,0) & \frac{\partial}{\partial s}x(0,1) & \frac{\partial^2}{\partial s\partial t}x(0,0) & \frac{\partial^2}{\partial s\partial t}x(0,1) \\ \frac{\partial}{\partial s}x(1,0) & \frac{\partial}{\partial s}x(1,1) & \frac{\partial^2}{\partial s\partial t}x(1,0) & \frac{\partial^2}{\partial s\partial t}x(1,1) \end{bmatrix}.$$

Department of Computer Science Center for Visual Computing

CSE528 Lecture

STATE UNIVERSITY OF NEW YORK

NY BR

Rendering Curves and Surfaces

- One way of rendering a curve/surface is to compute intersections with rays from the eye through each pixel.
 - costly for real-time rendering
- Another approach is to evaluate the curve or surface at enough points to approximate it with standard flat objects (i.e. lines or polygons)
- Recursive subdivision techniques can also be used and are very efficient - good for adaptive

Surface Normal

Department of Computer Science Center for Visual Computing

Normals

We can differentiate with respect to u and v to obtain the normal at any point **p**

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial u} \\ \frac{\partial \mathbf{y}(u,v)}{\partial u} \\ \frac{\partial \mathbf{z}(u,v)}{\partial u} \end{bmatrix}$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial v} \\ \frac{\partial \mathbf{y}(u,v)}{\partial v} \\ \frac{\partial \mathbf{z}(u,v)}{\partial v} \end{bmatrix}$$

$$\mathbf{n} = \frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

Department of Computer Science Center for Visual Computing

Normals to Surfaces

 $\frac{\partial}{\partial s}Q(s,t) = T^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet G \bullet M \bullet \frac{\partial}{\partial s}S$ $= T^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet \boldsymbol{G} \bullet \boldsymbol{M} \bullet \begin{bmatrix} 3s^2 & 2s & 1 & 0 \end{bmatrix}^{\mathrm{T}}$ $\frac{\partial}{\partial t}Q(s,t) = \frac{\partial}{\partial t}(T^{\mathrm{T}}) \bullet M^{\mathrm{T}} \bullet G \bullet M \bullet S$ $= \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet \mathbf{G} \bullet M \bullet S$ $\frac{\partial}{\partial s}Q(s,t) \times \frac{\partial}{\partial t}Q(s,t) \longleftarrow$ normal vector

Department of Computer Science Center for Visual Computing

 Parametric grids ([0,1]X[0,1]) as a set of rectangles

Department of Computer Science Center for Visual Computing

Surface (Patch) Rendering

- We use bicubic as an example
- The simplest (naïve): convert curved patches into primitives that we always know how to render
- From curved surfaces to polygon quadrilaterals (nonplanar) and/or triangles (planar)
- Surface evaluation at grid points
- This is straight forward but inefficient, because it requires many times of evaluation of s(u,v)
- The total number is

$$3\frac{1}{\delta u}\frac{1}{\delta v}$$

Department of Computer Science Center for Visual Computing

Parametric grids ([0,1]X[0,1]) as a set of rectangles

Department of Computer Science Center for Visual Computing CSE528 Lectures

ST NY BR K

Better approach: precomputation

$$\mathbf{s}(u,v) = \begin{bmatrix} u^3 & u^2 & u^1 & 1 \end{bmatrix} M \begin{bmatrix} v^3 \\ v^2 \\ v^2 \\ 1 \end{bmatrix}$$

• M is constant throughout the entire patch. The followings are the same along isoparametric lines $\begin{bmatrix} u^3 & u^2 & u & 1 \\ v^3 & v^2 & v & 1 \end{bmatrix}$

- How about many patches: the array is unchanged, its sampling rate is the same, this is more useful
- How about adaptive sampling based on curvature information!!!
- How to computer normal at any grid point (approximation)

 $\mathbf{s}_{u}(u,v) \times \mathbf{s}_{v}(u,v)$ ($\mathbf{s}(u+\delta u,v) - \mathbf{s}(u,v)$)×($\mathbf{s}(u,v+\delta v) - \mathbf{s}(u,v)$)

Department of Computer Science Center for Visual Computing

Regular Surface

• Generated from a set of control points.

Department of Computer Science Center for Visual Computing

Recursive Subdivision of Bezier Curves

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

Rendering Bezier Patch by Recursive Subdivision

Finally subdivide these curves to form 4 new patches.

Department of Computer Science Center for Visual Computing

The Utah Teapot: 32 Bezier Patches

ST NY BR K

CSE528 Lecture

Department of Computer Science Center for Visual Computing

Utah Teapot: Polygon Representation

Department of Computer Science Center for Visual Computing

Displaying Bezier Patch

• Given 16 control points (Bicubic Bezier Patch) and a tessellation resolution, create a triangle

Rendering the Teapot

Department of Computer Science Center for Visual Computing

Curve Network

Department of Computer Science Center for Visual Computing

Department of Computer Science Center for Visual Computing

Transfinite Method and N-side Hole Filling

Department of Computer Science Center for Visual Computing

s(0, v), s(1, v)s(u, 0), s(u, 1)

ST NY BR K

Department of Computer Science Center for Visual Computing

Department of Computer Science Center for Visual Computing

---s(u,0), s(u,1)

Department of Computer Science Center for Visual Computing

CSE528 Lectures

Department of Computer Science Center for Visual Computing

.....

• Bilinearly blended Coons patch

 $(P)\mathbf{f} = (P_1 \oplus P_2)\mathbf{f} = (P_1 + P_2 - P_1P_2)\mathbf{f}$ $(P_1)\mathbf{f} = \mathbf{f}(0, v)L_0^1(u) + \mathbf{f}(1, v)L_1^1(u)$ $(P_2)\mathbf{f} = \mathbf{f}(u, 0)L_0^1(v) + \mathbf{f}(u, 1)L_1^1(v)$

Bicubically blended Coons patch

 $(P_1)\mathbf{f} = \mathbf{f}(0, v)H_0^3(u) + \mathbf{f}_u(0, v)H_1^3(u) + \mathbf{f}_u(1, v)H_2^3(u) + \mathbf{f}(1, v)H_3^3(u)$ $(P_2)\mathbf{f} = \mathbf{f}(u, 0)H_0^3(v) + \mathbf{f}_v(u, 0)H_1^3(v) + \mathbf{f}_v(u, 1)H_2^3(v) + \mathbf{f}(u, 1)H_3^3(v)$

Department of Computer Science Center for Visual Computing

 $s(0, v), s_u(0, v)$ $s(1, v), s_u(1, v)$ $s(u, 0), s_v(u, 0)$ $s(u, 1), s_v(u, 1)$

Department of Computer Science Center for Visual Computing

Gordon Surfaces

- Generalization of Coons techniques
- A set of curves $\mathbf{f}(u_i, v), i = 0, \dots, n$

1

$$f(u, v_j), j = 0, ..., m$$

Boolean sum using Lagrange polynomials

$$(P_1)\mathbf{f} = \sum_{i=0}^n \mathbf{f}(u_i, v) L_i^n(u)$$
$$(P_2)\mathbf{f} = \sum_{j=0}^m \mathbf{f}(u, v_j) L_j^m(v)$$
$$(P)\mathbf{f} = (P_1 \oplus P_2)\mathbf{f} = (P_1 + P_2 - P_1 P_2)\mathbf{f}$$

Department of Computer Science Center for Visual Computing

Transfinite Methods

- Bilinearly blended Coons patch

 Interpolate four boundary curves
- Bicubically blended Coons patch
 - Interpolate curves and their derivatives
- Gordon surfaces
 - Interpolate a curve-network
- Triangular extension

 Interpolate over triangles

Triangular Surfaces

Department of Computer Science Center for Visual Computing

Recursive Subdivision Algorithm

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Curve Mathematics (Cubic)

• Bezier curve

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}^{3}(u)$$

Control points and basis functions

$$B_0^3(u) = (1-u)^3$$

$$B_1^3(u) = 3u(1-u)^2$$

$$B_2^3(u) = 3u^2(1-u)$$

$$B_3^3(u) = u^3$$

Image and properties of basis functions

Department of Computer Science Center for Visual Computing

Recursive Evaluation

• Recursive linear interpolation

$$(1-u) (u)$$

$$p_{0}^{0} \mathbf{p}_{1}^{0} \mathbf{p}_{2}^{0} \mathbf{p}_{3}^{0}$$

$$p_{0}^{1} \mathbf{p}_{1}^{1} \mathbf{p}_{2}^{1}$$

$$p_{0}^{2} \mathbf{p}_{1}^{2}$$

$$p_{0}^{2} \mathbf{p}_{1}^{2}$$

$$p_{0}^{3} = \mathbf{c}(u)$$

ST NY BR K

Department of Computer Science Center for Visual Computing

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(0) = \mathbf{p}_0, \mathbf{c}(1) = \mathbf{p}_n$
- Binomial expansion theorem

$$((1-u)+u)^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

Convex hull: the curve is bounded by the convex hull defined by control points

Department of Computer Science Center for Visual Computing

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(0) = \mathbf{p}_0, \mathbf{c}(1) = \mathbf{p}_n$
- Binomial expansion theorem

$$((1-u)+u)^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

Convex hull: the curve is bounded by the convex hull defined by control points

Department of Computer Science Center for Visual Computing

Derivatives

- Tangent vectors can easily evaluated at the endpoints $\mathbf{c}'(0) = 3(\mathbf{p}_1 - \mathbf{p}_0); \mathbf{c}'(1) = (\mathbf{p}_3 - \mathbf{p}_2)$
- Second derivatives at end-points can also be easily computed:

$$\mathbf{c}^{(2)}(0) = 2 \times 3((\mathbf{p}_2 - \mathbf{p}_1) - (\mathbf{p}_1 - \mathbf{p}_0)) = 6(\mathbf{p}_2 - 2\mathbf{p}_1 + \mathbf{p}_0)$$
$$\mathbf{c}^{(2)}(1) = 2 \times 3((\mathbf{p}_3 - \mathbf{p}_2) - (\mathbf{p}_2 - \mathbf{p}_1)) = 6(\mathbf{p}_3 - 2\mathbf{p}_2 + \mathbf{p}_1)$$

Department of Computer Science Center for Visual Computing
Derivative Curve

• The derivative of a cubic Bezier curve is a quadratic Bezier curve

$$\mathbf{c}'(u) = -3(1-u)^2 \mathbf{p}_0 + 3((1-u)^2 - 2u(1-u))\mathbf{p}_1 + 3(2u(1-u) - u^2)\mathbf{p}_2 + 3u^2\mathbf{p}_3 = 3(\mathbf{p}_1 - \mathbf{p}_0)(1-u)^2 + 3(\mathbf{p}_2 - \mathbf{p}_1)(1-u) + 3(\mathbf{p}_3 - \mathbf{p}_2)u^2$$

Department of Computer Science Center for Visual Computing

More Properties (Cubic)

Two curve spans are obtained, and both of them are standard Bezier curves (through reparameterization)
 C(ν), ν ∈ [0, μ]

$$\mathbf{c}(v), v \in [0, u]$$

 $\mathbf{c}(v), v \in [u, 1]$
 $\mathbf{c}_{l}(u), u \in [0, 1]$
 $\mathbf{c}_{r}(u), u \in [0, 1]$

The control points for the left and the right are

$$\mathbf{p}_{0}^{0}, \mathbf{p}_{0}^{1}, \mathbf{p}_{0}^{2}, \mathbf{p}_{0}^{3}$$

 $\mathbf{p}_{0}^{3}, \mathbf{p}_{1}^{2}, \mathbf{p}_{2}^{1}, \mathbf{p}_{3}^{0}$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Barycentric Coordinates

Department of Computer Science Center for Visual Computing

Triangular Bezier Patch

• Triangular Bezier surface

$$\mathbf{s}(u,v) = \sum_{i,j,k>=0}^{i+j+k=n} \mathbf{p}_{i,j,k} B_{i,j,k}^n(r,s,t)$$

- Where r+s+t=1, and they are local barycentric coordinates
- Basis functions are Bernstein polynomials of degree n

$$B_{i,j,k}^n(r,s,t) = \frac{n!}{i!\,j!k!}r^is^jt^k$$

Department of Computer Science Center for Visual Computing

Triangular Bezier Patch

• How many control points and basis functions:

i

$$\frac{1}{2}(n+1)(n+2)$$

• Partition of unity

$$\sum_{j,k>=0} B_{i,j,k}^{n}(r,s,t) = 1$$

Positivity

$$B_{i,j,k}^{n}(r,s,t) \ge 0; r,s,t \in [0,1]$$

Department of Computer Science Center for Visual Computing

Recursive Evaluation

$$\mathbf{p}_{i,j,k}^{0} = \mathbf{p}_{i,j,k}$$

$$\mathbf{p}_{i,j,k}^{l} = r\mathbf{p}_{i+1,j,k}^{l-1} + s\mathbf{p}_{i,j+1,k}^{l-1} + t\mathbf{p}_{i,j,k+1}^{l-1}; i + j + k = n - l, i, j, k \ge 0$$

$$\mathbf{s}(u,v) = \mathbf{p}_{0,0,0}^{n}$$

Department of Computer Science Center for Visual Computing

Properties

- Efficient algorithms
- Recursive evaluation
- Directional derivatives
- Degree elevation
- Subdivision
- Composite surfaces

Department of Computer Science Center for Visual Computing

Research Issues

- Continuity across adjacent patches
- Integral computation
- Triangular splines over regular triangulation
- Transform triangular splines to a set of piecewise triangular Bezier patches
- Interpolation/approximation using triangular splines

Department of Computer Science Center for Visual Computing

Triangular Bezier Surface

Department of Computer Science Center for Visual Computing

Recursive Evaluation

Department of Computer Science Center for Visual Computing

Control points (Cubic)

ST NY BR K

Department of Computer Science Center for Visual Computing

Basis Functions (Cubic)

3sst 3rss 3stt 6rst 3rrs ttt 3rtt 3rrt rrr

SSS

Department of Computer Science Center for Visual Computing

Triangular Patch Subdivision

Department of Computer Science Center for Visual Computing

Triangular Domain

Department of Computer Science Center for Visual Computing

Triangular Coons-Gordon Surface

Department of Computer Science Center for Visual Computing

Triangular Coons-Gordon Surface

Department of Computer Science Center for Visual Computing

Triangular Interpolation

$$(P_{1})\mathbf{f} = \mathbf{f}(r,0,t)L_{0}^{1}(\alpha) + \mathbf{f}(r,s,0)L_{1}^{1}(\alpha)$$

$$\alpha = \frac{s}{s+t}$$

$$(P_{2})\mathbf{f} = \mathbf{f}(r,s,0)L_{0}^{1}(\beta) + \mathbf{f}(0,s,t)L_{1}^{1}(\beta)$$

$$\alpha = \frac{r}{r+t}$$

$$(P_{3})\mathbf{f} = \mathbf{f}(0,s,t)L_{0}^{1}(\gamma) + \mathbf{f}(r,0,t)L_{1}^{1}(\gamma)$$

$$\alpha = \frac{r}{r+s}$$

Department of Computer Science Center for Visual Computing

Triangular Interpolation

- The Boolean sum of any two operators results $(P_{12})\mathbf{f} = (P_1 \oplus P_2)\mathbf{f}$ the same! $(P_{13})\mathbf{f} = (P_1 \oplus P_3)\mathbf{f}$ $(P_{23})\mathbf{f} = (P_2 \oplus P_3)\mathbf{f}$
- Use cubic blending functions for C1 interpolation!

 $(Q_1)\mathbf{f} = \mathbf{f}(r,0,t)H_0^3(\alpha) + D_\alpha \mathbf{f}(r,0,t)H_1^3(\alpha) + D_\alpha \mathbf{f}(r,s,0)H_2^3(\alpha) + \mathbf{f}(r,s,0)H_3^3(\alpha)$ $(Q_2)\mathbf{f} = \dots$ (Q_3) **f** =

Department of Computer Science

Center for Visual Computing

Gregory's Method

Convex combination

$$(T_1)\mathbf{f} = \mathbf{f}(r,0,t) + \alpha D_{\alpha}\mathbf{f}(r,0,t)$$

$$(T_2)\mathbf{f} = \dots \dots$$

$$(T_3)\mathbf{f} = \dots \dots$$

$$(T_{12})\mathbf{f} = (T_1 \oplus T_2)\mathbf{f}$$

$$(T_{13})\mathbf{f} = (T_1 \oplus T_3)\mathbf{f}$$

$$(T_{23})\mathbf{f} = (T_2 \oplus T_3)\mathbf{f}$$

$$(T)\mathbf{f} = (a_1T_{23} + a_2T_{13} + a_3T_{12})\mathbf{f}$$

$$a_1 = \frac{s^2}{r^2 + s^2 + t^2}$$

$$a_2 = \dots \dots$$

$$a_3 = \dots \dots$$

Generalize to pentagonal patch!

Department of Computer Science Center for Visual Computing

Surface Properties

- Inherit from their curve generators
- More!
- Efficient algorithms
- Continuity across boundaries
- Interpolation and approximation tools

Department of Computer Science Center for Visual Computing

Triangular B-splines

Department of Computer Science Center for Visual Computing

Simplex Spline Basis Functions

- Multivariate Simplex
 Splines
 - Defined by projection of a simplex (in dimension n) into lower dimension

$$N_{S}(\mathbf{w}) = \frac{(n-m)!}{n!} \frac{vol(\pi^{-1}(\mathbf{w}) \cap S)}{volU(\mathbf{w})}$$

- Recursive definition

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Reverse Engineering (from Points to Splines)

Department of Computer Science Center for Visual Computing

Another Example

- Venus model: 50,002 points (parameterization data courtesy of Hugues Hoppe)
- C² surface:
 - max error 0.64%, mean-square-root error 0.097%
 - 4,381 control points, 1,668 knots, 1,055 domain triangles,

Horse Example

- Horse head model: 24,236 points after up-sampling (parameterization data courtesy of Hugues Hoppe)
- C² surface:
 - max error 1.04%, mean-square-root error 0.19%
 - 1,663 control points, 573 knots, 364 domain triangles,

Solid

Department of Computer Science Center for Visual Computing

Parametric Solids

• Tricubic solid

$$\mathbf{p}(u, v, w) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} \mathbf{a}_{ijk} u^{i} v^{j} w^{k}$$
$$u, v, w \in [0,1]$$

• Bezier solid

$$\mathbf{p}(u, v, w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_i(u) B_j(v) B_k(w)$$

• **B-spline solid**
$$\mathbf{p}(u,v,w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)$$

• NURBS solid

$$\mathbf{p}(u, v, w) = \frac{\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}{\sum_{i} \sum_{j} \sum_{k} \sum_{k} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}$$

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

Parametric Solids

- Tricubic Hermite solid
- In general

$$\mathbf{p}(u, v, w) = \begin{bmatrix} x(u, v, w) \\ y(u, v, w) \\ z(u, v, w) \end{bmatrix}$$
$$u, v, w \in [0, 1]$$

- Also known as "hyperpatch"
- Parametric solids represent both exterior and interior
- Examples
 - A rectangular sold, a trilinear solid
- Boundary elements
 - 8 corner points, 12 curved edges, and 6 curved faces

Free-Form Deformation

ST NY BR K

Department of Computer Science Center for Visual Computing

Free-form Deformation

- Any geometric objects can be embedded into a space
- The surrounding space is represented by using commonly-used, popular splines
- Free-form deformation of the surrounding space
- All the embedded (geometric) objects are deformed accordingly, the quantitative measurement of deformation is obtained from the displacement vectors of the trivariate splines that define the surrounding space
- Essentially, the deformation is governed by the trivariate, volumetric splines
- Very popular in graphics and related fields

Surrounding Space represented by Parametric Solids

• Tricubic solid

$$\mathbf{p}(u, v, w) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} \mathbf{a}_{ijk} u^{i} v^{j} w^{k}$$
$$u, v, w \in [0,1]$$

• Bezier solid

$$\mathbf{p}(u, v, w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_i(u) B_j(v) B_k(w)$$

• **B-spline solid**
$$\mathbf{p}(u, v, w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)$$

• NURBS solid

$$\mathbf{p}(u, v, w) = \frac{\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}{\sum_{i} \sum_{j} \sum_{k} \sum_{k} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}$$

Department of Computer Science Center for Visual Computing CSE528 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

Free-form Deformations

CSE528 Lectures of Pauly et al.)

Department of Computer Science Center for Visual Computing

Curves, Surfaces, and Solids

Non-isoparametric curves for surfaces

$$\mathbf{s}(u, v)$$
$$\mathbf{c}(t) = \begin{bmatrix} u(t) \\ v(t) \end{bmatrix}$$
$$\mathbf{s}(u(t), v(t))$$

Non-isoparametric curves for solids

$$\mathbf{s}(u, v, w)$$
$$\mathbf{c}(t) = \begin{bmatrix} u(t) \\ v(t) \\ w(t) \end{bmatrix}$$
$$\mathbf{s}(u(t), v(t), w(t))$$

Non-isoparametric surfaces for solids

$$\mathbf{s}(u, v, w) = \mathbf{s}(u(a, b), v(a, b), w(a, b))$$

Department of Computer Science Center for Visual Computing

Curves, Surfaces, and Solids

Isoparametric curves for surfaces

$$\mathbf{s}(u, v), \mathbf{s}(u_i, v), \mathbf{s}(u, v_j)$$

 $u_i = const.; v_j = const.$

Isoparametric curves for solids

 $\mathbf{S}(u, v, w), \mathbf{S}(u_i, v_j, w), \mathbf{S}(u_i, v, w_k), \mathbf{S}(u, v_j, w_k)$

Isoparametric surfaces for solids

 $\mathbf{s}(u, v, w), \mathbf{s}(u_i, v, w), \mathbf{s}(u, v_j, w), \mathbf{s}(u, v, w_k)$

Department of Computer Science Center for Visual Computing

Solid Modeling

- Create unambiguous and complete geometric representation of object
 - B-reps (Boundary representations)
 - Spatial partition
 - Volumetric (Arie Kaufman)
 - CSG (Constructive Solid Geometry, popular in mechanics design)

Surface of Revolution

Department of Computer Science Center for Visual Computing

Surfaces of Revolution

- Geometric construction
 - Specify a planar curve profile on y-z plane
 - Rotate this profile with respect to z-axis
- Procedure-based model
- What kinds of shape can we model?
- Review: three dimensional rotation w.r.t. z-axis

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

Surfaces of Revolution

• Mathematics: surfaces of revolution

$$\mathbf{c}(u) = \begin{bmatrix} 0\\ y(u)\\ z(u) \end{bmatrix}$$
$$\mathbf{s}(u,v) = \begin{bmatrix} -y(u)\sin(v)\\ y(u)\cos(v)\\ z(u) \end{bmatrix}$$

ST NY BR K

Department of Computer Science Center for Visual Computing

Frenet Frames

- Motivation: attach a smoothly-varying coordinate system to any location of a curve
- Three independent direction vectors for a 3D coordinate system: (1) tangent; (2) bi-normal; (3) normal

$$\mathbf{t}(u) = normalize(\mathbf{c}_{u}(u))$$
$$\mathbf{b}(u) = normalize(\mathbf{c}_{u}(u) \times \mathbf{c}_{uu}(u))$$
$$\mathbf{n}(u) = normalize(\mathbf{b}(u) \times \mathbf{t}(u))$$

 Frenet coordinate system (frame) (t,b,n) varies smoothly, as we move along the curve c(u)

Department of Computer Science Center for Visual Computing

Frenet Coordinate System

Department of Computer Science Center for Visual Computing

Sweeping Surface

Department of Computer Science Center for Visual Computing

General Sweeping Surfaces

- Surface of revolution is a special case of a sweeping surface
- Idea: a profile curve and a trajectory curve

$$\mathbf{c}_1(u)$$

 $\mathbf{c}_2(v)$

- Move a profile curve along a trajectory curve to generate a sweeping surface
- Question: how to orient the profile curve as it moves along the trajectory curve?
- Answer: various options

General Sweeping Surfaces

- Fixed orientation, simple translation of the coordinate system of the profile curve along the trajectory curve
- Rotation: if the trajectory curve is a circle
- Move using the "Frenet Frame" of the trajectory curve, smoothly varying orientation
- Example: surface of revolution
- Differential geometry fundamentals: Frenet frame

Frenet Swept Surfaces

- Orient the profile Curve (C1(u)) using the Frenet frame of C2(v)
 - Put C1(u) on the normal plane (n,b)
 - Place the original of C1(u) on C2(v)
 - Align the x-axis of C1(u) with -n
 - Align the y-axis of C1(u) with b
- Example: if C2(v) is a circle
- Variation (generalization)
- Scale C1(u) as it moves
- Morph C1(u) into C3(u) as it moves
- Use your own imagination!

Ruled surfaces

Department of Computer Science Center for Visual Computing

Ruled Surfaces

- Move one straight line along a curve, or join two parametric curves by straight lines
- Example: plane, cone, cylinder
- Cylindrical surface
- Surface equation

$$\mathbf{s}(u, v) = (1 - v)\mathbf{a}(u) + v\mathbf{b}(u)$$

$$\mathbf{s}(u, v) = (1 - v)\mathbf{s}(u, 0) + v\mathbf{s}(u, 1)$$

$$\mathbf{s}(u, v) = \mathbf{p}(u) + v\mathbf{q}(u)$$

- Isoparametric lines
- Generalized cylinder
- Bending by roller

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

Developable Surfaces

- Deform a surface to planar shape without length/area changes
- Unroll a surface to a plane without stretching/distorting
- Example: cone, cylinder
- Developable surfaces vs. Ruled surfaces
- More examples???

Department of Computer Science Center for Visual Computing

Developable Surface

Department of Computer Science Center for Visual Computing

Summary

- Parametric curves and surfaces
- Polynomials and rational polynomials
- Free-form curves and surfaces
- Other commonly-used geometric primitives (e.g., sphere, ellipsoid, torus, superquadrics, blobby, etc.)
- Motivation:
 - Fewer degrees of freedom
 - More geometric coverage

Surfaces

- Plane
- Quadratic surfaces
- Tensor product surfaces.
- Surfaces of revolution.
- Sweeping surfaces.
- Subdivision surfaces.

Department of Computer Science Center for Visual Computing