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Non-Uniform Rational B-Splines
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NURBS

Pixar Animation 

Character 

‘Woody’ in Toy 

Story

– Problems: Topological 

Restrictions Occur!

• Trimming NURBS is 

expensive and can have 

numerical errors

• When used in animation, 

very hard to hide seams
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Subdivision Schemes for Interactive 
Surface Modeling
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What is Subdivision
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– Construct a surface 

from an arbitrary 

polyhedron
• Subdivide each face of 

the polyhedron

– The limit will be a 

smooth surface

 Subdivision Schemes



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5

Subdivision Surfaces
Subdivision surface
(different levels of refinement)
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Subdivision: Key Idea

• Approach limit curve through an iterative 

refinement process

CSE528 Lectures

Refinement 1 Refinement 2

Refinement ∞
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• Same approach works in 3D
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Refinement
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Subdivision Surfaces: Motivation
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• How do we represent curved surfaces in the 
computer?

– Efficiency of representation

– Continuity

– Affine invariance

– Efficiency of rendering

• How do they relate to splines/patches?

• Why use subdivision rather than patches?
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Subdivision Type
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• Interpolating schemes

– Limit surfaces/curve will pass through original set of 

data points.

• Approximating schemes

– Limit surface will not necessarily pass through the 

original set of data points.
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Subdivision in Production 
Environment
• Traditionally spline patches (NURBS) 

have been used in production for 

character animation.

• Difficult to control spline patch density 

in character modeling. 

CSE528 Lectures

(Geri’s Game, Pixar 1998)

Subdivision in Character Animation  

Tony Derose, Michael Kass, Tien Troung

(SIGGRAPH ’98)
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Adaptive Subdivision for 
Rendering
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• Not all regions of a model need to be 
subdivided.

• Idea:  Use some criteria and adaptively 
subdivide mesh where needed.

– Curvature

– Screen size ( make triangles < size of pixel )

– View dependence 

• Distance from viewer

• Silhouettes

• In view frustum

– Careful! Must ensure that “cracks” aren’t made

crack

subdivideView-dependent refinement of progressive meshes 

Hugues Hoppe.

(SIGGRAPH ’87)
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?
Refinement

(Refinement)-1

Progressive Geometry Compression

Andrei Khodakovsky, Peter Schröder and Wim Sweldens 

(SIGGRAPH 2000)
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Introduction

• History of subdivision. 

• What is subdivision?

• Why subdivision?
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History of Subdivision Schemes
Stage I: Create smooth curves from arbitrary mesh

• de Rham, 1947.

• Chaikin, 1974.

Stage II: Generalize splines to arbitrary topology

• Catmull and Clark,1978.

• Doo and Sabin,   1978.

Stage III: Applied in high end animation industry

• Pixar Studio, “Geri’s Game”,1998.

Stage IV: Applied in engineering design and CAD
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Basic Idea of subdivision

• Start from an initial control polygon.

• Recursively refine it by some rules.

• A smooth surface (curve) in the limit.
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Chaikin’s Corner Cutting Scheme 
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Chaikin’s Corner Cutting Scheme 
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Chaikin’s Corner Cutting Scheme 
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Chaikin’s Corner Cutting Scheme 
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Chaikin’s Algorithm 
• A set of control points to define a polygon

• Subdivision process (more control vertices)

• Rules (corner chopping)

• Properties:

– quadratic B-spline curve, C1 continuous, tangent to each edge 
at its mid-point
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Chaikin’s Algorithm
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Chaiken’s Algorithm – Another 
Example
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Quadratic Spline
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Cubic Spline
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Cubic Spline
• Subdivision rules

• C2 cubic B-spline curve

• Corner-chopping

• No interpolation
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Curve Interpolation
• Control points

• Rules: 

• At each stage, we keep all the OLD points and insert 
NEW points “in between” the OLD ones

• Interpolation!

• The behaviors and properties of the limit curve depend 
on the parameter w

• Generalize to SIX-point interpolatory scheme!
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Curve Interpolation



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Other Modeling Primitives

• Spline patches.

• Polygonal meshes.
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Spline Patches
Advantages:

• High level control.

• Compact analytical representations.

Disadvantages:

• Difficult to maintain and manage inter-patch 
smoothness constraints.

• Expensive trimming needed to model features.

• Slow rendering for large models.
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Polygonal Meshes

Advantages:

• Very general.

• Can describe very fine detail accurately.

• Direct hardware implementation.

Disadvantages:

• Heavy weight representation.

• A simplification algorithm is always needed.
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Subdivision Schemes

Advantages:

• Arbitrary topology.

• Level of detail.

• Unified representation.

Disadvantages:

• Difficult for analysis of properties like 

smoothness and continuity.
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Uniform/Semi-uniform Schemes
• Catmull-Clark scheme    

– Catmull and Clark, CAD 1978

• Doo-Sabin scheme     

– Doo and Sabin, CAD 1978

• Loop scheme    

– Loop, Master’s Thesis, 1987

• Butterfly scheme   

– Dyn, Gregory and Levin, ACM TOG 1990.

• Mid-edge scheme    

– Habib and Warren, SIAM on Geometrrc Design 1995

• Kobbelt scheme    

– Kobbelt, Eurographics 1996
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Classification

• By Mesh type:
– Triangular   (Loop, Butterfly)

– Quadrilateral   (Catmull-Clark, Doo-Sabin, Mid-edge, Kobbelt) 

• By Limit surface: 
– Approximating   (Catmull-Clark, Loop, Doo-Sabin, Mid-edge)

– Interpolating      (Butterfly, Kobbelt) 

• By Refinement rule: 
– Vertex insertion  (Catmull-Clark, Loop, Butterfly, Kobbelt)

– Corner cutting    (Doo-Sabin, Mid-edge) 
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Catmull-Clark Scheme
• Face point:  

    
   

• Edge point:  
    
   

• Vertex point:

the average of all the points defining the 

old face.

the average of two old vertices and two 

new face points of the faces adjacent to the 

edge.

nVnEF /))3(2( −++

F: the average of the new face points of all faces 

adjacent to the old vertex.

E: the average of the midpoints of all 

adjacent edges.

V: the old vertex. 
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Initial mesh Step 1

Step 2 Limit surface

Catmull-Clark Scheme
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Modified Catmull-Clark
– Extend Cubic B-splines

• Easier to implement with 

existing software

– Quadrilaterals are often 

better at capturing 

symmetry

• Like human body parts

– Quads are convenient for 

cloth dynamics
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Catmull-Clark Subdivision
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Catmull-Clark Subdivision
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Catmull-Clark Subdivision
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Face pointEdge point Vertex point

(1)

(2)
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Mid-edge Scheme
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(a) (b)

(d)(c)

Mid-edge Scheme
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Loop Scheme
• Box splines

– A projection of 6D box onto 2D

– A quartic polynomial basis function

– Triangular domain

• Works on triangular meshes

• Is an approximating scheme

• Non-tensor-product splines

• Loop scheme results from a generalization of box splines to 

arbitrary topology

• Guaranteed to be smooth everywhere except at extraordinary 

vertices
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Box Spline Overview
• Based on 2D Box Spline

– Defined by projection of 

hypercube (in 6D) into 2D.

– Satisfies many properties that 

B-spline has.

• Recursive definition

• Partition of unity

• Truncated power

– Natural splitting of a cube into 
sub-cubes provides the 
subdivision rule.

p
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Basis Functions for Loop’s Scheme
• Basis Function - Evaluation

Assign unit weight to center,

zero otherwise, over Z2 lattice

Successive

Subdivision

The Limit → N2,2,2 Basis



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Loop’s Scheme Properties

• Basis Function – Properties

1. Support → 2 neighbors

from the center

2. C4 continuity within the

support

3. Piecewise polynomial

4. N2,2,2(• - j), j  Z2 form

a partition of unity

i.e. Σ N(x - j) = 1



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Loop’s Scheme Rules

• The Rules
w

1- kw

w

w

w

w

w w

3/8

1/8

1/8

3/8
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Loop Scheme Rules

B

B B

B B

1/8

3/8

1/8

3/8

B = 3/8k, for n>3

B = 3/16, for n=3

1-nB
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Loop Scheme Example
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Butterfly Subdivision

-w

-w

2w

0.5

0.5 -w

2w

-w
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Butterfly Scheme
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Modified Butterfly Scheme

 

Initial mesh One refinement step Two refinement steps
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Modified Butterfly Example
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Modeling Sharp Features

Corner

Crease 

Dart
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Piecewise Smooth Subdivision

(a)

(d)(c)

(b)

Hoppe et al. Siggraph 94
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• Piecewise C1-continuous extension [Hoppe 94]

– Extension of the Loop’s scheme.
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Non-uniform Subdivision Schemes
• Piecewise smooth subdivision schemes  

– Hoppe et al. Siggraph 94

• Hybrid scheme      
–  et al. Siggraph 98

• NURSS scheme    
– Sederburg et al. Siggraph 98

• Combined scheme    

– Levin Siggraph 99 

• Edge and vertex insertion scheme 
– Habib et al. CAGD 99
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Hybrid Subdivision Scheme

(a)

(c) (d)

(b)

DeRose et al. Siggraph 98
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1. Tag Edges as “sharp” or “not-sharp”

• n = 0 – “not sharp”

• n > 0 – sharp

During Subdivision, 

2. if an edge is “sharp”, use sharp subdivision 

rules.  Newly created edges, are assigned 

a sharpness of n-1.

3. If an edge is “not-sharp”, use normal 

smooth subdivision rules.

IDEA: Edges with a sharpness of “n” do not get 

subdivided smoothly for “n” iterations of the algorithm.
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• Density of newly generated mesh increases 

rapidly.

• In practice, 2 or 3 iterations of subdivision is 

sufficient.

• Need better “control”.

IDEA:  Interpolate between smooth and sharp rules 

for non-integer sharpness values of n.
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Hierarchical Editing

 Zorin et al. Siggraph 97
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Surface Reconstruction

Hoppe et al. Siggraph 94
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• Complex data structures required to perform subdivision.

– Every polygon ( triangle, quad, ..) must know its neighbors

– Every vertex must know its neighbors

• Can we do something simpler?

– Use vertex normal information to help “guess” about neighboring polygons.

– Subdivide based on the normals.

subdivision
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• Defined from “triangular bezier” patches.


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=
3 !!!
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ijk wvu
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Curved PN Triangles

Alex Vlachos Joerg Peters Chas Boyd Jason Mitchel

u,v,w are barycentric coordinates

w=1-u-v, u,v,w≥1

Bezier basis function
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PN Triangles
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• Interpolating Scheme.

• Example..
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Local Subdivision
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• Advantages
– Easy to implement

• No complex data structures

– Easy to integrate into existing graphics applications

– Hardware amenable

– Looks good

• Disadvantages
– No guarantees on higher level continuity.

– Is limited in the amount of curvature it can provide.

– In some sense it is a hack and not as “correct”.
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• Subdivision can be expressed as a matrix Smask of weights w.

– Smask is very sparse

– Never Implement this way!

– Allows for analysis

• Curvature

• Limit Surface
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• Subdivision mask weights w are derived from splines, such as B-
Splines.

– Subdivision surfaces converge to spline surfaces with C2 continuity 
everywhere.**

– Too lengthy to cover here, but there is lots of literature.

Subdivision Methods for Geometric Design

Joe Warren, Henrik Weimer. (2002)

**Math works out except at “Extraordinary Vertices”.  

Most Subdivision Schemes have and “ideal” valence for which it can 
be shown that the limit surface will converge to a spline surface.
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• Catmull-Clark yields the 

nicest surface.

• Loop is more asymmetric.

• Mod. Butterfly is the worst.



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Comparison
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• Extreme shrink for Loop and 

Catmull-Clark.
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Comparison
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Midedge Doo-Sabin  Biquadric

•The increasing shrinkage with increasing smoothness.



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Comparison

CSE528 Lectures

• Similar results

• Interpolating schemes are sensitive to the presence of sharp 

features, and may produce low quality surfaces unless the 

initial mesh is smooth enough.
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– Loop and Catmull-Clark appear to be the best 

choices for most applications.

• Loop seems to be more reliable.

– Quadrilateral scheme

• Natural texture mapping for quads.

• Natural number of symmetries?

– Curvature continuity

• No C1 with small support.
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– Pro
• No Trimming

• Connectivity and Smoothness Guaranteed

– Con
• Not much studies like NURBS

polygons B-splines

+ flexible -restrictive

-faceted +smooth

Subdivision 

Surface =
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“Geri’s Game”

DeRose et al. Siggraph 98

Subdivision Surfaces in the Making of Geri’s 
Game
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Subdivision in Production 
Environment
• Traditionally spline patches (NURBS) 

have been used in production for 

character animation.

• Difficult to control spline patch density 

in character modeling. 

CSE528 Lectures

(Geri’s Game, Pixar 1998)

Subdivision in Character Animation  

Tony Derose, Michael Kass, Tien Troung

(SIGGRAPH ’98)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Gery’s Head

CSE528 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Catmull-Clark Surface Modeling
• Subdivision produces smooth continuous surfaces.  

• How can “sharpness” and creases be controlled in a modeling 

environment? 

ANSWER: Define new subdivision rules for “creased” edges and 

vertices.

CSE528 Lectures

1. Tag Edges sharp edges.

2. If an edge is sharp, apply new 

sharp subdivision rules.

3. Otherwise subdivide with 

normal rules.
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• Infinitely sharp creases
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Without Crease

With Crease
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Semi-sharp Creases
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– Modify averaging rules 

– Hybrid subdivision 
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Integer Sharpness s
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– Subdivide s times using sharp rules

– Use smooth rules to the limit surface 

Example s = 2
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Variable Sharpness
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Model courtesy of 

Jason Bickerstaff
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Scalar Fields provide 

texture coordinates.
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Texturing
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– Specify parameters 

independent of subdivision 

level

– Assign parameters at control 

vertices.

– Subdivide using same rules.

– Interpolating using Laplacian 

smoothing or Painting an 

intensity map
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Implementation Issues
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– Subdivision surfaces now implemented in 

RenderMan.

– Regular mesh regions -> B-splines.

– Using B-splines allows

• Efficiency in memory usage

• Reduce the total amount of splitting

• Forward algorithms are available to dice B-spline patches

– An advantage of semi-sharp creases 

• Never tear
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• Pixar Developments make subdivision surfaces 

very practical and useful

• Subdivision > NURBS
– More control, accuracy

– Time saved, To be refined locally

– Remove two obstacles by developing semi-sharp creases and 

scalar fields

– An efficient data structure and cloth energy function well 

suited to physical and cloth simulation 

• Now part of Renderman

       



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Subdivision Splines
• We treat subdivision as a novel method to produce spline-like models in the 

limit

• Key components for spline models

– Control points, basis functions over their parametric domain, 

parameterization, piecewise decomposition

• Parameterization is done naturally via subdivision

• The initial control mesh serves as the parametric domain

• Basis functions are available for regular settings as well as irregular settings

• Control points for one patch are in the vicinity of its parametric domain from its 

initial control vertices

• Subdivision-based spline formulation is fundamental for physics-based 

geometric modeling and design, finite element analysis, simulation, and the 

entire CAD/CAM processes
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Chaikin Curve Example
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Interpolation Curve Example
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Parameterization
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Butterfly Surface Example
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Control Vertices for Butterfly 
Surface
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Control Vertices for Surface 
Patches
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Butterfly Patches
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Butterfly Basis Function
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Catmull-Clark Surface Example   
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Catmull-Clark Patches 
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Catmull-Clark Basis Function
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Simple Sculpting Examples
original object deformation cutting

extrusion fixed regions
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Chair Example --- Finite Element 
Simulation

Initial control 

lattice

Finite element 

structure after a few 

subdivisions

Deformed 

object

Photo-realistic 

rendering
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Sculpting Tools
carving extrusion detail editing

joining sharp features deformation
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Sculpting Tools
inflation curve-based design

material mapping physical window

deflation

material probing
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Sculpting Tools
pushing curve-based join

curve-based cutting multi-face extrusion

sweeping

feature deformation
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Interactive Sculpting
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More Examples
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Volume Editing and Visualization

compressive

forces

displacement 

mapping

original lattice

original volume

deformed lattice

deformed volume
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Sculpted CAD Models
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Subdivision Solids
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Scenes and Sculptures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Other Applications
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Rendering – Adaptive Tessellation 

CSE528 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Meshless Geometric Subdivision
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Point-based Graphics
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• Core : unstructured point cloud

• Points with attributes : 

– color, normal, etc.

• Advantages :

– acquisition

– multiresolution

– storage

• Drawback : meshing + visualization
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Modeling + Visualization enabled 
by Subdivision Surface Fitting
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