CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin
Department of Computer Science
State University of New York at Stony Brook (Stony Brook University)
Stony Brook, New York 11794--4400
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.sunysb.edu
http://www.cs.sunysb.edu/~qin
Solid Modeling Basics

• Represent objects’ solid interiors
 – Surface may not be described explicitly
Motivation

• Some acquisition methods to generate solids
 – Example: Different medical imaging modalities
Motivation

• Some applications to require solids
 – Example: CAD/CAM/CAE
Motivation

- Some algorithms to require solids
 - Example: Ray tracing with refraction
Solid Modeling: A Brief History

- CNC (Computer Numerical Control): ~1950
- Mainframe computers: ~1960’s
- B-REP: 1970 (Baumgart)
- CSG: 1974 (Ian Braid)
Solid Modeling Representations

- Boundary representation (Surface representation)
- Constructive Solid Geometry (CAD/CAM/CAE)
- Voxels (Medical imaging modalities)
- Quadtrees & Octrees (Computational geometry)
- Binary Space Partitions (Computational geometry)
3D and Solid Representation

- Wireframe models
- Stores each edge of the object
- Data structure: the vertices (start point, end point)
- The equation of the edge-curve
Wireframe Problem: Ambiguity

Wireframe ambiguity: Is this object (a), (b) or (c)?
Boundary Models
Vertex-Based B-REP

v1 x1 y1 z1
v2 x2 y2 z2
v3 x3 y3 z3
v4 x4 y4 z4
v5 x5 y5 z5
v6 x6 y6 z6
v7 x7 y7 z7
v8 x8 y8 z8

f1 v1 v2 v3 v4
f2 v6 v2 v1 v5
f3 v7 v3 v2 v6
f4 v8 v4 v3 v7
f5 v5 v1 v4 v8
f6 v8 v7 v6 v5
Procedural Models (Sweeping)
Popular Methods

- **Constructive Solid Geometry** (CSG)
- **Boundary representation** (B-REP)
- **Spatial enumeration** (voxels, octrees, etc.)
- **Implicit representation**
Solid Models

- Decomposition models
- Constructive models (CSG)
- Boundary models (B-rep)
- Non-manifold models
Solid Modeling: Fundamental Goals

- Problems of wireframe models: lack of robustness, incompleteness, limited applicability.
- Complete representation of solid objects that are adequate for answering any geometric questions (from robots) without help of human user.
- Two major issues: integrity and complexity
Properties of Solid Modeling

- Expressive power
- Validity: manufacturability
- Unambiguity and uniqueness
- Description languages: operations for construction
- Conciseness: storage requirement
- Computational ease and applicability: Computing power requirements
Solid Modeling Approaches

- **Decomposition models**: voxel, volume rendering, iso-surface extraction
- **Constructive models**: combination of primitives with set-theoretic operations: CSG
- **Boundary models**: in terms of its boundary: B-REP
- **Non-manifold models**: a hybrid of decomposition models and boundary models.
Constructive Solid Geometry (CSG)

-Introduced by: Ian Braid (Cambridge University, ~74)

- Basic concepts: Combine simple primitives together using set operations (model construction using Boolean operations)
 - Union, subtraction, intersection

- Intuitive operations for building more complex shapes

- Primitives: small set of shapes
- Transformations: Scaling, Rotation, Translation
- Set-theoretic Operations Union, Intersection, Difference

- Combinations of these → Solid Parts
Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of Boolean operations
 - Union
 - Intersection
 - Difference
CSG Acquisition

- Interactive modeling programs
 - CAD/CAM/CAE
CSG Display & Analysis

- Ray-casting
Ray Casting

Ray casting: from pixel/eye to light source
Ray Classification
CSG Trees: Ray Tracing

- **INPUT:** Assume that we have a ray \(R \) and a CSG tree \(T \)

- **If** \(T \) **is a solid,**
 - compute all intersections of \(R \) with \(T \)
 - return parameter values and normals

- **If** \(T \) **is a transformation**
 - apply inverse transformation to \(R \) and recursion
 - apply inverse transpose of transformation to normals
 - return parameter values

- **Otherwise** \(T \) **is a Boolean operation**
 - recursion on two children to obtain two sets of intervals
 - apply operation in \(T \) to intervals
 - return parameter values

- **OUTPUT:** Display closest intersection points
CSG Trees: Inside/Outside Test

- Given a point \(p \) and a tree \(T \), determine if \(p \) is inside/outside the solid defined by \(T \)

 - If \(T \) is a solid
 - Determine if \(p \) is inside \(T \) and return
 - If \(T \) is a transformation
 - Apply the inverse transformation to \(p \) and recursion
 - Otherwise \(T \) is a Boolean operation
 - Recursion to determine inside/outside of left/right children
 - If \(T \) is Union
 - If either child is inside, return inside, else outside
 - If \(T \) is Intersection
 - If both children are inside, return inside, else outside
 - If \(T \) is Subtraction
 - If \(p \) is inside left child and outside right child, return inside, else outside
Application: Computing Volume

- Put bounding box around object
- Pick \(n \) random points inside the box
 - Determine if each point is inside/outside the CSG Tree
- Volume \(\approx \frac{\#_{\text{inside}}}{n} \)
Boolean Operators

U* (regular union)

-* (regular difference)

∩* (regular intersection)

CSG Tree:
Sequence of operators → design
CSG Examples

 primitives

box(\(a, b, c \)) cylinder(\(h, r \))

CSG Examples

\[
\begin{align*}
&\text{box} (25, 25, 15) \\
&\text{Trans}(5, 0, -5) \text{ box} (10, 25, 10) \\
&\text{U*} \\
&\text{Trans}(20, 12.5, 15) \text{ cylinder} (5, 3) \\
&\text{U*} \\
&\text{box} (25, 25, 15) \\
&\text{Trans}(5 \sqrt{2}) \\
&\text{U*} \\
&\text{Trans}(10, 0, 0) \text{ box} (3, 10, 10) \\
&\text{U*}
\end{align*}
\]
Questions?

• Can we use a different set of primitives?
• Is the CSG representation unique?
• How to determine if two solids are identical?
Regularized Operators

- Is the set of 3D solids is closed with respect to (U, -, ∩)?
- closure of a set S: kS
- interior of a set S: iS

- \(A U^* B = k i (A U B) \)
- \(A -* B = k i (A - B) \)
- \(A \cap^* B = k i (A \cap B) \)

- Why is closure over operations important?
- Uniform data structures
Regularized Operators

- Maintain solid as a *regular 2-Manifold*
- 2-Manifold regular solids
- Open neighborhood of each point is similar to an open disc

Non 2-Manifold:
Problems with CSG

• **Non-unique representation**

• **Difficulty of performing analysis for some tasks**
Examples of Solid Models

Torus

Lock
More Examples

Slanted Torus

Bearing
Examples

Solid Model of an Ice-Cream Machine
Chemical Plants
Chemical Plants
Chemical Plants (Example)
Surface Modeling
B-REP (Boundary REPRESENTATION)

• What entities define the

• Boundary of a solid?

• Boundary of surfaces?

• Boundary of curves (edges)?

• Boundary of points?
B-REP

(a) Solid: bounded, connected subset of E^3
(b) Faces: boundary of solid bounded, connected subsets of Surfaces
(c) Edges: boundary of faces bounded, connected subsets of curves

Boundary of a solid…

Boundary of surfaces…

Boundary of curves (edges)…
B-REP Polyhedral Models
Using a Boundary Model

- Compute volume, weight
- Compute surface area
- Point inside/outside solid
- Intersection of two faces
- ...
Boundary Representation

• Stores the boundary of a solid
 – Geometry: vertex locations
 – Topology: connectivity information
 • Vertices
 • Edges
 • Faces
Boundary Representation

- Constant time adjacency information
 - For each vertex,
 - Find edges/faces touching vertex
 - For each edge,
 - Find vertices/faces touching edge
 - For each face,
 - Find vertices/edges touching face
Polygonal Meshes

- Planar polygons (planar facets or faces) are used to model the surface of complex objects.

In ‘Contours’, a polyline was represented by a list of coordinates for the vertices that connect the line segments. Here, a polygonal mesh is represented by the list of vertex coordinates for the vertices that define the planar polygons in the mesh.
Polygonal Meshes - Representation by List of vertices

- As many polygons tend to share each vertex, an indirect representation that allows each vertex to be listed only once is used.
 - Number the vertices from 1 to n; store the coordinates for each vertex once:
 \[v_1 = (x_1, y_1, z_1) \]
 \[\vdots \]
 \[v_n = (x_n, y_n, z_n) \]
 - Represent each face by a list of vertices in the polygon for the face; for consistency, follow the convention of listing them in the order of being encountered (clockwise around the face).
- Easy to find all the vertices for a given face, and any change in the coordinates of a vertex automatically (indirectly) changes all faces that use the vertex.
- Does not explicitly represent the edges between adjacent faces.
- Does not provide an efficient way to find all faces that include a given vertex. Winged edge data structure resolves these problems.
An Edge-Based Model

Faces:
- $f_1 = e_1 e_4 e_5$
- $f_2 = e_2 e_6 e_4$
- $f_3 = e_3 e_5 e_6$
- $f_4 = e_3 e_2 e_1$

Edges:
- $e_1 = v_1 v_2$
- $e_2 = v_2 v_3$
- $e_3 = v_3 v_1$
- $e_4 = v_2 v_4$
- $e_5 = v_1 v_4$
- $e_6 = v_3 v_4$

Vertices:
- $v_1 = x_1 y_1 z_1$
- $v_2 = x_2 y_2 z_2$
- $v_3 = x_3 y_3 z_3$
- $v_4 = x_4 y_4 z_4$
- $v_5 = x_5 y_5 z_5$
- $v_6 = x_6 y_6 z_6$
Edge-Based Models

- Less efficient algorithms for computing surface area: (1) identify loops; (2) compute area of each loop; and (3) compute area of face
Observations

2-Manifold => Each edge is shared by exactly 2 faces

Face CCW convention => Each edge is once +ve, once -ve
Boundary Representation

• **Advantages**
 – Explicitly stores neighbor information
 – Easy to render
 – Easy to calculate volume
 – Nice-looking surface

• **Disadvantages**
 – CSG very difficult
 – Inside/Outside test hard
Winged Edge Data Structure

- Efficient implementation of frequently-used algorithms
- Area of face
- Hidden surface removal
- Find neighbor-faces of a face
Winged Edge Data Structure

• Each vertex/face points to a single edge containing that vertex/face
Winged Edge Data Structure

- Given a face, find all vertices touching that face
- Given a vertex, find all edge-adjacent vertices
- Given a face, find all adjacent faces
B-REP Example
B-REP Example

Vertices:

\[
\begin{align*}
 v_1 & : x_1 \ y_1 \ z_1 \\
 v_2 & : x_2 \ y_2 \ z_2 \\
 v_3 & : x_3 \ y_3 \ z_3 \\
 v_4 & : x_4 \ y_4 \ z_4 \\
 v_5 & : x_5 \ y_5 \ z_5 \\
 v_6 & : x_6 \ y_6 \ z_6 \\
 v_7 & : x_7 \ y_7 \ z_7 \\
 v_8 & : x_8 \ y_8 \ z_8
\end{align*}
\]
B-REP Example

Edges:

<table>
<thead>
<tr>
<th>e_1</th>
<th>v_1</th>
<th>v_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_2</td>
<td>v_2</td>
<td>v_3</td>
</tr>
<tr>
<td>e_3</td>
<td>v_3</td>
<td>v_1</td>
</tr>
<tr>
<td>e_4</td>
<td>v_2</td>
<td>v_4</td>
</tr>
<tr>
<td>e_5</td>
<td>v_1</td>
<td>v_4</td>
</tr>
<tr>
<td>e_6</td>
<td>v_3</td>
<td>v_4</td>
</tr>
<tr>
<td>e_7</td>
<td>v_5</td>
<td>v_6</td>
</tr>
<tr>
<td>e_8</td>
<td>v_6</td>
<td>v_7</td>
</tr>
<tr>
<td>e_9</td>
<td>v_7</td>
<td>v_5</td>
</tr>
<tr>
<td>e_{10}</td>
<td>v_6</td>
<td>v_8</td>
</tr>
<tr>
<td>e_{11}</td>
<td>v_5</td>
<td>v_8</td>
</tr>
<tr>
<td>e_{12}</td>
<td>v_7</td>
<td>v_8</td>
</tr>
</tbody>
</table>
B-REP Example

Faces:

\[f_1 \quad l_1 \quad l_2 \\
\]

\[f_2 \quad l_3 \\
\]

\[f_3 \quad l_4 \\
\]

\[f_4 \quad l_5 \\
\]

\[f_5 \quad l_6 \\
\]

\[f_6 \quad l_7 \\
\]

Loops:

\[l_1 \quad +e_1 \quad +e_4 \quad -e_5 \\
\]

\[l_2 \quad -e_7 \quad +e_11 \quad -e_{10} \\
\]

\[l_3 \quad +e_2 \quad +e_6 \quad -e_4 \\
\]

\[l_4 \quad +e_5 \quad -e_6 \quad +e_3 \\
\]

\[l_5 \quad -e_1 \quad -e_3 \quad -e_2 \\
\]

\[l_6 \quad +e_7 \quad +e_8 \quad +e_9 \\
\]

\[l_7 \quad +e_{10} \quad -e_{12} \quad -e_8 \\
\]

\[l_8 \quad -e_{11} \quad -e_9 \quad +e_{12} \\
\]
Winged Edge Data Structure

- Used to store information regarding the mesh.
- Provides efficient means to find all faces that include a given vertex.
- Network with 3 types of records - vertex, edge and face records.
- All faces using a vertex can be found in time proportional to the number of faces that include the vertex.
- All vertices around a face can be found in time proportional to the number of vertices around the face.
- Can handle polygons with many sides; not all polygons in the mesh necessarily need to have the same size / same number of sides.
- Compact data structure that allows for very efficient algorithms.
- WEDS includes pointers that can be followed to find all neighboring elements without searching the entire mesh or storing a list of neighbors in the record for each element.
- There is 1 vertex record for every vertex in the polygonal mesh, etc.
Winged Edge Data Structure

- **Vertex record**
 - Contains the vertex coordinates
 - Contains a unique number for the vertex
 - Contains a pointer to the record for an edge that ends at that vertex.
Winged Edge Data Structure

- Face record contains a pointer to the edge record of one of its edges
Winged Edge Data Structure

- **Edge record**
 - Provides most of the connectivity for the mesh.
 - Contains a pointer to each of the vertices at its ends.
 - Contains a pointer to each face on either side of the edge.
 - Contains pointers to the four wing edges that are neighbors in the polygonal mesh.
 - These pointers connect the faces and vertices into a polygonal mesh and allow the mesh to be traversed efficiently, i.e., efficient traversal from edge to edge around a face.
Winged Edge Data Structure

- Edge record - Notation of compass directions is just for convenience; in a polygonal mesh, there is no global sense of direction.
Traversing a Face

- Start at the edge pointed to by the face record
- For clockwise traversal, follow the northeast wing if the face is east of the edge. Follow the southwest wing if the face is west of the edge.
- For each edge, a check must be performed to determine if the face is east or west of the edge
- Continue until the starting edge is reached
Adding a Face to a Mesh

Input: A clockwise list of vertices for the face, each consisting of a vertex number and coordinates. Use the left-hand rule to determine the clockwise direction.

1. For each vertex in the list, add a record for the vertex to the WEDS if one does not already exist.

2. For each pair of successive vertices (including first and last), add a corresponding edge record to the WEDS if it does not already exist. If any of the two vertices does not yet point to an edge, set the edge pointer of the vertex to the new edge.

3. Create a record for the face in the WEDS and add a pointer to any of the face edges.

4. For each record of an edge of the face, add the wings for traversal and update the face pointers. This depends on whether the face is east or west of each edge record.
Example – Adding a Face

Input 1: V1, V2, V3
Input 2: V2, V4, V3

1. Add each vertex to the WEDS.
2. Add an edge for each pair of vertices and set the edge pointers for the vertices.
3. Create a record for the face in the WEDS and add a pointer to any of the face edges.
4. For each record of an edge of the face, add the wings for traversal and update the face pointers. This depends on whether the face is east or west of each edge record.
B-REP vs. CSG?

- **Using**: CSG is more intuitive

- **Computing**: BREP is more convenient

- **Modern CAD Systems**:
 - CSG for GUI (feature tree)
 - B-REP for internal storage and API’s
B-REP: Non-Polyhedral Models

Same Data Structure, plus

For each edge, store equation

For each curved face, store equation

Why do we need to learn all of these?

(a) To anticipate when an operation will fail

(b) To allow us to write API’s
Surface Modeling
Voxel Representation

- **Partition space into uniform grid**
 - Grid cells are called *voxels* (like pixels)

- **Store properties of solid object with each voxel**
 - Occupancy
 - Color
 - Density
 - Temperature
 - Etc.
Voxel Acquisition

• **Scanning devices using different medical imaging modalities**
 – MRI
 – CAT

• **Simulation**
 – FEM
Voxel Storage

- $O(n^3)$ storage for $n \times n \times n$ grid
 - 1 billion voxels for $1000 \times 1000 \times 1000$
Voxel Boolean Operations

- Compare objects voxel by voxel
Voxel Display

- **Isosurface rendering**
 - Render surfaces bounding volumetric regions of constant value (e.g., density)
Voxel Display

- **Slicing**
 - Draw 2D image resulting from intersecting voxels with a plane
2D Polygon Generation
3D Polygon Generation
3D Polygon Generation
Voxel Display

- Ray-casting
 - Integrate density along rays through pixels
Voxels

• Advantages
 – Simple, intuitive, unambiguous
 – Same complexity for all objects
 – Natural acquisition for some applications
 – Trivial Boolean operations

• Disadvantages
 – Approximation, not accurate
 – Large storage requirements
 – Expensive display
Solid Modeling Representation

- Quadtrees & Octrees
Quadtrees & Octrees

- **Refine resolution of voxels hierarchically**
 - More concise and efficient for non-uniform objects

Uniform Voxel Quadtree
Quadtree
Quadtrees are data structures used in computer science for spatial searching. They are often used in image processing, geographic information systems, and other applications where a grid-like data structure is needed.
Quadtree Boolean Operations

A \cup B

A \cap B
Octrees & Quadtrees

- Octrees are based on a two-dimensional representation scheme called **quadtree** encoding.
- Quadtree encoding divides a square region of space into four equal areas until **homogeneous** regions are found.
- These regions can then be arranged in a tree.
Octrees

• Model space as a tree with 8 children

• Nodes can be 3 types
 – Interior Nodes
 – Solid
 – Empty
Octrees

- Model space as a tree with 8 children
- Nodes can be 3 types
 - Interior Nodes
 - Solid
 - Empty
Octrees

Region of a Three-Dimensional Space

Data Elements in the Representative Octree Node

0 1 2 3 4 5 6 7
Octrees

- Octrees are hierarchical tree structures used to represent solid objects.
- Octrees are particularly useful in applications that require cross sectional views – for example medical applications.
- Octrees are typically used when the interior of objects is important.
Octrees

- Quadtree encodings provide considerable savings in storage when large colour areas exist in a region of space.
- An octree takes the same approach as quadtrees, but divides a cube region of 3D space into octants.
- Each region within an octree is referred to as a volume element or voxel.
- Division is continued until homogeneous regions are discovered.
Octrees

- In 3 dimensions regions can be considered to be homogeneous in terms of color, material type, density or any other physical characteristics.
- Voxels also have the unique possibility of being empty.
Building Octrees

- If cube completely inside, return solid node
- If cube completely outside, return empty node
- Otherwise recursion until maximum depth reached
Octrees

• **Advantages**
 – Storage space proportional to surface area
 – Inside/Outside trivial
 – Volume trivial
 – CSG relatively simple
 – Can approximate any shape

• **Disadvantages**
 – Blocky appearance
Octrees

• **Advantages**
 – Storage space proportional to surface area
 – Inside/Outside trivial
 – Volume trivial
 – CSG relatively simple
 – Can approximate any shape

• **Disadvantages**
 – Blocky appearance
Octree Example
Octree Data Structure

```c
struct octree
{
    float xmin, ymin, zmin; /* space of interest */
    float xmax, ymax, zmax;
    struct octree *root; /* root of the tree */
};

struct octree
{
    char code; /* BLACK, WHITE, GRAY */
    struct octree *oct[8]; /* pointers to octants, present if GRAY */
};
```
Octree Examples

Octree containing pieces of an implicitly defined sphere; within each terminal node surface vertices are computed and connected to form a polygon.
Octree Examples
Solid Modeling Representation

• Binary Space Partitions
Half Space Model
Binary Space Partitions (BSPs)

- **Recursive partition of space by Planes**
 - Mark leaf cells as inside or outside object

Object	Binary Spatial Partition	BSP Tree
a b c d e f g | a b c d e f g 1 2 3 4 5 6 7 | a b c d e 4 5 6 7

CSE528 Lectures
Department of Computer Science
Center for Visual Computing

STATE UNIVERSITY OF NEW YORK
BSP Fundamentals

- **Single geometric operation**
 - Partition a convex region by a hyper-plane

- **Single combinatorial operation**
 - Two child nodes added as leaf nodes
BSP Display

- **Visibility Ordering**
 - Determine on which side of plane the viewer lies
 - Near-subtree -> polygons on split -> far-subtree

```
Viewer
/o1
/o2
/o3
/o4
```

```
Partitioning Tree
01 3rd
02 4th
03 1st
04 2nd

Viewer
```

- A
- B
- C
Summary

<table>
<thead>
<tr>
<th></th>
<th>Voxels</th>
<th>Octree</th>
<th>BSP</th>
<th>CSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine Invariant</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy Acquisition</td>
<td>Some</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
</tr>
<tr>
<td>Guaranteed Validity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient Boolean</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Operations</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient Display</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
New Solid Modeling Techniques:
(Sketch-Based Solid Modeling with BlobTrees)
Implicit Representation of Shape

- Shape described by solution to \(f(x) = c \)

\[
f(x, y) = x^2 + y^2 - 9
\]
Implicit Representation of Shape

- Shape described by solution to $f(x) = c$

$$f(x, y) = x^2 + y^2 - 9$$
Implicit Representation of Shape

- Shape described by solution to $f(x) = c$

\[f(x, y) = x^2 + y^2 - 9 \]
Implicit Representation of Shape

- **Shape described by solution to** $f(x) = c$

$$f(x, y) = x^2 + y^2 - 9$$
Advantages

• No topology to maintain
• Always defines a closed surface!
• Inside/Outside test
• CSG operations
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - Union
Advantages

• No topology to maintain
• Always defines a closed surface!
• Inside/Outside test
• CSG operations
 – Union
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - Union
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - Union
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - Union
Advantages

• No topology to maintain
• Always defines a closed surface!
• Inside/Outside test
• CSG operations
 – Union
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - Union
 - Intersection
Advantages

• No topology to maintain
• Always defines a closed surface!
• Inside/Outside test
• CSG operations
 – Union
 – Intersection
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - Union
 - Intersection
 - Subtraction
Advantages

- No topology to maintain
- Always defines a closed surface!
- Inside/Outside test
- CSG operations
 - Union
 - Intersection
 - Subtraction
Advantages

• No topology to maintain
• Always defines a closed surface!
• Inside/Outside test
• CSG operations
 – Union
 – Intersection
 – Subtraction
Disadvantages

• Hard to render - no polygons
• Creating polygons amounts to root finding
• Arbitrary shapes hard to represent as a function
Non-Analytic Implicit Functions

- Sample functions over grids
Non-Analytic Implicit Functions

- Sample functions over grids
Sketch-Based 3D Modeling System

Key Concept:
Anyone can create 3D models

Method:
3D modeling from sketched 2D strokes
Technical Challenges

• A sketch-based modeling system
 – Easy
 – Interactive

Problem:
It is difficult to support complex models
Various Kinds of Sketch-Based Modeling Systems

- **Triangle meshes**
- **Subdivision surfaces**
- **Implicit surfaces**
- **Parametric surfaces**
Teddy

- Triangle meshes
- Chordal axis

Low complex models
Implicit Approaches

• **Blending operation**

\[\Delta \text{ A Large matrix must be solved} \]

Approach:

BlobTree

(Hierarchical implicit volume Models)
BlobTree

- **Leaves:** Implicit primitives
- **Tree nodes:** Composition operators
- **Complex 3D modeling with skeletal primitives**
Why is BlobTree effective?

- Non-linear editing of primitives
 Complex models can be constructed easily

- A hierarchical spatial caching
 Complex models can be constructed interactively
Basic Functionalities

• Creating an implicit field from 2D contours defined by sketched strokes

• Converting 2D contours into 3D implicit volumes

• Editing 3D implicit volumes in BlobTree
A Sketch-Based Implicit Field

$$g_{wyvill}(x) = (1 - x^2)^3$$

- C^2 Continuity
- $f_M = v_{iso}$ on a 2D stroke
Three Types of Surfaces

• Blobby inflation

• Linear sweeps

• Surfaces of revolution
Operations

- Cutting (CSG)
- Blending
An Example
Blending

Difference (CSG)
Difference (CSG)

Blending
Results
Results
BlobTree

• BlobTree has allowed us to create complex 3D models in a sketch-based modeling system

⚠️ The User must understand BlobTree structure