CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu
http://www.cs.stonybrook.edu/~qin
Graphics Hardware

• Many graphics algorithms can be implemented efficiently and inexpensively in hardware
• Facilitates interactive graphics applications, including certain domains of scientific visualization
• Topics today:
 – Raster devices
 – Video controllers & raster-scan display processors
 – Important rasterization and rendering algorithms
 – Pixels and images
Raster Devices

- Computer monitors (CRT, LCD, etc.), TVs
- These are *raster devices* because they display images on a *raster*, which is a regular n-D grid
- Each point on the grid is called a *pixel*, which stands for ________________
- Raster dimension given in pixels: 25 x 10 in this example
- In a monochrome display, each pixel is black or white
- In a color display, each pixel has an RGB triple
Raster Devices

- Also called *raster-scan* displays or systems
- Pixels are drawn in a strict order, called *raster-scan order*
- Cathode ray tube (CRT) shown here
- Monochrome display
Color Display Technology – CRT

- Cathode ray tube - used in TVs and computer monitors (the large, clunky type)
- A color CRT has three electron guns: one for red, one for green, and one for blue
- The beams scan screen in horizontal scanlines
- Metal mask steers beams
Color Display Technology – CRT

- Each screen pixel consists of a *phosphor* triple: one glowing red, one green, and one blue.
- A phosphor is a circular spot of *phosphorescent* material that glows when electrons strike it.
- Red phosphors glow red.
- RGB triad together form a single pixel on screen.
Color Display Technology – CRT

- Glowing phosphor triples blend together to form color encoded in RGB triple
- Amount of energy that electron guns deliver to each phosphor depends on RGB value of image pixel displayed there
- RGB values between 0 and 1 are mapped to voltages for the guns
Color Display Technology – CRT

• True or false: A color image in a CRT is generated by blending the three colored beams of light that are fired from the back of the monitor and blended on the front surface of the screen.
Color Display Technology – CRT

- The phosphors glow only for about 10-60 microseconds
- Image refreshed 30-60 times per second
- This rate is called the refresh rate and is given in Hz
- So if we redraw the image once every $1/60$th of a second, but the image lasts only a few millionths of a second, what about the gap?
- $1/60$th second is approximately 16667 microseconds
- $(16667 - 10)$ microseconds = “long” delay between refreshes
- So why is there no visible flicker?
Raster Devices: Display Resolution

• The raster is not 100% perfect – points of light corresponding to pixels can overlap slightly
• Same is true of raster printing technologies, like laser and inkjet printers
• Pixels are more like circles than squares in reality
• Raster devices are also limited by resolution
 – Computer monitors 1600 x 1200 and higher
 – Laser printers 300 dpi, 600 dpi, 1200 dpi and higher
 – TV resolution? HDTV?
Raster Devices: Color Depth

- Horizontal lines of pixels are called *scanlines*.
- TV: 640 HDTV: 720 or 1080.
- Monochrome monitor has 1 bits per pixel (bpp).
- Grayscale has 8 bpp (usually).
- Color monitors most often have 24 bpp: 8 bits each for red, green, and blue color channels.
- How many different levels of gray can we represent with 8 bits per pixel?
- How many different colors can 24-bit color represent?
Image Resolution

- Image resolution very important in visualization/rendering, why?
- When might we want to use a low resolution image?

res = 300^2 pixels
res = 150^2 pixels
res = 75^2 pixels
res = 37^2 pixels
How Many Bits Do We Need?

- Number of bits per pixel often called *bit depth*
- How many bits should we use in practice?

 #1: 8-bit original image

 #2: lower 4 bits dropped

 #3: (image #1 - image #2)

 #4: image #3 enhanced
Bit Depth

• Suppose we want to display 256 gray levels, but we have only 1-bit color.

• What colors can we display?

• How do we accommodate grayscale images?

• How do we accommodate color images?

• Suppose we want to display 16.7 million colors on our color monitor, but we have only 8-bit color. What can we do?
Dithering

- **Dithering** is a way to use a mixture of colors to trick the eye into seeing colors that cannot be actually represented by the display device.
- We can approximate gray by using a combination of black and white:
 - The relative densities of black and white determine the “gray” value.
- Also called *halftoning* (vb. *to halftone*).
Interfacing to Hardware

- A lot goes on “under the hood” in the graphics and display hardware
- Graphics hardware: converts geometry into pixels
- Display hardware: displays pixels
- Simplified hierarchy

By: [Author Name]
Department of Computer Science
Interfacing to Hardware

• From perspective of visualization, mechanics of image display aren’t too important
• We are more interested in what software can deliver
• Not even really interested in computer graphics!
• We just want to visualize!
• Why we use VTK and similar programming libraries
• We can treat everything under VTK as some nebulous “black box” that converts our 3D shapes into pixels
• Our building blocks are called graphics primitives
• But for graphics, we have to understand how pixels are drawn!
Graphics Pipelines

- Graphics processes generally execute sequentially
- Typical ‘pipeline’ model
- There are two ‘graphics’ pipelines
 - The Geometry or 3D pipeline
 - The Imaging or 2D pipeline
Rasterization

- We looked at raster devices and some different kinds of geometric objects we might wish to draw on the screen.
- Process of converting geometry into pixels is called rasterization or scan-conversion.
- Each triangle in our model is transformed (rotated, etc.) and projected by the transformation and projection matrices.
- Next we clip each triangle to the image plane.
- Each triangle is entirely inside, entirely outside, partially visible w.r.t the image plane.
Rasterization

- We will take an *object-order approach*
- Question: In contrast, ray-tracing is *what-order*?
- We process each triangle one by one
- After we transform and clip it, we rasterize it – we figure how what pixels on screen we need to update to draw the triangle on screen
Rasterization

- We will process the triangle in *scan-line order*: left-to-right starting at top left corner, moving right and down.

\[d_i = d_{i-1} + \Delta d_i \]
Rasterization

- We sort the vertices by their y values and find the vertex with the maximal y value; call this vertex v_0.

\[
d_i = d_{i-1} + \Delta d_i
\]
Rasterization

- This sorting allows us to identify the other two vertices, v_1 and v_2.
Rasterization

- Using the slopes of the edges we can compute each row of pixels to process, called a *span* of pixels.

\[d_i = d_{i-1} + \Delta d_i \]
Rasterization

- **Across each polygon** we interpolate various data values \(d_i \) for each pixel.
- **Example**: RGB to assign colors to vertices.
Rasterization

• But where do we get the RGB values?
• We will have to look at shading and illumination
• Now we will see how the theory is put into practice
• We will look at three ways of implementing the illumination equations:
 – Flat surface rendering
 – Gouraud surface rendering
 – Phong surface rendering
Graphics Primitives

- **Vertex:** position, normal, color – how many values total?

- **Polygon:** series of connected vertices

```plaintext
Point1
  position=(1,3,0)
  normal=(0,0,1)
  color=(.8,.8,.8)

Point2
  position=(0,0,0)
  normal=(0,0,1)
  color=(.8,.8,.8)

Point3
  position=(2,0,0)
  normal=(0,0,1)
  color=(.8,.8,.8)

Polygon1
  points=(1,2,3)
```
Graphics Primitives

Polygon — a set of edges, usually in a plane, that define a closed region. Triangles and rectangles are examples of polygons.

Triangle Strip — a series of triangles where each triangle shares its edges with its neighbors.

Line — connects two points.

Polyline — a series of connected lines.

Point — a 3D position in space.
Graphics Primitives

- Normal vectors: why for vertices?
- If our polygonal object came from curved surface, vertex normals will not be same as polygonal normals
Geometry Pipeline

Animation/Interaction: time

Modeling: shapes

Shading: reflection and lighting

Transformation: viewing

Hidden Surface Elimination

Imaging Pipeline
Imaging Pipeline

Geometry Pipeline

Rasterization and Sampling

Texture Mapping

Image Composition

Intensity and Color Quantization

Framebuffer/Display
An Example through the Pipeline...

The scene we are trying to represent:

Images courtesy of Picture Inc.
Wireframe Model – Orthographic Views
Perspective View
Depth Cue
Hidden Line Removal – Add Color
Constant Shading - Ambient
Faceted Shading - Flat
Gouraud Shading, No Specular Highlights
Specular Highlights
Phong Shading
Texture Mapping
Texture Mapping
Reflections, Shadows & Bump mapping