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3D Viewing (Computer Graphics 
Pipeline)
• We will need to revisit the concept and the 

techniques for defining 3D viewing coordinate 
system and specifying 3D view volume for 
graphics pipeline. 

• We will need to convert 3D view volume (both 
parallel projection and perspective projection) to 
a canonical, normalized, device-independent 
coordinate system, before we can display the final 
picture in the specified viewport on the display 
device!
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Geometric Projections

• From 3D to 2D

• Maps points from camera coordinate system to the 

screen (image plane of the virtual camera).
Planar Geometric Projections

Parallel Perspective

Oblique Orthographic

Image Plane

Center of Projection (COP)
Image Plane
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Basic Camera Attributes
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Parallel Orthographic Projection

• Preserves X and Y coordinates.

• Preserves both distances and angles.

Image Plane
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Parallel Orthographic Projection
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Perspective Projection

• Only preserves parallel lines that are parallel to 

the image plane.

• Line segments are shorten by distance.

Image Plane

Center of Projection (COP)
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Perspective Projection

x

(x, y, z)

z

y

(xp, yp, zp)
z = d
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Perspective Projection

x

(x, z)

z

(xp, d)
z = d

• zp = d

• xp = (x• d) / z
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Perspective Projection

y

(y, z)

z

(yp, d)

z = d

• zp = d

• yp = (y• d) / z
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Specify a View Volume
• Reduce degrees of freedom to make the operations 

easier; four steps to specify a view volume

1.  Position the camera (and therefore its view/image plane), the 

center of projection

2.  Orient the camera to point at what you want to see, the view 

direction and the view-up direction

3.  Define field of view:

 perspective: aspect ratio of image and angle of view: between 

wide angle, normal, and zoom

 parallel: width and height

4. Choose perspective or parallel projection
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Specifying Arbitrary 3D Views
• Definition of view volume (the visible part of the virtual world) specified by 

camera’s position and orientation

– Position (a point)

– Look and Up vectors

• Shape of view volume specified by

– horizontal and vertical view angles

– front and back clipping planes 

• Coordinate Systems

– world coordinates – standard right-handed xyz 3-space

– camera coordinates – camera-space right-handed coordinate system 
(u, v, n); origin at Position 
and axes rotated by 
orientation; used for 
transforming arbitrary 
view into canonical view
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x

z

y

(xmax, ymax, -far)

(xmin, ymin, -near)

glOrtho(xmin, xmax, ymin, ymax, near, far)

View Volume
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View Volume (Parallel Projection)
• For example, Orthographic parallel projection: Truncated view 

volume – Cuboid (not exactly a cube!)

• How about oblique projection???

Height

Width

Look 

vectorNear distance

Position

Far 
distance

Up vector
x

y

z
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(xmin, ymin, -near)
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x

z

y
w

gluPerspective(fovy, aspect, near, far)

h

fov
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View Volume (Perspective 
Projection)

• Perspective projection: Truncated pyramid – 

View frustum

• How about oblique projection???
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Coordinate 
Systems
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Coordinate Systems (Computer 
Graphics Pipeline)

1. Objects in model coordinates are  transformed into

2. World coordinates, which are transformed into

3. View coordinates, which are transformed into

4. Normalized device coordinates, which are transformed 

into 

5. Display coordinates, which correspond to pixel 

positions on the screen

6. Transformations from one coordinate system to 

another take place via coordinate transformations, 

which we have already discussed in previous lectures
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Normalizing to the Device 
Independent View Volume
• Goal: transform arbitrary view coordinate system to the canonical view 

volume (device independent), maintaining relationship between view volume 
and the normalized, device independent coordinate system, then take picture

– for parallel view volume, transformation is affine : consisting of linear 
transformations (rotations and scales) and translation/shift

– in case of a perspective view volume, it also contains a non-affine 
perspective transformation that turns a frustum into a parallel view volume, 
a cuboid

– composite transformation to transform arbitrary view volume to the 
canonical view volume, named the normalizing transformation, is still a 
4x4 homogeneous matrix that typically has an inverse

– easy to clip against this canonical view volume; clipping planes are axis-
aligned!

– projection using canonical view volume is even easier: just omit z-
coordinates

– for oblique parallel projection, a shearing transform is part of composite 
transform, to “de-oblique” view volume FIRST!!!
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Canonical View Volume

• This is the key for today’s lecture

– parallel projection
– sits at origin: 

Position = (0, 0, 0)
– looks along negative z-axis: 

Look vector = (0, 0, –1)
– oriented upright: 

Up vector = (0, 1, 0)
– film plane extending from –1 to 1 in x and y

z

Up

Look

Up
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Specify Arbitrary 3D Viewing 
Coordinate System

• The original of coordinate system

• Three independent directions (mutually 

perpendicular with each other)
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Viewing Coordinate System
• We have specified arbitrary view with viewing 

parameters

• Problem: map arbitrary view specification to 2D 

image of scene.  This is hard, both for clipping 

and for projection

• Solution: reduce to a simpler problem and solve 
it step-by-step

• Note: Look vector along negative (not positive) 
z-axis is arbitrary but makes math easier!
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Viewing in Three Dimension
• The key: Mathematics of projections and its matrix operations

• How to produce 2D image from view specification?

• It is relatively easy to specify

– Canonical view volume (3D parallel projection cuboid)

– Canonical view position (camera at the origin, looking along 
the negative z-axis)

• A step-by-step approach

1. get all parameters for view specification

2. transform from the specified view volume into canonical view 
volume (This is the key step)

3. using canonical view, clip, project, and rasterize scene to 
make 2D image
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From World Coordinate System to 
View Coordinate System

• We now know the view specification: Position, Look vector, and Up vector

• Need to derive an affine transformation from these parameters to translate and 
rotate the canonical view into our arbitrary view

– the scaling of the image (i.e. the cross-section of the view volume) to make a 
square cross-section will happen at a later stage, as will the clipping operation

• Translation is easy to find: we want to translate the origin to the point Position; 
therefore, the translation matrix is

• Rotation is much harder: how do we generate a rotation matrix from the viewing 
specifications to turn  one system (x, y, z) into another system (u, v, n) ?
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Rotation Components

• We have already known how to conduct rotation 

operations with respects to arbitrary axis

• Also, we have already discussed the 

transformations between two coordinate systems 

earlier in our lectures

• Those techniques should be employed to define 

three mutually independent axes in 3D and take 

care of the transformation between the two 

coordinate systems
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• Want to build a rotation matrix to normalize the camera-space unit 

vector axes (u, v, n) into the world-space axes (x, y, z). 
– rotation matrix M will turn (x, y, z) into (u, v, n) and has  columns (u, v, n)  ➔ viewing 

matrix

– conversely, M-1=MT turns (u, v, n) into  (x, y, z). MT has rows (u, v, n)  ➔ normalization 

matrix

• Reduces the problem of finding the correct rotation matrix into 

finding the correct perpendicular unit vectors u, v, and n

• Using Position, Look vector, and Up vector, compute viewing 

rotation matrix M with columns u, v, and n, then use its inverse, the 

transpose MT, with row vectors u, v, n to get the normalization 

rotation matrix 

Rotation Matrix
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Canonical View Volume

• Note: it’s a cuboid, not a cube 

(transformation arithmetic and 
clipping are easier)
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Canonical View
• Given a parallel view specification and vertices of a 

bunch of objects, we use the normalizing transformation, 
i.e., the inverse viewing transformation, to normalize 
the view volume to a cuboid at the origin, then clip, and 
then project those vertices by ignoring their z values

• How about Perspective Projection? 

• Normalize the perspective view specification to a unit 
frustum at the origin looking down the –z axis; then 
transform the perspective view volume into a parallel 
(cuboid) view volume, simplifying both clipping and 
projection
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Steps for Normalizing View
Volume (Parallel Projection)
• We need to decompose this process into multiple steps 

(each step is a simple matrix)

• Each step defined by a matrix transformation

• The product of these matrices defines the entire 
transformation in one large, composite matrix. The 
steps comprise:

– move the eye/camera to the origin

– transform the view so that (u, v, n) is aligned with (x, y, z)

– adjust the scales so that the view volume fits between  –1 and 
1 in x and y, the far clip plane lies at z = –1, the near plane at z 
= 0
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Steps for Normalizing View
Volume (Perspective Projection)

• The earlier processes are the SAME AS that of 

the parallel projection, but we need to add one 

more step:

– distort pyramid to cuboid to achieve perspective 

distortion to align the near clip plane with z = 0
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Perspective Projection (Move the 
Eye to the Origin)
• We want to have a matrix to 

transform (Posx, Posy, Posz) to 
(0, 0, 0)

• Solution: it’s just the inverse of 
the viewing translation 
transformation:

     (tx, ty, tz) = (–Posx, –Posy, –
Posz)

• We will take the matrix as 
follows, and we will multiply 
all vertices explicitly (and the 
camera implicitly) to preserve 
the relationship between camera 
and scene, i.e., for all vertices p

• This will move Position (the 
“eye point”) to (0, 0, 0)
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Axis Alignment

• Align orientation with respects to x,y,z world 

coordinate system

• Normalize proportions of the view volume
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Orientation Alignment
Rotate the view volume and align with the world 

coordinate system
• We notice that the view transformation matrix M with columns u, 

v, and n would rotate the x, y, z axes into the  u, v, and n axes

• We now apply the inverse (transpose) of that rotation, MT,  to the 
scene.  That is, a matrix with rows u, v, and n will rotate the axes 
u, v, and n into the axes x, y, and z

– Define Mrot to be this rotation matrix transpose

• Now every vertex in the scene (and the camera implicitly) is 
multiplied by the composite matrix

 We have translated and rotated, so that the Position is at the 
origin, and the (u, v, n) axes and the (x, y, z) axes are aligned

transrotTM
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Axis Alignment
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Scale the View Volume
• We have moved things more or less to the right position, but the 

size of the view volume needs to be normalized…  
– last affine transformation: scaling

• Need to be normalized to a square cross-section 2-by-2 units
– why is that preferable to the unit square?

• Adjust so that the corners of far clipping plane eventually lie at 
(+1, +1, –1)

• One mathematical operation works for both parallel and 
perspective view volumes

• Imagine vectors emanating from origin passing through corners 
of far clipping plane.  For perspective view volume, these are 
edges of volume.  For parallel, these lie inside view volume

• First step: force vectors into 45-degree angles with x and y axes

• Solution: We shall do this by scaling in x and y
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View Volume Scaling
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Scale Boundary Planes

• Scale independently in x and y:

• Want to scale in x to make angle 90 
degrees

• Need to scale in x by 

      

Similarly in y
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Scaling Matrix
• The scale matrix we need looks like this:

• So our current composite transformation looks 

like this:
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Scaling Along z-axis
• Relative proportions of view volume planes are now correct, but 

the back clipping plane is probably lying at some z  –1, and we 

want all points inside view volume to have 0 ≤ z ≤ -1

• Need to shrink the back plane to be at z = –1

• The z distance from the eye to that point has not changed: it’s still 

far (distance to the far clipping plane)

• If we scale in z only, proportions of volume will change; instead 

we scale uniformly:
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• Far plane at z = –1.

• Near clip plane now at z = –k (note k > 0)

 

z

y

x

(-k,k,-k)

(-1,1,-1)

z = -1

At Present, We Are Here
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Now We have
• Our near-final composite normalizing transformation for canonical 

perspective view volume:

– Ttrans takes the camera’s Position and moves the camera to the 

world origin

– Mrot takes the Look and Up vectors and orients the camera to 

look down the –z axis

– Sxy takes                and scales the clipping planes so that the 

corners are at (±1, ±1)

– Sfar takes the far clipping plane and scales it to lie on the z=-1 

plane

hw  ,

transrotxyfar TMSS
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Perspective Transformation
• We have put the perspective view volume into the RIGHT canonical position, 

orientation and size

• Let’s look at a particular point on the original near clipping plane lying on the 

Look vector:

 

 It gets moved to a new location

 on the negative z-axis, say

 

  

( )kp −= 00

pTMSSp transrotxyfar=

LooknearPositionp +=
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Perspective Transformation
• What is the value of k? Trace through the steps. 

      p first gets moved to just

• This point is then rotated to (near)(–e3)

• The xy scaling has no effect, and the far 

 scaling changes this to                                 ,       so 

– but far is –1, so -near/far is simply near

3e
far

near








−

far

near
k =

Looknear
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Perspective Transformation
• Transform points in standard perspective view volume between –k and –1 to standard 

parallel view volume

• “z-buffer,” used for visible surface calculation, needs z values to be [0 1], not [–1 0]. 

Perspective transformation must also transform scene to positive range 0 ≤ z ≤ 1

• The matrix that does this:

• (Remember that 0< k < 1 …)

• Why not originally align camera to +z axis?

– Choice is perceptual, we think of looking through a display device into the scene that lies behind 

window
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Finally, We Have
• Final transformation:

• Note that once the viewing parameters (Position, Up vector, Look 

vector, Height angle, Aspect ratio, Near, and Far) are known, the 

matrices

• can all be computed and multiplied together to get a single 4x4 

matrix that is applied to all points of all objects to get them from 

“world space” to the standard parallel view volume.

• What are the rationales for homogeneous coordinates???

pTMSSDp transrotxyfarpersp=

transrotxyfarpersp TMSSD ,,,,



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping (A Quick Review)
• Final steps are clipping and projecting onto the image plane to produce pictures

• Need to clip scene against sides of view volume

• However, we’ve normalized our view volume into an axis-aligned cuboid that extends 

from –1 to 1 in x and y and from 0 to 1 in z

• Note that: This is the flipped (in z) version of the canonical view volume 

• Clipping is easy! Test x and y components of vertices against +/-1. Test z components 

against 0 and 1

Back clip plane
transforms to the z=1 plane

Front clip plane
transforms to here

(1, -1, 1)

(-1, -1, 1)

(-1, 1, 0)

(1, 1, 1)

(-1, -1, 0)

(1, 1, 0)

(1, -1, 0)

(-1, 1, 1)

x

y

z
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• Cohen-Sutherland regions

• Clip before perspective

division
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Clipping (A Quick Review)
• Vertices falling within these values are saved, and vertices falling outside get clipped; 

edges get clipped by knowing x,y or z value at an intersection plane.  Substitute x, y, or z 

= 1 in the corresponding parametric line equations to solve for t

• In 2D:

( ) 101 xtxtx +−=

( ) 101 ytyty +−=

( ) 101 ztztz +−=

10  t
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Projecting to the Screen (Device 
Coordinates)

• Can make an image by taking each point and “ignoring z” to project it onto the xy-

plane

• A point (x,y,z) where

 turns into the point (x’, y’) in screen space (assuming viewport is the entire screen) 

with

 by 

  - ignoring z

• If viewport is inside a Window Manager’s window, then we need to scale down and 

translate to produce “window coordinates”

• Note: because it’s a parallel projection we could have projected onto the front plane, 

the back plane, or any intermediate plane … the final pixmap would have been the 

same
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From World to Screen
• The entire problem can be reduced to a composite matrix multiplication of vertices, 

clipping, and a final matrix multiplication to produce screen coordinates.  

• Final composite matrix (CTM) is composite of all modeling (instance) transformations 

(CMTM) accumulated during scene graph traversal from root to leaf, composited with the 

final composite normalizing transformation N applied to the root/world coordinate 

system:

Recap:

– 1)  You will be computing the normalizing transformation matrix N in Camtrans

– 2)  In Sceneview, you will extend your Camera with the ability to traverse and compute composite 

modeling transformations (CMTMs) to produce a single CTM for each primitive in your scene

• Aren't homogeneous coordinates wonderfully powerful?

CMTMNCTM =

transrotxyfarpersp TMSSDN =1)

2)

PCTMP =3)

)1(512 += PPscreen4)

for every vertex P defined in its own 
coordinate system

for all clipped P’
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