CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin
Rm.151, NEW CS Building
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu; or qin@cs.sunysb.edu
http://www.cs.stonybrook.edu/~qin
Course Website

- http://www3.cs.stonybrook.edu/~qin/courses/graphics/graphics.html or

- http://www.cs.stonybrook.edu/~cse528
My Contact Information

Hong Qin
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu; qin@cs.sunysb.edu
http://www.cs.stonybrook.edu/~qin
Office: Room 151, NEW CS Building
Grading Schemes

- Two mid-term exams in class: 10% + 15%
- Paper reading + writing: 5%
- Class attendance: 10%
- Course project: 60%
- Extra bonus points: up to 15% of the total course grades (including up to 5% for paper reading/writing, and up to 10% for course project)
- PhD students: only individual project allowed (this course is a PhD qualification course!)
- MS students: either individual project or group project (up to 2 people)
Course Prerequisites

• **Mathematical skills**: fundamental knowledge on calculus, linear algebra, analytic geometry, etc. (basic mathematical training at the undergraduate level), you should feel very comfortable with matrix algebra and calculus

• **Computer science background**: data structure, algorithm design, basic programming skills, basic graphics/visualization courses or knowledge at the undergraduate level

• Essentially, you need to have an undergraduate education in computer science or engineering with basic knowledge on graphics / visualization, you have to write programs

• You need to speak to the instructor if you are not sure about your background knowledge and course prerequisites
Course Prerequisites

- I expect that you are having the ability to learn a programming library on your own (OpenGL)!!!
- Please note that, this is an entry-level graduate course!!!
OpenGL Tutorials

• Tutorials for Modern OpenGL (3.3+)

OpenGL Help for CSE528

- My TAs in previous years have also collected many examples:

- TA Website (for openGL tutorials):
The Course Objectives

• Provide graduate students a comprehensive knowledge on computer graphics concepts, theory, algorithms, techniques, and applications for modeling, simulation, rendering, animation, human-computer interactions, and other key elements of visual computing.

• Demonstrate the significance of these mathematical and computational tools and graphics algorithms in visual computing and relevant areas.

• Emphasize a "hands-on" approach to both the better understanding of graphics concept/theory/algorithms and the effective use of graphics techniques in various applications.
My Goals for this Course

- My bottomline is that everybody in this class will learn something by the end of this semester, so that people are NOT wasting their time here
- My strategy: breadth (I will make the slides available to everybody) + depth (I will pay attention to several important topics)
- In order to realize these goals, I would like to get everybody involved, and I very much encourage INTERACTION!
- Students must finish their assignments (paper reading, technical report on paper review, project proposal, various check points, final project report, final software demo) and course projects and they should give presentations to the entire class
- Success in graduate education: a good idea (research project) + technical writing (putting together technical reports) that will lead papers in conferences and journals + communication skills (oral presentations at conferences)
Course Facts

- This is an entry-level graduate course for both MS and PhD students (a quals course for PhD students)!!!
- Can I take this course? YES, if YOU
 - are a graduate student with CS background, have skills in calculus and linear algebra, have BASIC knowledge on graphics and/or visualization, or talk to the instructor
- You do NOT need to take CSE328 prior to this course
- However, you need to have taken CSE328, or CSE332, or equivalent courses elsewhere
- One required textbook, several suggested references
- Lecture notes are important!!! Class attendance in critical!!!
Course Facts

• **Students are expected to**
 - Complete two (mid-term) written exams in class
 - Read papers (minimum four research papers in total), and finish one technical review report that summarizes all the papers that you have read during this semester
 - Based on one paper (out of the four papers that you had read), complete one course project, present your project in the class, and submit the final report on your course project
 - Extra bonus points: for example, extra paper reading assignments (extending to 8-10 papers, and up to 5% of the entire course grades), additional functionalities on your final project (up to 10% of the entire course grades, etc. (the total will be up to 15% for extra bonus points)

• **What projects are appropriate?**
 - Talk to the instructor and suggest possible topics of interest
 - Projects also available from the instructor
My Expectations

• *Your works should be your OWN!*
• *Reference examples from the web is an effective way to learn and you are encouraged to do so*
• *When using open sources, you should explicitly point them out*
• *NEVER copy codes from our fellow students*
• *NOT a course about graphic/game design, NOT using graphics packages like PhotoShop / Maya*
How to Get a “A”?

- Two mid-term written tests in class!
- **NO** final exam!
- **PAPER READING/PRESENTATION, COURSE PROJECT, TECHNICAL REPORTS**
- Possible bonus points (up to 15%): for example, extra work on paper reading, additional functionalities on your programming project!!!
Course Project (60%)

- One-page project proposal: 5%
- Mid-term software demo with preliminary results: 12%
- A working system + software codes: 35%
- Oral presentation and final demo in class at the end of the semester: 5%
- Final course project report: 3%
Grading Requirements

• Meet with the instructor for (at least) 30-60 minutes to decide your study plan for this course, review your research experiences in the past, and plan for the future, and this should be done during the next three weeks.

• Upon the individual meeting with the instructor, select four research papers and start to read them immediately.

• Write and submit a one-page technical proposal on what you are planning to do for the rest of the paper (i.e., your course project during the next 10-12 weeks, programming-driven research projects, re-implementation of (at least) one paper, etc.)
Grading Requirements

• Submit your technical report on paper review (up-to-4 pages, single/double columns, single space)
• Finish all the course requirements for all checkpoints
• Give a final presentation in class (10 minutes) based on your final technical report on your project (4-6 pages, single/double columns, single space)
• Extra bonus points: for example, additional paper reading/writing, additional functionalities of your project beyond the basic requirements, etc. (up to 15% more for bonus points)
Basic Requirements for Graphics Course Project

- Interactive interface (graphics-based)
- Intuitive and easy to understand
- Efficient (fast, high-performance)
- Basic functionalities
- Examples
- Flexible and easy to generalize
Projects, Reading/Writing Assignments, Exams

- Course project: 60%
- Two mid-term written exams in class (tentatively, Wednesday 10/9 and Monday 11/25): the first exam is 10% and the second one is 15%, total 25%
- Paper reading and technical report on literature review (minimum four research papers in total, throughout the semester), your technical report on paper review will be due on Monday 11/19 at 3:50pm: 5%
- Class attendance and asking questions during office hours: 10%
- Extra bonus points: up to 15% off the total course grades, additional paper reading, additional functionalities on your final project, etc.
Final Presentations (10 Minutes Each)

- TBA, tentatively, 12/8-9 Sunday - Monday
- Location: TBA
- Signup sheets will be available late in the semester!!!
Final Project Submission Schedule

• Technical Report + Software + ppt file for your final presentation: DUE December 9 Monday at 9am
Late Submission Penalty

• 25% per day!!!
Lecture Information for CSE528

• **WHEN:** Monday & Wednesday 4pm - 5:20pm
• **WHERE:** OLD Computer Science Building, Rm. 2311
• **OFFICE HOURS:** Monday & Wednesday 12:50pm - 2:20pm, or by appointment, Rm. 151, the NEW CS Building (Hong’s office)
• **CREDITS:** 3
• **TA INFO:** CS PhD students, TBD!!!
Course Project (60%)

- One-page project proposal (Monday September 30 at 3:50pm): 5%
- Mid-term demo with preliminary results (Monday November 4): 12%
- A working system + software codes (Monday December 9, at 9am): 35%
- Oral presentation and final demo in class (12/8-9, Sunday - Monday): 5%
- Final course project technical report and final presentation ppt file (Monday 12/9, at 9am): 3%
What is Computer Graphics

- **Computer Graphics**: The pictorial synthesis of real or imaginary objects from their computer-generated models.

- Computer graphics is the production of (usually) images where none existed before.
Related Terminologies

• **Image Processing:** Analysis or reconstruction of objects from image data. Basically, this is the inverse of computer graphics in that it starts with the image and works from there.

• **Computer Vision**

• **Computer Generated Imagery (CGI):** Production of imagery using computers. Includes both computer graphics and image processing.
sensors, scanners, cameras

data

greenic model (structures)

image

(signal)

discretization

computation/
simulation

computer graphics

computer vision

display device

film recorder

polygonization

sampling/
scanning

super-computers

film recorder
Mid-term Project Demos

• Please note that, 12% for our midterm project demo with preliminary results!!!
• No Extension!!! November 4 (Monday), 8am-5pm, location to be announced !!!
• You are required to stay (at least) two hours besides your own presentation, and we do not have our lecture on Monday, November 4 !!!
• Details TBA!!!
Technical Report on Literature Review (Min. Four Papers in Total)

- Monday November 18 at 3:50pm
- Electronic submission (PDF format) to me and my TA before the deadline!!!
- Hardcopies submitted to either me at the lecture room or my office (NEW CS Building, Rm.151) at or before Monday November 18 at 3:50pm!!!
Course Project and Final Presentation

- Technical report for your course project + a working software system + ppt file for your final presentation: Monday 12/9, at 9am
- Final Presentation: (tentatively) from December 8-9, Sunday – Monday
- Final Presentation Time (10 minutes each student): specific timeslots to be announced!!!
- Email to CSE528 TA and Hong
- All Final Presentations: expected to be in our Seminar Room!!! Details to be announced later!!!
- Please sign up on the sheet!!!
Final Presentations (10 Minutes Each)

• December 8-9, Sunday – Monday, details to be announced later!!!
• Please sign up later!!!
Final Submission Schedule

- Technical Report + Software + ppt file for your final presentation: December 9 Monday, at 9am
Late Submission Penalty

• 25% per day!!!
Extra Lectures???

• Due to Hong’s travel schedule, I might need to add some extra lectures, details to be announced later.

• There might be some extra lectures on OpenGL to be held by my TA, details to be announced later.
OpenGL Help for CSE528

- My TAs in previous years have collected many examples:
 - http://www3.cs.stonybrook.edu/~dozhang/cse528/
- TA Website (for openGL tutorials):
Key Components

- Computer graphics pipeline, basic concepts, theory, algorithms, and techniques
- Modeling: representation choices of different models
- Rendering: simulating light and shadow, camera control, visibility, discretization of models
- HCI (human-computer interface): specialized I/O devices, graphical user interfaces
- Animation: lifelike characters, natural phenomena, surrounding virtual environments
- Advanced topics
Key Components

• Possible advanced topics, including (but not just limited to)
 – Image processing techniques,
 – Data modeling techniques,
 – Image-based modeling and rendering,
 – Radiosity, Photo mapping/tracing,
 – Non-photorealistic rendering,
 – Image vectorization,
Main Concentrations

- Mathematical concepts, modeling and rendering theory, and computational tools
- Fundamental algorithms in representation, modeling, simulation, rendering, animation, etc.
- Geometric (and graphical and visual) modeling and simulation techniques, and geometric processing and analysis tools
- A large variety of applications in graphics and visualization as well as other visual computing areas
- Several advanced topics and they are all research-oriented, representing the most sophisticated ones
Our Course

- A subset of key concepts, theory, algorithms, techniques, and applications
- Extensive topics with a main focus on our unique course mission
- Comprehensive lectures (focusing on geometric intuition, good ideas, and application needs)
- Numerous slides, figures, images, and videos for easy understanding (after all, this is the nature of graphics and visualization)
- Active students’ involvements
What is Computer Graphics

The creation of, manipulation of, analysis of, and interaction with pictorial representations of objects and data using computers

- Dictionary of Computing

Computer Graphics is also called Image Synthesis

A picture is worth a thousand words

- Chinese Proverb
Computer Graphics

- (Realistic) pictorial synthesis of real and/or imaginary objects from their computer-based models (datasets)
- It typically includes modeling, rendering (graphics pipeline), and human-computer interaction
- So, we are focusing on computer graphics hardware, software, and mathematical foundations
- Computer Graphics is computation
 - A new method of visual computing
- Why is Computer Graphics useful and important?
- Course challenges: more mathematics oriented, programming requirements, application-driven, interdisciplinary in nature, etc.
Computer Graphics Systems

- Graphical Models
- Rendering Parameters
- Rendering
- Output Device
Output Devices

- **Vector Devices**
 - Lasers (for example)

- **Raster Devices**
 - CRT, LCD, bitmaps, etc.

 - Most output devices are 2D
 - Can you name any 3D output devices?
Graphical Models

• 2D and 3D objects
 – Triangles, quadrilaterals, polygons
 – Spheres, cones, boxes

• Surface characteristics
 – Color, reaction to light
 – Texture, material properties

• Composite objects
 – Other objects and their relationships to each other

• Lighting, fog, etc.

• Much, much more….
Rendering

- **Conversion of 3D model to 2D image**
 - Determine where the surfaces “project” to.
 - Determine what every screen pixel might see.
 - Determine the color of each surface
Rendering Parameters

• **Camera parameters**
 – Location
 – Orientation
 – Focal length
3D Graphics vs. 2D Graphics

• **2D**
 – X, Y - 2 dimensions only
 – We won’t spend time on 2D graphics in this course

• **3D**
 – X, Y, and Z
 – Space

• Rendering is typically the conversion of 3D to 2D
3D Coordinate Systems

Right-Hand Coordinate System

OpenGL uses this!
Left-Hand Coordinate System

Direct3D uses this!
Basic Elements of Computer Graphics

- **Graphics modeling**: representation choices
- **Graphics rendering**: geometric transformation, visibility, discretization, simulation of light, etc.
- **Graphics interaction**: input/output devices, tools
- **Animation**: lifelike characters, their interactions, surrounding virtual environments
Mathematical Background

• **Computer Graphics has a strong 2D/3D geometry component**

• **Basic linear algebra is also helpful** – matrices, vectors, dot products, cross products, etc.

• **More continuous math** (vs. discrete math) than in other typical computer science courses

• **Function plots, curves, and surfaces**
Primary Topics

- Overview, applications
- Basic components, history development
- Hardware, system architecture, raster-scan graphics
- Line drawing, scan conversion
- 2D transformation and viewing
- 3D transformation and viewing
- Hierarchical modeling
- Interface
- Geometric models
- Color representations
- Hidden object removal
- Illumination models
- Advanced topics
• Local Illumination and Graphics Rendering
• Texture Mapping Techniques
• Procedural Modeling Fundamentals and Various Techniques
• Radial Basis Functions and Applications
• Ray Tracing
• Geometry-driven Deformation and FFD
• Computer Animation
• Hidden Surface Removal
• Differential Geometry
A Very Good Textbook for General Issues in Computer Graphics

• A recommended textbook (BUT NOT REQUIRED)!
OpenGL Reference Books

Why Graphics and Visualization

• A Chinese proverb: “a picture is worth a thousand words.”

• “A picture is worth more than a thousand words.” – ancient proverb
Graphics Examples
Why Graphics and Visualization

• Enable scientists (also engineers, physicians, general users) to observe their simulation and computation

• Enable them to describe, explore, and summarize their datasets (models) and gain insights

• Offer a method of SEEING the UNSEEN

• Reason about quantitative information

• Enrich the discovery process and facilitate new inventions
Why Graphics and Visualization

- Analyze and communicate information
- Revolutionize the way scientists/engineers/physicians conduct research and advance technologies
- About 50% of the brain neurons are associated with vision
- The gigabit bandwidth of human eye/visual system permits much faster perception of visual information and identify their spatial relationships than any other modes
 - Computerized human face recognition
Entertainment
More Examples

Images

Points

Volumes
Medicine and Health-care
More Examples
Terrain Modeling and Rendering
Virtual Environment
National Security
Tourism
Design and Manufacturing
What are Happening Now

- **Network Graphics**

 3D Advertisement

 Server → Virtual Museum → Client

 Live Sports Broadcast
What are Happening Now

• Wireless Graphics
What Are Our Ultimate Goals?

• A large variety of datasets (acquired via scanning devices, super-computer simulation, mathematical descriptions, etc.)

• A pipeline of data processing that consists of data modeling (reconstruction), representation, manipulation (rigid transformation or deformation), classification (segmentation), feature extraction, simulation, analysis, visual display, conversion, storage, etc.

• Visual information processing in the intelligent way (Intelligent Information Processing)
What Are Our Ultimate Goals?

• Datasets that are huge, multi-dimensional, time-evolving, unstructured, multi-attributes (geometric info. + material distributions), scattered (both temporal and spatial)....

• We are investigating mathematical tools and computational techniques for data modeling, reconstruction, manipulation, simulation, analysis, and display
Challenges

- TOO MUCH data
- The number of data sources keeps increasing
- Sensor quality and resolution are increasing
- Existing instruments are still available
- The speed of supercomputer is faster than ever
- We must do something (besides collecting and storing the datasets)
- We must deal with the huge datasets effectively
- Visual communication, improve our visual interaction with data
Challenges

• Data-driving, scientific computing to steer calculations
• Real-time interaction with computer and data experimentation
• Drive and gain insight into the scientific discovery process
Related Fields

- **Computer graphics (image synthesis)**
 - Generate images from complex multivariate datasets
- **Image processing, signal processing**
- **Image understanding (pattern recognition)**
 - Interpret image data
- **Computational vision**
- **Human-computer interaction**
 - Mechanisms to communicate, use, perceive visual information
- **Computer-aided design**
- **Neurological/physiological studies on human brain and our visual system**
Computer Graphics Pipeline

• Data acquisition and representation
• Modeling data and their (time-varying) behaviors (e.g., physical experiments or computational simulations)
• Graphics system and software environments for data rendering
• Image-based techniques
Data Sources

• Scanned, computed, modeled data
• The first process is data-gathering
• Large variety of data sources and attributes
• Extremely large-scale datasets
• Require real-time processing
Data Acquisition and Processing

- Pixels and voxels
- Regular & irregular grids
- Numerical simulations
- Surface or volumetric data
- Scalar, vector, tensor data with multiple attributes
- Higher-dimensional and/or time-varying data

Popular techniques
 - Contouring, iso-surfaces, triangulation, marching cubes, slicing, segmentation, volume rendering, reconstruction

Image-based processing techniques
 - Sampling, filtering, anti-aliasing, image analysis and manipulation
Information Domain

- Sciences (e.g., statistics, physics)
- Engineering (e.g., empirical observations for quality control)
- Social events (e.g., population census)
- Economic activities (e.g., stock trading)
- Medicine (e.g., computed tomograph (CT), magnetic resonance imaging (MRI), X-rays, ultrasound, various imaging modalities)
- Geology
Information Domain

- Biology (e.g., electronic microscopes, DNA sequences, molecular models, drug design)
- Computer-based simulations (e.g., computational fluid dynamics, differential equation solver, finite element analysis)
- Satellite data (e.g., earth resource, military intelligence, weather and atmospheric data)
- Spacecraft data (e.g., planetary data)
- Radio telescope, atmospheric radar, ocean sonar, etc.
- Instrumental devices recording geophysical and seismic activities (e.g., earthquake)
Graphics and Visualization

- Data acquisition, representation, and modeling
- Imaging processing
- Visualization (displaying) methods and algorithms
- More advanced research topics
Pathway to Success

- Highly-motivated
- Hard-working
- Start as soon as possible
- Communicate with the instructor on a regular basis
- Actively interact with your fellow students
- Visit libraries and internets frequently for papers and software system
- Read as many papers as possible
- Work on your course project
Computer Graphics

• “The purpose of scientific computing is insight, not numbers,” by Richard Hamming many years ago

• These fields are all within computer science and engineering, yet computer graphics spans multi-disciplines

• Computer Graphics (another definition)
 – Application of computers to the disciplines of sciences/engineering
Computer Graphics

- Computer Graphics is application-driven, so what are its applications?
Applications

- Simulation and training: flight, driving
- Scientific visualization: weather, natural phenomena, physical process, chemical reaction, nuclear process
- Science: Mathematics, physics (differential equations) biology (molecular dynamics, structural biology)
- Environments sciences
- Engineering (computational fluid dynamics)
- Computer-aided design/manufacturing (CAD/CAM): architecture, mechanical part, electrical design (VLSI)
Applications

- Art and Entertainment, animation, commercial advertising, movies, games, and video
- Education, and graphical presentation
- Medicine: 3D medical imaging and analysis
- Financial world
- Law
- WWW: graphical design and e-commerce
- Communications, interface, interaction
- Military
- Others: geographic information system, graphical user interfaces, image and geometric databases, virtual reality, etc.
Journals and Conferences

- Computer Graphics (proceedings of ACM SIGGRAPH)
- ACM Transactions on Graphics
- IEEE Transactions on Visualization and Computer Graphics
- IEEE Computer Graphics and Applications
- Computer-Aided Design
- Computer Aided Geometric Design
- Others!!!
Why Graphics and Visualization

• A Chinese proverb: “a picture is worth a thousand words.”

• “A picture is worth more than a thousand words.” – ancient proverb
Key Components

• Modeling: representation choices of different models
• Rendering: simulating light and shadow, camera control, visibility, discretization of models
• HCI (human-computer interface): specialized I/O devices, graphical user interfaces
• Animation: lifelike characters, natural phenomena, surrounding virtual environments
Papers, Projects, and Exams

- Two (mid-term) written exams: the first one Wednesday 10/9 (10%), the second one Monday 11/25 (15%), total 25%
- Paper reading and your technical report on literature review (four research papers, throughout the semester), your technical report on paper review will be due on Monday 11/18, due at 3:50pm: 5%
- Class attendance and asking questions during office hours: 10%
- Course project: 60%
- Extra bonus points: up to 15% of the total course grades, for example: additional paper reading (5%), additional functionalities on your final project (10%), etc.
- Basic project requirements
 - Interactive interface (graphics-based)
 - Intuitive and easy to understand
 - Efficient (fast, high-performance)
 - Basic functionalities
 - Examples
 - Flexible and easy to generalize
If You are Serious about this Course

• Study my on-line, electronic course notes, and read the textbook
• Paper reading (minimum four papers in total), write a technical report on literature review and survey that summarizes all four papers, and submit it before the due date (due Monday November 18, 3:50pm)
• Think about your course project right away, start to think about how to implement them (bonus points are possible with additional functionalities in your project)
• Bonus point: up to 15% of the total course grades, for example, extra paper reading, extra functionalities in your project, etc.
If You are Serious about this Course

- Write a proposal on your project (one-page proposal) and start to work on it immediately
- Finish your project by the end of this semester and submit your final course project
- Try to submit a paper if your project is really really new (please note that, this is NOT required for this course)
- You are welcome to communicate with me via emails, call me, or come to meet with me during my office hours in my office!
- Feel free to make appointments with me!
Project Plan and Deadlines

• Submit your own one-page proposal on the course project (Monday September 30 is the deadline, due at 3:50pm)

• Implement basic functionalities and user interface before the mid-term check point (Monday November 4), demo on Monday 11/4

• Study a set of relevant papers (4 papers, throughout the semester) and submit your technical report for paper review on November 18 Monday, at 3:50pm
Project Plan and Deadlines

• Final technical report and software code on your course project (at the end of the semester, December 9 Monday, at 9am)

• Class presentation & final project demonstration (at the end of the semester, tentatively on December 8-9, Sunday - Monday)

• Individual project is required for Ph.D. students ONLY, MS students could do a group project (2 people)

• Office hours / individual meetings

• Bonus (optional): extra paper reading, extra system functionalities, etc.

• Penalty for late submission (25% each day)
How to Get a “A”?

• Finish all the course requirements, and I will issue a “A” grade
Deadlines for CSE528 (Fall 2018)

- September 30 (Monday at 3:50pm): one-page proposal for the course project
- October 9 (Wednesday): the first mid-term exam
- November 4 (Monday): mid-term system demo
- November 18 (Monday): technical report on paper review (minimum 4 papers) due at 3:50pm
- November 25 (Monday): the second mid-term exam
- December 9 (Monday, at 9am): course project due (report + software + ppt)
- December 8-9: final course project presentation, details TBA!