CSE528 Computer Graphics: Theory, Algorithms, and **Applications**

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

Implicit Surfaces

Height Function - Geology - Terrain Modeling

Implicit Surfaces

- Defined by (algebraic) functions
- Some surfaces can be represented as the vanishing points of functions (defined over 3D space)
 - Places where a function f(x,y,z)=0

Implicit Surfaces

$$F(x,y,z)=0$$

Straight Line (Implicit Representation)

$$x + 2y - 4 = 0$$

$$|x+2y-4>0|$$

$$x + 2y - 4 < 0$$

Straight Line

Mathematics (Implicit Representation)

$$ax + by + c = 0$$
$$+ \alpha(ax + by + c) = 0$$
$$- \alpha(ax + y + c) = 0$$

Example

$$x + 2y - 4 = 0$$

Circle

• Implicit representation

$$x^{2} + y^{2} - 1 > 0$$

$$x^{2} + y^{2} - 1 < 0$$

$$x^{2} + y^{2} - 1 = 0$$

Conic Sections

Mathematics

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

- Examples
 - Ellipse
 - Hyperbola
 - Parabola
 - Empty set
 - Point
 - Pair of lines
 - Parallel lines
 - Repeated lines

$$2x^{2} + 3y^{2} - 5 = 0$$

$$2x^{2} - 3y^{2} - 5 = 0$$

$$2x^{2} + 3y = 0$$

$$2x^{2} + 3y^{2} + 1 = 0$$

$$2x^{2} + 3y^{2} = 0$$

$$2x^{2} + 3y^{2} = 0$$

$$2x^{2} - 3y^{2} = 0$$

$$2x^{2} - 7 = 0$$

$$2x^{2} = 0$$

Conics

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Conics

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$$

$$\mathbf{PQP}^T = 0$$

$$\mathbf{Q} = \begin{bmatrix} A & B & D \\ B & C & E \\ D & E & F \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} x & y & 1 \end{bmatrix}$$

Table 2.1 Conic curve characteristics

k	$ \mathbf{Q} $	Other conditions	Type
0	≠ 0		Parabola
0	0	$C \neq 0, E^2 - CF > 0$	Two parallel real lines
0	0	$C \neq 0, E^2 - CF = 0$	Two parallel coincident lines
0	0	$C \neq 0, E^2 - CF < 0$	Two parallel imaginary lines
0	0	$C = B = 0, D^2 - AF > 0$	Two parallel real lines
0	0	$C = B = 0, D^2 - AF = 0$	Two parallel coincident lines
0	0	$C = B = 0, D^2 - AF < 0$	Two parallel inaginary lines
<0	0		Point ellipse
<0	≠ 0	$-C \mathbf{Q} > 0$	Real ellipse
<0	≠ 0	$-C \mathbf{Q} < 0$	Imaginary ellipse
<0	≠ 0		Hyperbola
<0	0		Two intersecting lines

Plane and Intersection

- **Example** x + y + z 1 = 0
- General plane equation ax + by + cz + y = 0
- Normal of the plane

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Arbitrary point on the plane

$$\mathbf{p}_a = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

Plane equation derivation

$$(x-a_x)a + (y-a_y)b + (z-a_z)c = 0$$
$$ax + by + cz - (a_xa + a_yb + a_zc) = 0$$

 Parametric representation (given three points on the plane and they are non-collinear!)

$$\mathbf{p}(u,v) = \mathbf{p}_a + (\mathbf{p}_b - \mathbf{p}_a)u + (\mathbf{p}_c - \mathbf{p}_a)v$$

• Explicit expression (if c is non-zero)

$$z = -\frac{1}{c}(ax + by + d)$$

Line-Plane intersection

$$\mathbf{l}(u) = \mathbf{p}_0 + (\mathbf{p}_1 - \mathbf{p}_0)u$$

$$(\mathbf{n})(\mathbf{p}_0 + (\mathbf{p}_1 - \mathbf{p}_0)u) + d = 0$$

$$u = -\frac{\mathbf{n}\mathbf{p}_0}{\mathbf{n}\mathbf{p}_1 - \mathbf{n}\mathbf{p}_0} = -\frac{plane(\mathbf{p}_0)}{plane(\mathbf{p}_1) - plane(\mathbf{p}_0)}$$

Circle

- Implicit equation $x^2 + y^2 1 = 0$
- Parametric function

$$\mathbf{c}(\theta) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$
$$0 \le \theta \le 2\pi$$

• Parametric representation using rational polynomials (the first quadrant) x(u)

$$x(u) = \frac{1 - u^{2}}{1 + u^{2}}$$

$$y(u) = \frac{2u}{1 + u^{2}}$$

$$u \in [0,1]$$

Parametric representation is not unique!

What are Implicit Surfaces?

- 2D Geometric shapes that exist in 3D space
- Surface representation through a function f(x, y,
 z) = 0
- Most methods of analysis assume f is continuous and not everywhere 0.

Example of an Implicit Surface

• 3D Sphere centered at the origin

$$-x^{2} + y^{2} + z^{2} = r^{2}$$

$$-x^{2} + y^{2} + z^{2} - r^{2} = 0$$

Point Classification

- Inside Region: f < 0
- Outside Region: f > 0
- Or vice versa depending on the function

Manifold

- A 2D Manifold separates space into a natural inner and natural outer region
- A manifold surface contains no holes or dangling edges

Manifold

• It is difficult to determine enclosed region in non-manifold surfaces

Surface Normals

- Usually gradient of the function
 - $\nabla f(x,y,z) = \frac{\delta f(\delta x, \delta f/\delta y, \delta f/\delta z)}{\delta f(\delta x, \delta f/\delta y, \delta f/\delta z)}$
- Points at increasing f

Properties of Implicits

- Easy to check if a point is inside the implicit surface or NOT
 - Simply evaluate f at that point
- Fairly easy to check ray intersection
 - Substitute ray equation into f for simple functions
 - Binary search

Implicit Equations for Curves

- Describe an implicit relationship
- Planar curve (point set) $\{(x,y) | f(x,y) = 0\}$
- The implicit function is not unique

$$\{(x, y) \mid +\alpha f(x, y) = 0\}$$
$$\{(x, y) \mid -\alpha f(x, y) = 0\}$$

Comparison with parametric representation

$$\mathbf{p}(u) = \begin{bmatrix} x(u) \\ y(u) \end{bmatrix}$$

Implicit Equations for Curves

Implicit function is a level-set

$$\begin{cases} z = f(x, y) \\ z = 0 \end{cases}$$

• Examples (straight line and conic sections)

$$ax + by + c = 0$$
$$ax2 + 2bxy + cy2 + dx + ey + f = 0$$

- Other examples
 - Parabola, two parallel lines, ellipse, hyperbola, two intersection lines

Implicit Functions for Curves

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Implicit Equations for Surfaces

- Surface mathematics $\{(x, y, z) | f(x, y, z) = 0\}$
- Again, the implicit function for surfaces is not unique $\{(x, y, z) \mid +\alpha f(x, y, z) = 0\}$ $\{(x, y, z) \mid -\alpha f(x, y, z) = 0\}$

$$\{(x, y, z) \mid -\alpha f(x, y, z) = 0\}$$

Comparison with parametric representation

$$\mathbf{p}(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix}$$

Implicit Equations for Surfaces

Surface defined by implicit function is a level-set

$$\begin{cases} w = f(x, y, z) \\ w = 0 \end{cases}$$

- Examples
 - Plane, quadric surfaces, tori, superquadrics, blobby objects
- Parametric representation of quadric surfaces
- Generalization to higher-degree surfaces

Quadric Surfaces

Implicit functions

Examples

- Sphere
- Cylinder
- Cone
- Paraboloid
- Ellipsoid
- Hyperboloid

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + gx + hy + jz + k = 0$$

$$x^{2} + y^{2} + z^{2} - 1 = 0$$

$$x^{2} + y^{2} - 1 = 0$$

$$x^{2} + y^{2} - z^{2} = 0$$

$$x^{2} + y^{2} + z = 0$$

$$2x^{2} + 3y^{2} + 4z^{2} - 5 = 0$$

$$x^{2} + y^{2} - z^{2} + 4 = 0$$

More

 Two parallel planes, two intersecting planes, single plane, line, point

Disk

Sphere

Cylinder

Other Quadrics

Quadric Surfaces

Implicit surface equation

$$f(x, y, z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k = 0$$

An alternative representation

with
$$Q = \begin{bmatrix} a & d & f & g \\ d & b & e & h \\ f & e & c & j \\ g & h & j & k \end{bmatrix} P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Quadrics: Parametric Rep.

Sphere

$$x^{2} + y^{2} + z^{2} - r^{2} = 0$$

$$x = r \cos(\alpha) \cos(\beta)$$

$$y = r \cos(\alpha) \sin(\beta)$$

$$z = r \sin(\alpha)$$

$$\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \beta \in \left[-\pi, \pi\right]$$

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$$

$$x = a\cos(\alpha)\cos(\beta)$$

$$y = b\cos(\alpha)\sin(\beta)$$

$$z = c\sin(\alpha)$$

$$\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \beta \in \left[-\pi, \pi\right]$$

Geometric meaning of these parameters

Quadric Surfaces

- Modeling advantages
 - -computing the surface normal
 - -testing whether a point is on the surface
 - -computing z given x and y
 - calculating intersections of one surface with another

Superquadrics

- Geometry (generalization of quadrics)
- Superellipse

$$\left(\frac{x}{a^1}\right)^{\frac{2}{s}} + \left(\frac{y}{a^2}\right)^{\frac{2}{s}} - 1 = 0$$

Superellipsoid

Parametric representation

$$\left(\left(\frac{x}{a_1} \right)^{\frac{2}{s_2}} + \left(\frac{y}{a_2} \right)^{\frac{2}{s_2}} \right)^{\frac{s_2}{s_1}} + \left(\frac{z}{a_3} \right) - 1 = 0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a_1 \cos^{s_1}(\alpha) \sin^{s_2}(\beta) \\ a_2 \cos^{s_1}(\alpha) \sin^{s_2}(\beta) \\ a_3 \sin^{s_2}(\alpha) \end{bmatrix}$$

$$\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}]; \beta \in [-\pi, \pi)$$

• What is the meaning of these control parameters?

Types of Implicit Surfaces

- Mathematic
 - Polynomial or Algebraic
 - Non polynomial or *Transcendental*
 - Exponential, trigonometric, etc.
- Procedural
 - Black box function

Generalization

Higher-degree polynomials

$$\sum_{i} \sum_{j} \sum_{k} a_{ijk} x^{i} y^{j} z^{k} = 0$$

Non polynomials

Algebraic Function

- Parametric representation is popular, but...
- Formulation

$$\sum_{i} \sum_{j} \sum_{k} a_{ijk} x^{i} y^{j} z^{k} = 0$$

- Properties....
 - Powerful, but lack of modeling tools

Algebraic Surfaces

Cubic

Degree 4

Degree 6

STATE UNIVERSITY OF NEW YORK

Non-Algebraic Surfaces

Algebraic Patch

Algebraic Patch

A tetrahedron with non-planar vertices

$$\mathbf{v}_{n000}$$
, \mathbf{v}_{0n00} , \mathbf{v}_{00n0} , \mathbf{v}_{000n}

• Trivariate barycentric coordinate (r,s,t,u) for p

$$\mathbf{p} = r\mathbf{v}_{n000} + s\mathbf{v}_{0n00} + t\mathbf{v}_{00n0} + u\mathbf{v}_{000n}$$
$$r + s + t + u = 1$$

A regular lattice of control points and weights

$$\mathbf{p}_{ijkl} = \frac{i\mathbf{v}_{n000} + j\mathbf{v}_{0n00} + k\mathbf{v}_{00n0} + l\mathbf{v}_{000n}}{n}$$
$$i, j, k, l \ge 0; i + j + k + l = n$$

Algebraic Patch

- There are (n+1)(n+2)(n+3)/6 control points. A weight w(I,j,k,l) is also assigned to each control point
- Algebraic patch formulation

$$\sum_{i} \sum_{j} \sum_{k} \sum_{l=n-i-j-k} w_{ijkl} \frac{n!}{i! \, j! \, k! \, l!} r^{i} s^{j} t^{k} u^{l} = 0$$

 Meaningful control, local control, boundary interpolation, gradient control, self-intersection avoidance, continuity condition across the boundaries, subdivision

Spatial Curves

Intersection of two surfaces

$$\begin{cases} f(x, y, z) = 0 \\ g(x, y, z) = 0 \end{cases}$$

Algebraic Solid

• Half space $\{(x, y, z) | f(x, y, z) \le 0\}; or$ $\{(x, y, z) | f(x, y, z) >= 0\}$

 Useful for complex objects (refer to notes on solid modeling)

$$\mathbf{f}(x, y, z) = \begin{bmatrix} f_1(x, y, z) \\ f_2(x, y, z) \\ f_3(x, y, z) \\ & \cdots \end{bmatrix} = \mathbf{0}$$

Implicit Surfaces: Applications

• Zero sets of implicit functions.

$$f(x, y, z) = 0$$

$$|r^2 - x^2 - y^2 - z^2 > 0$$

$$(l-|x|>0)\cap (l-|y|>0)\cap (l-|z|>0)$$

• CSG operations.

Department of Co

CSE528

Boolean Operations

Boolean Operations

Boolean Operations

Radial Basis Function: Applications

Carr et al. "Reconstruction and Representation of 3D Objects with Radial Basis Functions", *SIGGRAPH2001*

$$f(\mathbf{x}) = \sum_{i} \lambda_{i} \Phi(\mathbf{x} - \mathbf{c_{i}}) + p(\mathbf{x})$$

RBF fitting

Visualization of f=0

Implicit Functions

- Long history: classical algebraic geometry
- Implicit and parametric forms
 - Advantages
 - Disadvantages
- Curves, surfaces, solids in higher-dimension
- Intersection computation
- Point classification
- Larger than parameter-based modeling
- Unbounded geometry
- Object traversal
- Evaluation

Implicit Functions

- Efficient algorithms, toolkits,software
- Computer-based shape modeling and design
- Geometric degeneracy and anomaly
- Algebraic and geometric operations are often closed
- Mathematics: algebraic geometry
- Symbolic computation
- Deformation and transformation
- Shape editing, rendering, and control

Implicit Functions

- Conversion between parametric and implicit forms
- Implicitization vs. parameterization
- Strategy: integration of both techniques
- Approximation using parametric models

Polygonization

- Conversion of implicit surface to polygonal mesh
- Display implicit surface using polygons
- Real-time approximate visualization method
- Two steps
 - Partition space into cells
 - Fit a polygon to surface in each cell

Polygonal Representation

- Partition space into convex cells
- Find cells that intersect the surface (traverse cells)
- Compute surface vertices

Cell Polygonization

- We will need to find those cells that actually contain parts of surface
- Need to approximate surface within cell

Basic idea: use piecewise-linear approximation

(polygon)

Implicit Surface (Polygonal Representation)

F: $R^3 => R$, $\Sigma = F^{-1}(0)$

Spatial Partitioning

- Exhaustive enumeration
 - Divide space into regular lattice of cells
 - Traverse cells in order to arrive at polygonization

Space Partitioning Criteria

How do we know if a cell actually contains the surface?

- Straddling Cells
 - At least one vertex inside and outside surface
 - Non-straddling cells can still contain surface
- Guarantees
 - Interval analysis
 - Lipschitz condition

Spatial Partitioning

Subdivision

- Start with root cell and subdivide
- Continue subdividing
- traverse cells

Spatial Partitioning

Adaptive polygonization

Surface Vertex Computations

- Determine where implicit surface intersects cell edges
- EITHER linear interpolate function values to approximate
- OR numerically find zero of $f(\mathbf{r}(t))$

$$\mathbf{r}(t) = \mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)$$

$$0 \le t \le 1$$

$$\mathbf{x} = \frac{v_1}{v_1 + v_2} \mathbf{x}_1 + \frac{v_2}{v_1 + v_2} \mathbf{x}_2$$

Polygonal Shape

- Use table indexed by vertex signs and consider all possible combinations
- Let + be 1, be 0
- Table size
 - Tetrahedral cells: 16
 entries:
 - Cubic cells: 256 entries
- E.g., 2-D 16 square cells

Determining Intersections

Tetrahedral Cell Polygons

Orientation

- Consistency allows polygons to be drawn with correct orientation
- Supports backface culling

Problem: Ambiguity

- Some cell-corner-value configurations yield more than one consistent polygon
- Only for cubes, not tetrahedra (why?)
- In 3-D can yield holes in surface!
- How can we resolve these ambiguities?

Topological Inference

- Sample a point in the center of the ambiguous face
- If data is discretely sampled, bilinearly interpolate samples

$$p(s,t) = (1-s)(1-t) a + s (1-t) b + (1-s) t c + s t d$$

Preferred Polarity

- Assume ambiguous face centers always +
- (or always –)
- Preference can be encoded into table

CSG Polygonization

- Polygonization can smooth crease edges caused by CSG operations
- Polygonization needs to add polygon vertices along crease edges

Computing Intersections

Visualization of Implicit Surfaces

Ray-tracing

Polygonization (e.g. Marching cubes method)

Depart Cent

Problem of Polygonization

50³ grid

100³ grid

 200^3 grid

Sharp features are broken

Department of Computer Science Center for Visual Computing

Reconstruction of Sharp Features

Input

Implicit function : f(x, y, z)

and

Rough Polygonization (Correct topology)

Post-processing

Output

Rendering Implicit Surfaces

- Raytracing or its variants can render them directly
 - The key is to find intersections with Newton's method
- For polygonal renderer, must convert to polygons
- Advantages:
 - Good for organic looking shapes such as human body
 - Reasonable interfaces for design
- Disadvantages:
 - Difficult to render and control when animating
 - Being replaced with subdivision surfaces, it appears

Implicit Surfaces vs Polygons

- Advantages
 - Smoother and more precise
 - More compact
 - Easier to interpolate and deform
- Disadvantages
 - More difficult to display in real time

Implicits vs Parameter-Based Representations

Advantages

- Implicits are easier to blend and morph
- Interior/Exterior description
- Ray-trace
- Disadvantages
 - Rendering
 - Control

Blobs and Metaballs

- Define the location of some points
- For each point, define a function on the distance to a given point, (x,y,z)
- Sum these functions up, and use them as an implicit function
- Question: If I have two special points, in 2D, and my function is just the distance, what shape results?
- More generally, use Gaussian functions of distance, or other forms
 - Various results are called blobs or metaballs

Blobby Models

- Blobby models [Blinn 82], also known as metaballs [Nishimura and Hirai 85] or soft objects [Wyvill and Wyvill 86, 88]
- A blobby model a center surrounded by a density field, where the density attributed to the center decreases with distance from the center.
- By simply summing the influences of each blobby model on a given location, we can obtain very smooth blends of the spherical density fields.

$$G(x, y, z) = \sum_{i} g_i(x, y, z) - threshold = 0$$

Distance Functions

Case Studies: Distance Functions

- $D(\mathbf{p}) = R$
 - Sphere: Distance to a point
 - Cylinder: Distance to a line
 - More examples

Design Using Blobs

- None of these parameters allow the designer to specify exactly where the surface is actually located.
- A designer only has indirect control over the shape of a blobby implicit surface.
- Blobby models facilitate the design of smooth, complex, organic-appearing shapes.

Example with Blobs

Department of Comp Center for Visual

@ 1997 Lorenzo Quintana ITY OF NEW YORK

BR K

What Is It?

 "Metaball, or 'Blobby', Modeling is a technique which uses implicit surfaces to produce models which seem more 'organic' or 'blobby' than conventional models built from flat planes and rigid angles"

Examples

Department of Co Center for Visu

Examples

Blobby Modeling: Its Utility

- Organic forms and nonlinear shapes
- Scientific modeling (electron orbitals, some medical imaging)
- Muscles and joints with skin
- Rapid prototyping
- CAD/CAM solid geometry

Mathematics for Blobby Models

• Implicit equation:

$$f(x, y, z) = \sum_{i=1}^{n_{blobs}} w_i g_i(x, y, z) = d$$

- The w_i are weights just numbers
- The g_i are functions, one common choice is:

$$g_i(\mathbf{x}) = e^{\frac{-(\mathbf{x} - c_i)^2}{\sigma_i}}$$

 $-c_i$ and σ_i are parameters

Skeletal Design

- Use skeleton technique to design implicit surfaces and solids toward interactive speed.
- Each skeletal element is associated with a locally defined implicit function.
- These local functions are blended using a polynomial weighting function.
 - [Bloomenthal and Wyvill 90, 95, 97] defined skeletons consisting of points, splines, polygons.
 - 3D skeletons [Witkin and Heckbert 94] [Chen 01]

Skeletal Design

- Global and local control in three separate ways:
 - Defining or manipulating of the skeleton;
 - Defining or adjusting those implicit functions defined for each skeletal element;

- Defining a blending function to weight the individual implicit

functions.

Rendering Implicit Surfaces

- Some methods can render then directly
 - Raytracing find intersections with Newton's method
- For polygonal renderer, must convert to polygons
- Advantages:
 - Good for organic looking shapes e.g., human body
 - Reasonable interfaces for design
- Disadvantages:
 - Difficult to render and control when animating
 - Being replaced with subdivision surfaces, it appears

• Recursive subdivision:

• Recursive subdivision:

• Recursive subdivision:

• Find the edges, separating hot from cold:

Compression

Implicit function of 32,000 terms

Deformation

- $\mathbf{p}' = \mathbf{D}(\mathbf{p})$
- D maps each point in 3-space to some new location
- Twist, bend, taper, and offset

Visualization

Contours

Visualization

Particle Display

Particle Systems

- Witkin Heckbert S94
- Constrain particle system to implicit surface (Implicit surface f = 0 becomes constraint surface C = 0)
- Particles exert repulsion forces onto each other to spread out across surface
- Particles subdivide to fill open gaps
- Particles commit suicide if overcrowded
- Display particle as oriented disk

Meshing Particles

- Stander Hart S97
- Use particles as vertices
- Connect vertices into mesh
- Problems:
 - Which vertices should be connected?

- Solution: Morse theory
- Track/find critical points of functional interpology of implicit surface

Shrink-wrapping Mechanism

- Look at family of surfaces $f^{-1}(s)$ for s > 0
- For s large, $f^{-1}(s)$ spherical
- Polygonize sphere
- Reduce s to zero
 - Allow vertices to track surface
 - Subdivide polygons as necessary when curvature increases

Visualization

• Ray Tracing

Other Coordinate Systems

Spherical Coordinates

Cylindrical Coordinates

Summary

- Surface defined implicitly by f(p) = 0
- Easy to test if point is on surface, inside, or outside
- Easy to handle blending, interpolation, and deformation
- Diffficult to render