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Solid Modeling Basics

• Represent objects’ solid interiors

– Surface may not be described explicitly
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Motivation

• Some acquisition methods to generate solids

– Example: Different medical imaging modalities
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Motivation

• Some applications to require solids

– Example: CAD/CAM/CAE
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Motivation

• Some algorithms to require solids

– Example: Ray tracing with refraction
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Solid Modeling: A Brief History

• CNC (Computer Numerical Control): ~1950

• Mainframe computers: ~1960’s

• B-REP: 1970 (Baumgart)

• CSG: 1974 (Ian Braid)
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Solid Modeling Representations
• Boundary representation (Surface 

representation)

• Constructive Solid Geometry 
(CAD/CAM/CAE)

• Voxels (Medical imaging modalities)

• Quadtrees & Octrees (Computational geometry)

• Binary Space Partitions (Computational 
geometry)
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3D and Solid Representation

• Wireframe models

• Stores each edge of an object

• Data structure: the vertices (start point, end 

point)

• The equation of the edge-curve
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Boundary Models
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(a) (b) (c)

Wireframe ambiguity:

Is this object (a), (b) or (c) ?

(a) (b) (c)

Wireframe ambiguity:

Is this object (a), (b) or (c) ?

Wireframe Problem:  Ambiguity
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Vertex-Based B-REP
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Procedural Models (Sweeping)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Popular Methods

• Constructive Solid Geometry  (CSG)

• Boundary representation   (B-REP)

• Spatial enumeration (voxels, octrees, etc.)

• Implicit representation
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Solid Modeling: Fundamental Goals

• Problems of wireframe models: lack of robustness, 

incompleteness, limited applicability.

• Complete representation of solid objects that are 

adequate for answering any geometric questions 

(from robots) without help of human user.

• Two major issues: integrity and complexity
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Solid Models
• Decomposition models

• Constructive models (CSG)

• Boundary models (B-rep)

• Non-manifold models
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Properties of Solid Modeling

• Expressive power

• Validity: manufacturability

• Unambiguity and uniqueness

• Description languages: operations for construction

• Conciseness: storage requirement

• Computational ease and applicability: Computing 

power requirements
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Solid Modeling Approaches
• Decomposition models: voxel, volume rendering, 

iso-surface extraction

• Constructive models: combination of primitives 
with set-theoretic operations: CSG

• Boundary models: in terms of its boundary: B-
REP

• Non-manifold models: a hybrid of decomposition 
models and boundary models
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Constructive Solid Geometry (CSG)

• Represent solid object as hierarchy of 

Boolean operations

– Union

– Intersection

– Difference
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Constructive Solid Geometry (CSG)
• Introduced by:     Ian Braid (Cambridge University, ~74)

• Basic concepts: Combine simple primitives together using set 
operations (model construction using Boolean operations)
– Union, Intersection, Subtraction (Difference)

• Intuitive operations for building more complex shapes

• Primitives:   small set of shapes

• Transformations:  Scaling, Rotation, Translation

• Set-theoretic Operations Union, Intersection, Difference

• Combinations of these → Solid Parts
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CSG Acquisition

• Interactive modeling programs

– CAD/CAM/CAE
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CSG Display & Analysis

• Ray-casting

Union

Circle Box
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Ray casting: 

from pixel/eye to light source 

Ray Casting
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Ray Classification
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CSG Trees: Ray Tracing
• INPUT: Assume that we have a ray R and a CSG tree T

• If T is a solid, 
– compute all intersections of R with T

– return parameter values and normals

• If T is a transformation
– apply inverse transformation to R and recursion

– apply inverse transpose of transformation to normals

– return parameter values

• Otherwise T is a Boolean operation
– recursion on two children to obtain two sets of intervals

– apply operation in T to intervals

– return parameter values.
 

• OUTPUT: Display closest intersection points
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CSG Trees: Inside/Outside Test
• Given a point p and a tree T, determine if p is inside/outside the solid defined 

by T

• If T is a solid

– Determine if p is inside T and return

• If T is a transformation

– Apply the inverse transformation to p and recursion

• Otherwise T is a Boolean operation

– Recursion to determine inside/outside of left/right children

– If T is Union

• If either child is inside, return inside, else outside

– If T is Intersection

• If both children are inside, return inside, else outside

– If T is Subtraction

• If p is inside left child and outside right child, return inside, else 
outside
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Application: Computing Volume

• Put bounding box around object

• Pick n random points inside the box

– Determine if each point is inside/outside the CSG 

Tree

• Volume 
n

inside#
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Questions?

• Can we use a different set of primitives ?

• Is the CSG representation unique ?

• How to determine if two solids are identical ?
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Problems with CSG

• Non-unique representation

• Difficulty of performing analysis for some tasks
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U* (regular union)

-* (regular difference)

∩* (regular intersection)

CSG Tree:

 Sequence of operators → design 

Boolean Operators
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x

y

z

y

x
z

box( a, b, c) cylinder( h, r)

primitives

x

y

z

y

x
z

box( a, b, c) cylinder( h, r)

primitives

X

Z

box( 25, 25, 15) Trans( 2,0, 15) Rot(Y, 45) Trans( -5, 0, -5) box( 10, 25, 10)

U* Trans( 20, 12.5, 15) cylinder( 5, 3)

U*

-*

Trans( 10, 0, 0) box( 3, 10, 10)

X

Z

X

Z

box( 25, 25, 15) Trans( 5  -5, 0, -5) box( 10, 25, 10)

U* Trans( 20, 12.5, 15) cylinder( 5, 3)

U*

-*

Trans( 10, 0, 0) box( 3, 10, 10)

CSG Examples
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Regularized Operators

• Is the set of 3D solids is closed with respect to ( 

U, -, ∩ )? 
• closure of a set S: kS

• interior of a set S: iS

•  A U* B = k i ( A U B)

•  A -* B = k i ( A –B)

•         A ∩* B = k i ( A ∩ B)

• Why is closure over operations important?

• Uniform data structures
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Non 2-Manifold:

Regularized Operators

• Maintain solid as a regular 2-Manifold

• 2-Manifold regular solids

• Open neighborhood of each point is similar to an 

open disc 
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Examples of Solid Models

Torus Lock
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More Examples

Slanted Torus Bearing
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Examples

Solid Model of an Ice-Cream Machine
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Chemical Plants
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Chemical Plants
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Chemical Plants (Example)
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(a) Solid:  bounded, connected subset of E3

(b) Faces: boundary of solid

bounded, connected subsets of Surfaces

(c) Edges: boundary of faces

bounded, connected subsets of curves

(a) Solid:  bounded, connected subset of E3

(b) Faces: boundary of solid

bounded, connected subsets of Surfaces

(c) Edges: boundary of faces

bounded, connected subsets of curves

Boundary of a solid…

Boundary of surfaces…

Boundary of curves (edges)…

B-REP
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Surface Modeling
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B-REP Polyhedral Models
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B-REP (Boundary REPresentation)
• What entities define the

•  Boundary of a solid ?

•  Boundary of surfaces?

•  Boundary of curves (edges) ?

•  Boundary of points ?
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Boundary Representation

• Stores the boundary of a solid 

– Geometry: vertex locations

– Topology: connectivity information

• Vertices

• Edges

• Faces
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Using a Boundary Model
• Compute volume, weight

• Compute surface area

• Point inside/outside solid

• Intersection of two faces

• …
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Polygonal Meshes
• Planar polygons (planar facets or faces) are used to model the surface of 

complex objects

• In ‘Contours’, a polyline was represented by a list of coordinates for the 
vertices that connect the line segments

• Here, a polygonal mesh is represented by the list of vertex coordinates for the 
vertices that define the planar polygons in the mesh
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Boundary Representation

• Constant time adjacency information

– For each vertex, 

• Find edges/faces touching vertex

– For each edge,

• Find vertices/faces touching edge

– For each face,

• Find vertices/edges touching face
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Polygonal Meshes - Representation by 

     List of vertices

• As many polygons tend to share each vertex, an indirect representation that 

allows each vertex to be listed only once is used

– Number the vertices from 1 to n; store the coordinates for each vertex once: 

v1 = (x1, y1, z1)

   .

   .

  vn = (xn, yn, zn) 

– Represent each face by a list of vertices in the polygon for the face; for 

consistency, follow the convention of listing then in the order of being encountered  

(clockwise around the face)

• Easy to find all the vertices for a given face, and any change in the coordinates 

of a vertex automatically (indirectly) changes all faces that use the vertex

• Does not explicitly represent the edges between adjacent faces

• Does not provide an efficient way to find all faces that include a given vertex

• Winged edge data structure resolves these problems
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v1 v2

v3

v4

e1

e2e3

e4

e6

e5

Faces:

f1 e1 e4 e5

f2 e2 e6 e4

f3 e3 e5 e6

f4 e3 e2 e1

Edges:

e1 v1 v2

e2 v2 v3

e3 v3 v1

e4 v2 v4

e5 v1 v4

e6 v3 v4

Vertices:

v1 x1 y1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

v1 v2

v3

v4

e1

e2e3

e4

e6

e5

v1 v2

v3

v4

e1

e2e3

e4

e6

e5

Faces:

f1 e1 e4 e5

f2 e2 e6 e4

f3 e3 e5 e6

f4 e3 e2 e1

Edges:

e1 v1 v2

e2 v2 v3

e3 v3 v1

e4 v2 v4

e5 v1 v4

e6 v3 v4

Vertices:

v1 x1 y1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

An Edge-Based Model
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faceface

Edge-Based Models

• Less efficient algorithms for computing surface 

area: (1) identify loops; (2) compute area of each 

loop; and (3) compute area of face
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e1

e4
e5

e2

e6

e4

e1

e4
e5

e2

e6

e4

Face CCW convention =>

 Each edge is once +ve, once -ve

2-Manifold =>  Each edge is shared by exactly 2 faces

co-edges

Observations
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Boundary Representation
• Advantages

– Explicitly stores neighbor information

– Easy to render/display

– Easy to calculate volume

– Nice-looking surface

• Disadvantages

– CSG very difficult

– Inside/Outside test hard
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v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

B-REP Example
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v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

Vertices:

v1 x1 y1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

v7 x7 y7 z7

v8 x8 y8 z8

v9 x9 y9 z9

v10 x10 y10 z10

v11 x11 y11 z11

v12 x12 y12 z12

B-REP Example
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v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

Edges:

e1 v1 v2

e2 v2 v3

e3 v3 v1

e4 v2 v4

e5 v1 v4

e6 v3 v4

e7 v5 v6

e8 v6 v7

e9 v7 v5

e10 v6 v8

e11 v5 v8

e12 v7 v8

B-REP Example
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v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

v1 v2

v3

v4

e1

e2

e3

e4

e6

e5

v5 v6

v8

e7

e8

e9

e10e11

e12

v7

Faces:

f1 l1 l2
f2 l3
f3 l4
f4 l5
f5 l6
f6 l7
f7 l8

Loops:

l1 +e1 +e4 -e5

l2 -e7  +e11 -e10

l3 +e2 +e6 -e4

l4 +e5 -e6 +e3

l5 -e1 -e3 -e2

l6 +e7 +e8 +e9

l7 +e10 -e12 -e8

l8            -e11 -e9 +e12

B-REP Example
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Winged Edge Data Structure

• Efficient implementation of frequently-used 

algorithms

• Area of face

• Hidden surface removal

• Find neighbor-faces of a face 
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Winged Edge Data Structure

• Each vertex/face points to a single edge 

containing that vertex/face

E

LN
RN

RP
LP

P

N

Left face Right face



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winged Edge Data Structure

• Given a face, find all vertices touching that face

• Given a vertex, find all edge-adjacent vertices

• Given a face, find all adjacent faces

E

LN
RN

RP
LP

P

N

Left face Right face
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Winged Edge Data Structure
• Used to store information regarding the mesh. 

• Provides efficient means to find all faces that include a given vertex. 

• Network with 3 types of records - vertex, edge, and face records. 

• All faces using a vertex can be found in time proportional to the number of 
faces that include the vertex. 

• All vertices around a face can be found in time proportional to the number of 
vertices around the face. 

• Can handle polygons with many sides; not all polygons in the mesh 
necessarily need to have the same size / same number of sides.

• Compact data structure that allows for very efficient algorithms. 

• WEDS includes pointers that can be followed to find all neighboring elements 
without searching the entire mesh or storing a list of neighbors in the record 
for each element. 

• There is 1 vertex record for every vertex in the polygonal mesh, etc. 
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Winged Edge Data Structure

• Vertex record
– Contains the vertex coordinates

– Contains a unique number for the vertex

– Contains a pointer to the record for an edge that ends at that 

vertex.  

Vertex Edge
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Winged Edge Data Structure

• Face record contains a pointer to the edge record 

of one of its edges

EdgeFace
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Winged Edge Data Structure
• Edge record

– Provides most of the connectivity for the mesh

– Contains a pointer to each of the vertices at its ends

– Contains a pointer to each face on either side of the edge

– Contains pointers to the four wing edges that are neighbors 
in the polygonal mesh

– These pointers connect the faces and vertices into a 
polygonal mesh and allow the mesh to be traversed 
efficiently, i.e., efficient traversal from edge to edge around 
a face
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Winged Edge Data Structure
• Edge record - Notation of compass directions is just for convenience; in a 

polygonal mesh, there is no global sense of direction

 

Edge Face

Vertex

Vertex

Face

EdgeEdge

Edge Edge

E

NE

N

NW

W

SW

S

SE
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Traversing a Face
• Start at the edge pointed to by the face record

• For clockwise traversal, follow the northeast wing if the 

face is east of the edge, follow the southwest wing if the 

face is west of the edge.

• For each edge, a check must be performed to determine 

if the face is east or west of the edge

• Continue until the starting edge is reached



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Adding a Face to a Mesh
Input: A clockwise list of vertices for the face, each consisting of a 

vertex number and coordinates.  Use the left-hand rule to 
determine the clockwise direction.

1. For each vertex in the list, add a record for the vertex to the 
WEDS if one does not already exist.

2. For each pair of successive vertices (including first and last), 
add a corresponding edge record to the WEDS if it does not 
already exist.  If any of the two vertices does not yet point to 
an edge, set the edge pointer of the vertex to the new edge.

3. Create a record for the face in the WEDS and add a pointer to 
any of the face edges.

4. For each record of an edge of the face, add the wings for 
traversal and update the face pointers.  This depends on 
whether the face is east or west of each edge record
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Example – Adding a Face

V1

V3

V2

Input 1: V1, V2, V3

1. Add each vertex to the WEDS.

Vertices

Faces

Edges

V1->

V2->

V3->

E1

E1

E2

F1->2. Add an edge for each pair of vertices 
and set the edge pointers for the 
vertices.

3. Create a record for the face in the 
WEDS and add a pointer to any of 
the face edges.

4. For each record of an edge of the 
face, add the wings for traversal and 
update the face pointers.  This 
depends on whether the face is east 
or west of each edge record.

E1

E2

E3

V2

V1

V2

V3

V3

V1

E2

F1

E3

E1

F1

E3

E2

F1

E1

E1 E2

E3

F1

E1

V4
E4

E5

F2

E4

V2

V4

E2

F2

E5

E5

V4

V3

E4

F2

E2

V4-> E4

F2-> E4

E4

F2

E5

Input 2: V2, V4, V3
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B-REP vs. CSG ?

• Using: CSG is more intuitive

• Computing: B-REP is more convenient

• Modern CAD Systems:

•   CSG for GUI (feature tree)

•   B-REP for internal storage and API’s
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Same Data Structure, plus

 For each edge, store equation

 For each curved face, store equation

Why do we need to learn all of these ?

 (a) To anticipate when an operation will fail

 (b) To allow us to write API’s

B-REP: Non-Polyhedral Models
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Surface Modeling
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Voxel Representation

• Partition space into uniform grid

– Grid cells are called voxels (like pixels)

• Store properties of solid object with each voxel

– Occupancy

– Color

– Density

– Temperature

– Etc.
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Voxel Acquisition

• Scanning devices using different medical 

imaging modalities

– MRI

– CAT

• Simulation

– FEM
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Voxel Storage

• O(n3) storage for n x n x n grid

– 1 billion voxels for 1000 x 1000 x 1000
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Voxel Boolean Operations

• Compare objects voxel by voxel
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Voxel Display

• Isosurface rendering

– Render surfaces bounding volumetric regions of 

constant value (e.g., density)
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Voxel Display

• Slicing

– Draw 2D image resulting from intersecting voxels 

with a plane



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

2D Polygon Generation
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2D Polygon Generation
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2D Polygon Generation
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2D Polygon Generation
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2D Polygon Generation
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3D Polygon Generation
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3D Polygon Generation
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Voxel Display

• Ray-casting

– Integrate density along rays through pixels
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Voxels

• Advantages

– Simple, intuitive, unambiguous

– Same complexity for all objects

– Natural acquisition for some applications

– Trivial Boolean operations

• Disadvantages

– Approximation, not accurate

– Large storage requirements

– Expensive display
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Solid Modeling Representation

• Quadtrees & Octrees
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Quadtrees & Octrees

• Refine resolution of voxels hierarchically

– More concise and efficient for non-uniform objects

Uniform Voxel Quadtree
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Quadtree
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Quadtree
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Quadtree Boolean Operations
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Octrees & Quadtrees

• Octrees are based on a two-dimensional 

representation scheme called quadtree encoding

• Quadtree encoding divides a square region of 

space into four equal areas until homogeneous 

regions are found

• These regions can then be arranged in a tree
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Octrees

• Model space as a tree with 8 children

• Nodes can be 3 types

– Interior Nodes

– Solid

– Empty
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Octrees

• Model space as a tree with 8 children

• Nodes can be 3 types

– Interior Nodes

– Solid

– Empty
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Octrees
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Octrees
• Octrees are hierarchical 

tree structures used to 

represent solid objects

• Octrees are particularly 

useful in applications that 

require cross sectional 

views – for example 

medical applications

• Octrees are typically used 

when the interior of 

objects is important
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Octrees

• Quadtree encodings provide considerable savings 

in storage when large colour areas exist in a 

region of space

• An octree takes the same approach as quadtrees, 

but divides a cube region of 3D space into octants

• Each region within an octree is referred to as a 

volume element or voxel

• Division is continued until homogeneous regions 

are discovered
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Octrees

• In 3 dimensions regions can be considered to be 

homogeneous in terms of color, material type, 

density or any other physical characteristics

• Voxels also have the unique possibility of being 

empty
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Building Octrees

• If cube completely inside, return solid node

• If cube completely outside, return empty node

• Otherwise recursion until 

 maximum depth reached
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Octrees
• Advantages

– Storage space proportional to surface area

– Inside/Outside trivial

– Volume trivial

– CSG relatively simple

– Can approximate any 

 shape

• Disadvantages

– Blocky appearance
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Octrees
• Advantages

– Storage space proportional to surface area

– Inside/Outside trivial

– Volume trivial

– CSG relatively simple

– Can approximate any 

 shape

• Disadvantages

– Blocky appearance
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Octree Example
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Octree Data Structure
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Octree Examples
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Octree Examples
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Solid Modeling Representation

• Binary Space Partitions
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Half Space Model
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Binary Space Partitions (BSPs)

• Recursive partition of space by Planes

– Mark leaf cells as inside or outside object

a

b
cd

e

f

g

Object

a

b
cd

e

f

g

Binary Spatial Partition

1

2

3

4

5

6

7

1

2

a

3

b

c

4

d

5

6

e

7

f

BSP Tree
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BSP Fundamentals

• Single geometric operation

– Partition a convex region by a hyper-plane

• Single combinatorial operation

– Two child nodes added as leaf nodes
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BSP Display

• Visibility Ordering

– Determine on which side of plane the viewer lies

• Near-subtree -> polygons on split -> far-subtree

A

B

C

o2

o1

o3

o4

Viewer

Partitioning Tree

A

B C

o1 o2 o3 o4
3rd 4th 1st 2nd

Viewer
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Summary

Voxels Octree BSP CSG

No No Some Some

No No No Yes

No No Yes Yes

Some Some No Some

Yes Yes Yes No

Yes Yes Yes Yes

No No Yes No

Accurate

Concise

Affine Invariant

Easy Acquisition

Guaranteed Validity

Efficient Boolean 

Operations

Efficient Display
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New Solid Modeling Techniques: 
(Sketch-Based Solid Modeling with BlobTrees)
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Implicit Representation of Shape

• Shape described by solution to f(x)=c

9),( 22 −+= yxyxf
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Implicit Representation of Shape

• Shape described by solution to f(x)=c

9),( 22 −+= yxyxf
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Implicit Representation of Shape

• Shape described by solution to f(x)=c

9),( 22 −+= yxyxf

- -
-

-
-

-
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Implicit Representation of Shape

• Shape described by solution to f(x)=c

9),( 22 −+= yxyxf

+

+ +

+

+
++

+

- -
-

-
-

-
--
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union

-
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union

– Intersection

-
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union

– Intersection -
-

+
+

+
+
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union

– Intersection

– Subtraction
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union

– Intersection

– Subtraction
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Advantages

• No topology to maintain

• Always defines a closed surface!

• Inside/Outside test

• CSG operations

– Union

– Intersection

– Subtraction -

- -

+

+

+

+

+
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Disadvantages

• Hard to render - no polygons

• Creating polygons amounts to root finding 

• Arbitrary shapes hard to represent as a  function
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Non-Analytic Implicit Functions

• Sample functions over grids
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Non-Analytic Implicit Functions

• Sample functions over grids
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Sketch-Based 3D Modeling System ?

Key Concept:

Anyone can create 3D models

Method: 

3D modeling from sketched 2D strokes
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Technical Challenges

• A sketch-based modeling system

– Easy

– Interactive

Problem:

It is difficult to support complex models
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Various Kinds of Sketch-Based 
Modeling Systems

• Triangle meshes

• Subdivision surfaces

• Implicit surfaces

• Parametric surfaces
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Teddy

• Triangle meshes

• Chordal axis

△Low complex models
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Implicit Approaches

• Blending operation

△A Large matrix must be solved

Approach:

BlobTree 

(Hierarchical implicit volume Models)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

BlobTree
• Leaves: 

   Implicit primitives

• Tree nodes: Composition 
operators

• Complex 3D modeling 
with skeletal primitives
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Why is BlobTree Effective?

• Non-linear editing of primitives

Complex models can be constructed 

easily 

• A hierarchical spatial cashing

Complex models can be constructed 

Interactively 
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Basic Functionalities

• Creating an implicit field from 2D contours 

defined by sketched strokes

• Converting 2D contours into 3D implicit 

volumes

• Editing 3D implicit volumes in BlobTree
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A Sketch-Based Implicit Field

•      Continuity

•                  on a 2D stroke

2C

32 )1()( xxgwyvill −=

isoM vf =
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Three Types of Surfaces
• Blobby inflation

• Linear sweeps

• Surfaces of revolution
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Operations

• Cutting (CSG)

• Blending
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An Example
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Results
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Results
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BlobTree

• BlobTree has allowed us to create complex 3D 

models in a sketch-based modeling system

△The User must understand BlobTree structure
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