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• Defined by (algebraic) functions

• Some surfaces can be represented as the vanishing 

points of functions (defined over 3D space)

– Places where a function f(x,y,z)=0

CSE528 Lectures
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Straight Line (Implicit 
Representation)
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Straight Line

• Mathematics (Implicit Representation)

• Example
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Circle

• Implicit representation
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Conic Sections
• Mathematics

• Examples

– Ellipse

– Hyperbola

– Parabola

– Empty set

– Point

– Pair of lines

– Parallel lines

– Repeated lines
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Conics 

• Parametric equations of conics

• Generalization to higher-degree curves

• How about non-planar (spatial) curves
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Plane
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Plane and Intersection
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Plane 

• Example

• General plane equation

• Normal of the plane

• Arbitrary point on the plane
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Plane

• Plane equation derivation

• Parametric representation (given three points on 

the plane and they are non-collinear!)
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Plane 

• Explicit expression (if c is non-zero)

• Line-Plane intersection
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Circle

• Implicit equation

• Parametric function

• Parametric representation using rational 

polynomials (the first quadrant)

• Parametric representation is not unique!
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What are Implicit Surfaces?

• 2D Geometric shapes that exist in 3D space

• Surface representation through a function f(x, y, 

z) = 0

• Most methods of analysis assume f is continuous 

and not everywhere 0.
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Example of an Implicit Surface

• 3D Sphere centered at the origin

– x2 + y2 + z2 = r2

– x2 + y2 + z2 – r2 = 0
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Point Classification

• Inside Region: f < 0

• Outside Region: f > 0

• Or vice versa depending on the function

f < 0 f > 0

f = 0
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Manifold
• A 2D Manifold separates 

space into a natural inner 

and natural outer region

• A manifold surface contains 

no holes or dangling edges
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Manifold
• It is difficult to determine enclosed region in 

non-manifold surfaces



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Surface Normals

• Usually gradient of the function

–  f(x,y,z) = 

 (f/x, f/y, f/z)

• Points at increasing f
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Properties of Implicits

• Easy to check if a point is inside the implicit 

surface or NOT

– Simply evaluate f at that point

• Fairly easy to check ray intersection

– Substitute ray equation into f for simple functions

– Binary search
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Implicit Equations for Curves

• Describe an implicit relationship

• Planar curve (point set)

• The implicit function is not unique

• Comparison with parametric representation
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Implicit Equations for Curves

• Implicit function is a level-set

• Examples (straight line and conic sections)

• Other examples

– Parabola, two parallel lines, ellipse, hyperbola, two 

intersection lines
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Implicit Functions for Curves

• Parametric equations of conics

• Generalization to higher-degree curves

• How about non-planar (spatial) curves
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Implicit Equations for Surfaces

• Surface mathematics

• Again, the implicit function for surfaces is not 

unique

• Comparison with parametric representation
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Implicit Equations for Surfaces

• Surface defined by implicit function is a level-set

• Examples

– Plane, quadric surfaces, tori, superquadrics, blobby 

objects

• Parametric representation of quadric surfaces

• Generalization to higher-degree surfaces
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Quadric Surfaces
• Implicit functions

• Examples

– Sphere

– Cylinder

– Cone

– Paraboloid

– Ellipsoid

– Hyperboloid

• More 

– Two parallel planes, two intersecting planes, single plane, 
line, point
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Other Quadrics

CSE528 Lectures
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Quadric Surfaces

• Implicit surface equation

• An alternative representation
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Quadrics: Parametric Rep.
• Sphere

• Ellipsoid

• Geometric meaning of these parameters
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Quadric Surfaces

• Modeling advantages

– computing the surface normal

– testing whether a point is on the surface

– computing z given x and y

– calculating intersections of one surface 
with another
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Superquadrics
• Geometry (generalization of quadrics)

• Superellipse

• Superellipsoid 

• Parametric representation

• What is the meaning of these control parameters?
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Types of Implicit Surfaces 

• Mathematic

– Polynomial or Algebraic

– Non polynomial or Transcendental 

• Exponential, trigonometric, etc.

• Procedural

– Black box function
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Generalization

• Higher-degree polynomials

• Non polynomials
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Algebraic Function

• Parametric representation is popular, but…

• Formulation

• Properties…

– Powerful, but lack of modeling tools
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Algebraic Surfaces

Degree 6Cubic Degree 4
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Non-Algebraic Surfaces

cos( 10* |X| )

http://atrey.karlin.mff.cuni.cz/~0rfelyus/povray/pics/goniom4.png
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Algebraic Patch

Tetrahedron

Control point, weight

Algebraic patch
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Algebraic Patch

• A tetrahedron with non-planar vertices

• Trivariate barycentric coordinate (r,s,t,u) for p

• A regular lattice of control points and weights
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Algebraic Patch
• There are (n+1)(n+2)(n+3)/6 control points. A 

weight w(I,j,k,l) is also assigned to each control 
point

• Algebraic patch formulation

• Properties

– Meaningful control, local control, boundary 
interpolation, gradient control, self-intersection 
avoidance, continuity condition across the 
boundaries, subdivision
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Spatial Curves

• Intersection of two surfaces





=

=

0),,(

0),,(

zyxg

zyxf



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Algebraic Solid

• Half space

• Useful for complex objects (refer to notes on 

solid modeling)
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Implicit Surfaces: Applications
• Zero sets of implicit functions. 

• CSG operations.
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A B A-B AB AB
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Radial Basis Function: Applications

)()()( xcxx i pf
i

+−=  

RBF fitting Visualization of  f=0

Carr et al. “Reconstruction and Representation of 3D Objects 

with Radial Basis Functions”, SIGGRAPH2001
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Implicit Functions
• Long history: classical algebraic geometry

• Implicit and parametric forms

– Advantages

– Disadvantages

• Curves, surfaces, solids in higher-dimension

• Intersection computation

• Point classification

• Larger than parameter-based modeling

• Unbounded geometry

• Object traversal

• Evaluation
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Implicit Functions
• Efficient algorithms, toolkits,software

• Computer-based shape modeling and design

• Geometric degeneracy and anomaly

• Algebraic and geometric operations are often 
closed

• Mathematics: algebraic geometry

• Symbolic computation

• Deformation and transformation

• Shape editing, rendering, and control
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Implicit Functions

• Conversion between parametric and implicit 

forms

• Implicitization vs. parameterization

• Strategy: integration of both techniques

• Approximation using parametric models
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Polygonization

• Conversion of implicit surface to polygonal 

mesh

• Display implicit surface using polygons

• Real-time approximate visualization method

• Two steps

– Partition space into cells

– Fit a polygon to surface in each cell
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Polygonal Representation
• Partition space into convex cells

• Find cells that intersect the surface

(traverse cells)

• Compute surface vertices
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Cell Polygonization

• We will need to find those cells that actually 

contain parts of surface

• Need to approximate surface within cell

• Basic idea: use piecewise-linear approximation 

(polygon)
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Implicit Surface (Polygonal 
Representation)

F: R3 => R, Σ = F-1(0)
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Spatial Partitioning
• Exhaustive enumeration

– Divide space into regular lattice of cells

– Traverse cells in order to arrive at polygonization
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Space Partitioning Criteria

How do we know if a cell actually contains the 

surface?

• Straddling Cells

– At least one vertex inside and outside surface

– Non-straddling cells can still contain surface

• Guarantees

– Interval analysis

– Lipschitz condition
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Spatial Partitioning
• Subdivision

– Start with root cell and subdivide

– Continue subdividing 

– traverse cells
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Spatial Partitioning
• Adaptive polygonization
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Surface Vertex Computations

• Determine where implicit surface intersects cell 

edges

• EITHER linear interpolate function values to 

approximate

• OR numerically find zero of f(r(t))

r(t) = x1 + t(x2-x1)

0  t  1

f(x1) = v1 (+)

f(x2) = v2 (-)
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Polygonal Shape
• Use table indexed by 

vertex signs and consider 

all possible combinations

• Let + be 1, - be 0

• Table size

– Tetrahedral cells: 16 

entries

– Cubic cells: 256 entries

• E.g., 2-D - 16 square 

cells
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Determining Intersections
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Tetrahedral Cell Polygons
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Orientation

• Consistency allows polygons to be drawn with 

correct orientation

• Supports backface culling +
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Problem: Ambiguity
• Some cell-corner-value 

configurations yield more 

than one consistent 

polygon

• Only for cubes, not 

tetrahedra (why?)

• In 3-D can yield holes in 

surface!

• How can we resolve 

these ambiguities?

or
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Topological Inference

• Sample a point in the 

center of the 

ambiguous face

• If data is discretely 

sampled, bilinearly 

interpolate samples

+ -

+-

+ -

+-

9 -1

9-1

1 -9

1-9

p(s,t) = (1-s)(1-t) a + s (1-t) b + (1-s) t c + s t d
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Preferred Polarity

• Assume ambiguous face centers always +

• (or always –)

• Preference can be encoded into table

+ -

+-

+ -
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CSG Polygonization

• Polygonization can smooth crease edges caused 

by CSG operations

• Polygonization needs to add polygon vertices 

along crease edges
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Visualization of Implicit Surfaces

Ray-tracing
Polygonization 

(e.g. Marching cubes method)
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Problem of Polygonization

• Sharp features

  are broken

503 grid 1003 grid 2003 grid
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Post-

processing

Input

Output

Rough  Polygonization

(Correct topology)

Reconstruction of Sharp Features

),,( :func tio nIm p lic it zyxf

and
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• Raytracing or its variants can render them directly

– The key is to find intersections with Newton’s method

• For polygonal renderer, must convert to polygons

• Advantages:

– Good for organic looking shapes such as human body

– Reasonable interfaces for design

• Disadvantages:

– Difficult to render and control when animating

– Being replaced with subdivision surfaces, it appears

CSE528 Lectures
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Implicit Surfaces vs Polygons

• Advantages

– Smoother and more precise

– More compact

– Easier to interpolate and deform

• Disadvantages

– More difficult to display in real time
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Implicits vs Parameter-Based 
Representations

• Advantages

– Implicits are easier to blend and morph

– Interior/Exterior description

– Ray-trace

• Disadvantages

– Rendering

– Control 
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Blobs and Metaballs
• Define the location of some points

• For each point, define a function on the distance to a 

given point, (x,y,z)

• Sum these functions up, and use them as an implicit 

function

• Question: If I have two special points, in 2D, and my 

function is just the distance, what shape results?

• More generally, use Gaussian functions of distance, or 

other forms

– Various results are called blobs or metaballs
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Blobby Models
• Blobby models [Blinn 82], also known as metaballs 

[Nishimura and Hirai 85] or soft objects [Wyvill and 

Wyvill 86, 88] 

• A blobby model ⎯ a center surrounded by a density 

field, where the density attributed to the center 

decreases with distance from the center.

• By simply summing the influences of each blobby 

model on a given location, we can obtain very smooth 

blends of the spherical density fields.
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Distance Functions
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Case Studies: Distance Functions

• D(p) = R

– Sphere: Distance to a 

point

– Cylinder: Distance to a 

line

– More examples
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Design Using Blobs
• None of these parameters 

allow the designer to specify 

exactly where the surface is 

actually located. 

• A designer only has indirect 

control over the shape of a 

blobby implicit surface.

• Blobby models facilitate the 

design of smooth, complex, 

organic-appearing shapes.
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Example with Blobs

Rendered with POVray. Not everything is a blob, but the characters are.
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What Is It?

• “Metaball, or ‘Blobby’, Modeling is a technique 

which uses implicit surfaces to produce models 

which seem more ‘organic’ or ‘blobby’ than 

conventional models built from flat planes and 

rigid angles”
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Examples
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Examples
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Blobby Modeling: Its Utility

• Organic forms and nonlinear shapes

• Scientific modeling (electron orbitals, some 

medical imaging)

• Muscles and joints with skin

• Rapid prototyping

• CAD/CAM solid geometry



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Mathematics for Blobby Models

• Implicit equation:

• The wi are weights – just numbers

• The gi are functions, one common choice is:

– ci and i are parameters

dzyxgwzyxf
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Skeletal Design
• Use skeleton technique to design implicit 

surfaces and solids toward interactive speed.

• Each skeletal element is associated with a locally 
defined implicit function.

• These local functions are blended using a 
polynomial weighting function.

– [Bloomenthal and Wyvill 90, 95, 97] defined 
skeletons consisting of points, splines, polygons.

– 3D skeletons [Witkin and Heckbert 94] [Chen 01]
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Skeletal Design
• Global and local control in three separate ways:

– Defining or manipulating of the skeleton;

– Defining or adjusting those implicit functions defined for each 

skeletal element;

– Defining a blending function to weight the individual implicit 

functions.
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Rendering Implicit Surfaces
• Some methods can render then directly

– Raytracing - find intersections with Newton’s method

• For polygonal renderer, must convert to 
polygons

• Advantages:
– Good for organic looking shapes e.g., human body

– Reasonable interfaces for design

• Disadvantages:
– Difficult to render and control when animating

– Being replaced with subdivision surfaces, it appears
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Display Implicit Surfaces

• Recursive subdivision:
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Display Implicit Surfaces

• Recursive subdivision:
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Display Implicit Surfaces

• Recursive subdivision:
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Display Implicit Surfaces

• Find the edges, separating hot from cold:
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Compression

Mesh of 473,000 vertices 

and 871,000 facets 
Implicit function of 32,000 terms 
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Deformation
• p’ = D(p)

• D maps each point in 3-space to some new 

location

• Twist, bend, taper, and offset
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Visualization
• Contours
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Visualization
• Particle Display



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Particle Systems

• Witkin Heckbert S94

• Constrain particle system to implicit surface 

(Implicit surface f = 0 becomes constraint surface C 

= 0)

• Particles exert repulsion forces onto each other to 

spread out across surface

• Particles subdivide to fill open gaps

• Particles commit suicide if overcrowded

• Display particle as oriented disk

• Constrain implicit surface to particles!
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Meshing Particles
• Stander Hart S97

• Use particles as vertices

• Connect vertices into mesh

• Problems:

– Which vertices should be connected?

– How should vertices be reconnected when surface 

moves?

• Solution: Morse theory

• Track/find critical points of function to detect changes 

in topology of implicit surface
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Shrink-wrapping Mechanism

• Look at family of surfaces f -1(s) for s > 0

• For s large, f -1(s) spherical

• Polygonize sphere

• Reduce s to zero

– Allow vertices to track surface

– Subdivide polygons as necessary when 

curvature increases
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Visualization
• Ray Tracing
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Other Coordinate Systems

Cylindrical Coordinates Spherical Coordinates 
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Summary

• Surface defined implicitly by f(p) = 0

• Easy to test if point is on surface, inside, or 

outside

• Easy to handle blending, interpolation, and 

deformation

• Difficult to render


	Slide 1: CSE528 Computer Graphics: Theory, Algorithms, and Applications
	Slide 2: Implicit Surfaces
	Slide 3: Height Function - Geology – Terrain Modeling
	Slide 4: Implicit Surfaces
	Slide 5: Implicit Surfaces
	Slide 6: Straight Line (Implicit Representation)
	Slide 7: Straight Line
	Slide 8: Circle
	Slide 9: Conic Sections
	Slide 10: Conics 
	Slide 11: Conics
	Slide 12: Plane
	Slide 13: Plane and Intersection
	Slide 14: Plane 
	Slide 15: Plane
	Slide 16: Plane 
	Slide 17: Circle
	Slide 18: What are Implicit Surfaces?
	Slide 19: Example of an Implicit Surface
	Slide 20: Point Classification
	Slide 21: Manifold
	Slide 22: Manifold
	Slide 23: Surface Normals
	Slide 24: Properties of Implicits
	Slide 25
	Slide 26: Implicit Equations for Curves
	Slide 27: Implicit Equations for Curves
	Slide 28: Implicit Functions for Curves
	Slide 29: Implicit Equations for Surfaces
	Slide 30: Implicit Equations for Surfaces
	Slide 31: Quadric Surfaces
	Slide 32: Disk
	Slide 33: Sphere
	Slide 34: Cylinder
	Slide 35: Other Quadrics
	Slide 36: Quadric Surfaces
	Slide 37: Quadrics: Parametric Rep.
	Slide 38: Quadric Surfaces
	Slide 39: Superquadrics
	Slide 40: Types of Implicit Surfaces 
	Slide 41: Generalization
	Slide 42: Algebraic Function
	Slide 43: Algebraic Surfaces
	Slide 44: Non-Algebraic Surfaces
	Slide 45: Algebraic Patch
	Slide 46: Algebraic Patch
	Slide 47: Algebraic Patch
	Slide 48: Spatial Curves
	Slide 49: Algebraic Solid
	Slide 50: Implicit Surfaces: Applications
	Slide 51: Boolean Operations
	Slide 52: Boolean Operations
	Slide 53: Boolean Operations
	Slide 54: Radial Basis Function: Applications
	Slide 55: Implicit Functions
	Slide 56: Implicit Functions
	Slide 57: Implicit Functions
	Slide 58: Polygonization
	Slide 59: Polygonal Representation
	Slide 60: Cell Polygonization
	Slide 61: Implicit Surface (Polygonal Representation)
	Slide 62: Spatial Partitioning
	Slide 63: Space Partitioning Criteria
	Slide 64: Spatial Partitioning
	Slide 65: Spatial Partitioning
	Slide 66: Surface Vertex Computations
	Slide 67: Polygonal Shape
	Slide 68: Determining Intersections
	Slide 69: Tetrahedral Cell Polygons
	Slide 70: Orientation
	Slide 71: Problem: Ambiguity
	Slide 72: Topological Inference
	Slide 73: Preferred Polarity
	Slide 74: CSG Polygonization
	Slide 75: Computing Intersections
	Slide 76: Visualization of Implicit Surfaces
	Slide 77: Problem of Polygonization
	Slide 78: Reconstruction of Sharp Features
	Slide 79: Rendering Implicit Surfaces
	Slide 80: Implicit Surfaces vs Polygons
	Slide 81: Implicits vs Parameter-Based Representations
	Slide 82: Blobs and Metaballs
	Slide 83: Blobby Models
	Slide 84
	Slide 85: Distance Functions
	Slide 86: Case Studies: Distance Functions
	Slide 87: Design Using Blobs
	Slide 88: Example with Blobs
	Slide 89: What Is It?
	Slide 90: Examples
	Slide 91: Examples
	Slide 92: Blobby Modeling: Its Utility
	Slide 93: Mathematics for Blobby Models
	Slide 94: Skeletal Design
	Slide 95: Skeletal Design
	Slide 96: Rendering Implicit Surfaces
	Slide 97: Display Implicit Surfaces
	Slide 98: Display Implicit Surfaces
	Slide 99: Display Implicit Surfaces
	Slide 100: Display Implicit Surfaces
	Slide 101: Compression
	Slide 102: Deformation
	Slide 103: Visualization
	Slide 104: Visualization
	Slide 105: Particle Systems
	Slide 106: Meshing Particles
	Slide 107: Shrink-wrapping Mechanism
	Slide 108: Visualization
	Slide 109: Other Coordinate Systems
	Slide 110: Summary

