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Scattered Data Interpolation

« Radial Basis Functions (RBFs) are a powerful solution to the
Problem of Scattered Data Fitting

— N point samples are given as data inputs, we want to interpolate,
extrapolate, and/or approximate

 This problem occurs in many areas:
— Mesh repair and model completion

— Surface reconstruction
« Range scanning, geographic surveys, medical data

— Field visualization (2D and 3D)

— Image warping, morphing, registration
— Aurtificial intelligence

— Efc.
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2D Radial Basis Functions

 Implicit Curve
 Parametric Height Field
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| A Very Brief History

 Discovered by Duchon in 1977

 Applications to Computer Graphics:

— Savchenko, Pasko, Okunev, Kunii — 1995
» Basic RBF, complicated topology bits

— Turk & O’Brien — 1999

 ‘Variational implicit surfaces’
» |Interactive modeling, shape transformation
— Carret al

» 1997 — Medical Imaging
« 2001 — Fast Reconstruction
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3D Radial Basis Functions

 Implicit Surface
« Scalar Field

RBF(x)=0 iso-surface
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Extrapolation (Hole-Filling Capability)

» Mesh repair and model completion

— Fit surface to vertices of mesh

— RBF will fill holes
If It minimizes curvature !!
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Smoothing

« Smooth out noisy range scan data
 Repair the rough segmentation
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Now a bit of math...

(don’t panic)
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| The Scattered Data Fitting Problem

« We wish to reconstruct a function S(x), given N samples (x;, f.),
such that S(x;)=ft;
— X; are the points from measurement
— Reconstructed function is denoted S(x)
* Infinite number of solutions

» \We have specific constraints:

— S(x) should be continuous over the entire domain
— We want a ‘smooth’ surface
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w The Generic Form of RBF Solution

o /A Istheweight of center X
o ¢(r) Isthebasic function
e P(x) Isalow -degree polynomialcomponent

e x| is the Euclidean norm
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Terminology: Support

« Support 1s the ‘footprint’
of the function

« Two types of support matters most:

— Compact or Finite support:

function value is zero outside
of a certain interval

— Non-Compact or Infinite support:
not compact (no interval, goes all the way to [&])

Department of Computer Science

Center for Visual Computing



Basic Functions (i )

 Essentially, they can be of any functional type

— However, very difficult to define properties of the RBFs for
an arbitrary basic function

o Support of function has major implications

— A non-compactly supported basic function implies a global
solution, dependent on all points!
« Allows extrapolation (hole-filling)
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Standard (Commonly-Used) Basic
Functions

 Polyharmonics (C" continuity)
=D} 5 (1) =r°" log(r)

-

» Multiquadric:
¢(r):m

o (Gaussian:
— compact support, used in artificial intelligence field
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| Polyharmonics

« 2D Biharmonic:
— Thin-Plate Spline #(r) =r?log(r)

» 3D Biharmonic:
— C! continuity, Polynomial is degree 1

— Node Restriction: nodes not colinear

» 3D Triharmonic:
— C2 continuity, Polynomial is degree 2

o Important Bit: Can provide C" continuity
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| Guaranteeing Smoothness

 RBF’s are members of m , the Beppo-Levi
space of distributions on R® with square integrable
second derivatives

* [EIRQX(38] has a rotation-invariant semi-norm:

Is| = jsfx +S,, +5,, + 255, + 2S,, + 2s,dX

« Semi-norm Is a measure of energy of s(x)
— Functions with smaller semi-norm are ‘smoother’
— Smoothest function is the RBF (Duchon proved this)
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What about P(x) ?

» P(X) ensures minimization of the curvature

» 3D Biharmonic: P(X)=a+ bx +cy + dz

» Must solve for coefficients a,b,c,d
— Adds 4 equations and 4 variables to the linear system

e Additional solution constraints:
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Finding an RBF Solution

» The weights and polynomial coefficients are unknowns
« \We know N values of s(x):
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The Linear System Ax = b
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Properties of the Matrix

« Depends heavily on the basic function

 Polyharmonics:
— Diagonal elements are zero — not diagonally dominant
— Matrix I1s symmetric and positive semi-definite
— Ill-conditioned if there are near-coincident centers

« Compactly-supported basic functions have a sparse matrix

— Introduce surface artifacts
— Can be numerically unstable

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



| Analytic Gradients

 Easy to calculate
 Continuous depending on basic function

o Partial derivatives for biharmonic gradient can
be calculated in parallel:
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Fitting 3D RBF Surfaces

(it’s tricky)
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Basic Procedure

1. Acquire N surface points

2. Assign them all the value O
(This will be the iso-value for the surface)

3. Solve the system, polygonize, and render:
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Off-Surface Points

» Why did we get a blank screen?
— Matrix was Ax =0
— Trivial solution is s(x) =0
— We need to constrain the system off-surface ‘normal’ points

o Solution: Off-Surface Points

— Points inside and outside of surface
* Project new centers along point normals
o Assign values: <0 inside; >0 outside
» Projection distance has a large effect on smoothness

surface points
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Invalid Off-Surface Points

» Have to make sure that off-surface mormal poins
off-surface points stay /L\\
Inside/outside surface! )f\/ﬁx
— Nearest-Neighbor test it pois \K
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... Point Normals?

 Easy to get from polygonal meshes
 Difficult to get from anything else

 Can guess normal by fitting a plane to local

neighborhood of points

— Need outward-pointing vector to determine orientation
 Range scanner position, black pixels

— For ambiguous cases, don’t generate off-surface point
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Computational Complexity

» How long will it take to fit 1,000,000 centers?

— Forever (more or less)
» 3.6 TB of memory to hold matrix
« O(N?) to solve the matrix
* O(N) to evaluate a point

— Infeasible for more than a few thousand centers

 Fast Multipole Methods make it feasible
— O(N) storage, O(NlogN) fitting and O(1) evaluation
— Mathematically complex
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Center Reduction

Remove redundant centers
» Greedy algorithm

Buddha Statue:

— 543,652 surface points
— 80,518 centers
— 5 x 10 accuracy

\ ()

RBF centers reduced subset ‘
of RBF centers
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w FastRBF

 FarFieldTechnology (.com)

» Commercial Implementation
— 3D biharmonic fitter with Fast Multipole Methods
— Adaptive Polygonizer that generates optimized triangles
— Grid and Point-Set evaluation

» EXpensive

— They have a free demo limited to 30k centers
o Use Iterative reduction to fit surfaces with more points
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Applications

(and eye candy)
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Molded Cranial Implant
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Morphing

e Turk99 (SIGGRAPH)
4D Interpolation between two surfaces




| Morphing With Influence Shapes

Influence Shape ° : I
Q.
Start Shape Final Shape
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Statue of Liberty

« 3,360,300 data points
« 402,118 centers
e 0.1m accuracy




Credits

» Pictures copied from:
— Papers by J.C. Carr and Greg Turk
— FastRBF.com
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