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Implicit Surfaces

 Defined by (algebraic) functions

» Some surfaces can be represented as the vanishing
points of functions (defined over 3D space)

— Places where a function f(x,y,z)=0
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Implicit Surfaces
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Straight Line (Implicit
Representation)
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| Straight Line

» Mathematics (Implicit Representation)

aXx+by+c=0

+a(ax+hby+c)=0
—a(ax+y+c)=0

» Example
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Circle

 Implicit representation
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W Conic Sections

IRV EWEEUGI ~ 2 - 2bxy +cy? +dx+ey+ f =0

» Examples
— Ellipse
— Hyperbola
— Parabola
— Empty set
— Point
— Pair of lines
— Parallel'lines
— Repeated lines
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Conics

 Parametric eqguations of conics
» (Generalization to higher-degree curves
« How about non-planar (spatial) curves
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Conics

Ax*+2Bxy + Cy*+2Dx +2Ey + F=0

Department of Computer Science

Center for Visual Computing

Table 2.1 Conic curve characteristics

QI

Other conditions

C#0,E*~CF>0
C#0,E>-CF=0
C#0,E*-~CF<0
C=B=0,D*-AF>0
C=B=0,D*-AF=0
C=B=0,D*-AF<0

—CIQI>0
—CIQI<0

Type

Parabola

Two parallel real lines

Two parallel coincident lines
Two parallel imaginary lines
Two parallel real lines

Two parallel coincident lines
Two parallel inaginary lines
Point ellipse

Real ellipse

Imaginary ellipse
Hyperbola

Two intersecting lines
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Plane
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Plane and Intersection
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Plane

» Example
» General plane equation EN e VRNV,

* Normal of the plane {a}

b

C

o Arbitrary point on the plane
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Plane

 Plane equation derivation
(x—a,)a+(y—a,)b+(z—a,)c=0

ax+by +cz—(a,a+ab+a,c)=0

 Parametric representation (given three points on
the plane and they are non-collinear!)

p(U,V) =Pa T (pb _pa)u ™ (pc _pa)v
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Plane

 EXxplicit expression (if ¢ Is non-zero)

z=—1(ax+by+d)
C

e | Ine-Plane Intersection

I(u) = Po + (pl _po)u
(n)(po + (pl - po)u) +d =0
np, ____ plane(p,)
np, —Np, plane(p,) — plane(p,)

u=—
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Circle

» Implicit equation

 Parametric function C(H):[cosw)
sin( @)

O<=0<=2rx

 Parametric representation using rational
polynomials (the first guadrant)

o Parametric representation Is not unique!
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| What are Implicit Surfaces?

» 2D Geometric shapes that exist in 3D space

» Surface representation through a function f(x, vy,
2)=0

» Most methods of analysis assume f IS continuous
and not everywhere O.
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Example of an Implicit Surface

» 3D Sphere centered at the origin
_X2+y2+22:r2
— 2 2=
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Point Classification

» Inside Region: <0
» Qutside Region: f>0
» Or vice versa depending on the function

°
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Manifold

« A 2D Manifold separates
space Into a natural inner
and natural outer region

« A manifold surface contains
no holes or dangling edges
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Manifold

e |t is difficult to determine enclosed region in
non-manifold surfaces
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Surface Normals

 Usually gradient of the function

— Vi(xy,2) =
(of/ox, of/oy, of/oz)

 Points at increasing f

U

T mrea) =
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Properties of Implicits

 Easy to check If a point is inside the implicit
surface or NOT
— Simply evaluate f at that point

» Fairly easy to check ray Intersection
— Substitute ray equation into f for simple functions
— Binary search
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| Implicit Equations for Curves

 Describe an implicit relationship

 Planar curve (point set) {¢&SRICSIEY;

 The implicit function Is not unigue
{(x,y)[+of (x,y) =0}

(X, y)|-af (x,y) =0}

« Comparison with parametric representation
p(U) — [X(“)J

y(u)
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| Implicit Equations for Curves

o Implicit function is a level-set
{z= f(x,¥)

Z = @)
» Examples (straight line and conic sections)
ax+by+c=0

ax” +2bxy +cy* +dx+ey+ f =0

» Other examples

— Parabola, two parallel'lines, ellipse, hyperbola, two
Intersection lines

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Implicit Functions for Curves

 Parametric eqguations of conics
» (Generalization to higher-degree curves
« How about non-planar (spatial) curves
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| Implicit Equations for Surfaces

« Surface mathematics RSRIMUSRIEY:

 Again, the implicit function for surfaces Is not
unique {(x,y,2)|+af (X,V,2) =
{(x,y,2)|-of (x,y,2) =
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| Implicit Equations for Surfaces

» Surface defined by implicit function is a level-set
{W = f(x,v¥,2)

W = O

» Examples

— Plane, quadric surfaces, tori, superguadrics, blobby
objects

» Parametric representation of guadric surfaces
 Generalization to higher-degree surfaces
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| Quadric Surfaces

 |Implicit functions

» Examples ax? +by? +cz? + dxy +exz+ fyz+ gx+hy+ jz+k =0
_ SIOh_ere R —
— Cylinder “Z 4 v2 10
— Cone %2 4 y? 72 —0
— Paraboloid xZ 4+ y2 4 z—=0
— E“IpSOId 2% +3y° +4z2 —5=0
— Hyperboloid X* +y" —2z2"+4=0
 More
— Two parallel planes, two intersecting planes, single plane,
line, point
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Dis
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Cylinder

(1-90) (O,
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Other Quadrics

paraboloid hyperboloid
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Quadric Surfaces

o Implicit surface equation

fx,v.z2)=ax> +by” +cz” +2dxy+2eyz+2 fz+20x+2hy+2jz+k =0

e An alternative representation
P'eQeP =0
with a d
d b

e

h
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Quadrics: Parametric Rep.

* Sphere x*+y*+2"—r?=0
X = r cos(«x) cos( )
y = r cos(«x)sin( )
z =rsin(«)

ae[—%,%]:ﬁe[—ﬁ,ﬂ]

 Ellipsoid -
52 —+ oz —1=0

X = acos(«x) cos(f)

y = b cos(x) sin( )
z =csin(«)

o = [—%,%];,6’ e [, 7]
« Geometric meaning or these parameters
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Quadric Surfaces

e Modeling advantages
— computing the surface normal
— testing whether a point is on the surface
— computing z given x and y

— calculating intersections of one surface
with another
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| Superquadrics

» Geometry (generalization of quadrics)
» Superellipse : :
 Superellipsoid

 Parametric representation

X a, cos™ («x)sin®z ()
y | =| a, cos™ («)sin®? ()
Z

a, sin > ()

T 7T
» \What Is the meaning of these control parameters:
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| Types of Implicit Surfaces

« Mathematic
— Polynomial or Algebraic

— Non polynomial or Transcendental
 Exponential, trigonometric, etc.

e Procedural
— Black box function
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Generalization

» Higher-degree polynomials

» Non polynomials

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Algebraic Function

» Parametric representation 1s popular, but...
 Formulation

* Properties...
— Powerful, but lack of modeling tools
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Algebraic Surfaces
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Non-Algebraic Surfaces
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http://atrey.karlin.mff.cuni.cz/~0rfelyus/povray/pics/goniom4.png

Algebraic Patch

.'/.\\\
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Algebraic Patch

» A tetrahedron with non-planar vertices

VnOOO ’ VOnOO ’ VOOnO’ VOOOn

 Trivariate barycentric coordinate (r,s,t,u) for p

P =1V_.00 T SVonoo +tV00no + UV oon

r+<s+t+u=1

A regular lattice of control points and weights

Do, = IV 000 7 JVonoo + kV00no + IV000n
ijw = -

n
I, ,K, I >=0;1+ Jj+k+1=n
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Algebraic Patch

* There are (n+1)(n+2)(n+3)/6 control points. A

weight w(l,],k,l) Is also assigned to each control
point

» Algebraic patch formulation

YIY P s =0

» Properties ESErEEEsE

— Meaningful control, local control, boundary
Interpolation, gradient control, self-intersection
avoidance, continuity condition across the
boundaries, subdivision
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| Spatial Curves

e |ntersection of two surfaces

{f(x,y,z)zo

g(x,y,z)=0
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| Algebraic Solid

e EUR R {(X, y,2)| f(X,Yy,2)<=0};0r

X, y,2)| T(X,y,z) >= 0}

» Useful for complex objects (refer to notes on
solid modeling)
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| Implicit Surfaces: Applications

e Zero sets of implicit functions. f(x,y,2)=0

(I=1xp> 0)n (I- [y > 0)n (1= | 2> 0)

e CSG operations.




| Boolean Operations

—

] £ =
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Boolean Operations
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Boolean Operations
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adial Basis Function: Applications




Implicit Functions

 Long history: classical algebraic geometry

Implicit and parametric forms
— Advantages
— Disadvantages

Intersection computation

Point classification

l_arger than parameter-based modeling
Unbounded geometry

) — )\ O
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Implicit Functions

» Geometric degeneracy and anomaly

» Algebraic and geometric operations are often
closed

» Mathematics: algebraic geometry
e Symbolic computation
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Implicit Functions

 Conversion between parametric and implicit
forms

 Implicitization vs. parameterization
o Strategy: Integration of both techniques
» Approximation using parametric models
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| Polygonization

 Conversion of implicit surface to polygonal
mesh

 Display implicit surface using polygons
» Real-time approximate visualization method

» Two steps
— Partition space into cells
— Fit a polygon to surface in each cell
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Polygonal Representation

» Partition space into convex cells
 Find cells that intersect the surface

( )

» Compute surface vertices

:purtart

{ ._r,,,q; W
|.I||I =::.-‘




Cell Polygonization

» We will need to find those cells that actually
contain parts of surface

» Need to approximate surface within cell
» Basic Idea: use piecewise-linear approximation

(polygon)
N =

\m
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Implicit Surface (Polygonal
Representation)

F: R3=> R, £ = F(0)
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| Spatial Partitioning

 Exhaustive enumeration
— Divide space into regular lattice of cells
— Traverse cells in order to arrive at polygonization
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Space Partitioning Criteria

How do we know If a cell actually contains the
surface?

o Straddling Cells
— At least one vertex Inside and outside surface

— Non-straddling cells can still contain surface
» Guarantees
— Interval analysis

— Lipschitz condition ‘
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Spatial Partitioning

« Subdivision
— Start with root cell and subdivide
— Continue subdividing
— traverse cells




Spatial Partitioning

 Adaptive polygonization




| Surface Vertex Computations

» Determine where implicit surface intersects cell
edges

» EITHER linear interpolate function values to
approximate
» OR numerically find zero of f(r(t))
r(t) = X + 1(X5-X)
) |

f(xq) = vy (+)

p

NY BR® K
NIVERSITY OF NEW YORK



| Polygonal Shape

» Use table indexed by

vertex signs and consider ®© 66 00 6 ©
all possible combinations e e® e ® @e® @

e Let+bel -be0 e 66 ©2O© 60O ©
« Table size e 06 ©6 ©206 ©
— Tetrahedral cells: 16 ®© 66 0O 60 ©
entries S 6O 6O 60O ©

— Cubic cells: 256 entries ® 66 ©©0 60 ©

e E.¢., 2-D - 16 square e 00 00 00 ©

cells
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Determining Intersections




| Tetrahedral Cell Polygons
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Orientation

 Consistency allows polygons to be drawn with

correct orientation
» Supports backface culling ’@" ” "@'
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| Problem: Ambiguity

 Some cell-corner-value
configurations yield more
than one consistent

polygon
* Only for cubes, not
tetrahedra (why?)

 |n 3-D can yield holes in
surface!

 How can we resolve
these ambiguities?

or
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| Topological Inference

« Sample a point in the
center of the +
ambiguous face

o |f data Is discretely
sampled, bilinearly
Interpolate samples
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| Preferred Polarity

« Assume ambiguous face centers always +
* (or always —-)
 Preference can be encoded into table

© wm® Sam®
S
A o ED
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CSG Polygonization

 Polygonization can smooth crease edges caused
0y CSG operations

 Polygonization needs to add polygon vertices

along crease edges
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Computing Intersections
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Visualization of Implicit Surfaces

DDDDDD




Problem of Polygonization

 Sharp features
are broken
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Reconstruction of Sharp Features

@implicit function : f(x,y,1)

Rough Polygonization
(Correct topology)

Post-
processing




| Rendering Implicit Surfaces

 Raytracing or its variants can render them directly
— The key 1s to find intersections with Newton’s method

» For polygonal renderer, must convert to polygons

 Advantages:
— Good for organic looking shapes such as human body
— Reasonable interfaces for design

 Disadvantages:

— Difficult to render and control when animating
— Being replaced with subdivision surfaces, It appears
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| Implicit Surfaces vs Polygons

« Advantages

— Smoother and more precise

— More compact

— Easier to interpolate and deform
 Disadvantages

— More difficult to display in real time
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Implicits vs Parameter-Based
Representations

« Advantages
— Implicits are easier to blend and morph
— Interior/Exterior description
— Ray-trace

 Disadvantages
— Rendering
— Contraol
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Blobs and Metaballs

 Define the location of some points

 For each point, define a function on the distance to a
given point, (X,y,z)

« Sum these functions up, and use them as an implicit
function

» Question: If I'have two special points, in 2D, and my
function Is just the distance, what shape results?

» More generally, use Gaussian functions of distance, or
other forms

— Various results are called blobs or metaballs
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| Blobby Models

« Blobby models [Blinn 82], also known as metaballs
[Nishimura and Hirail 85] or soft objects [Wyvill and
Wyvill 86, 88]

» A blobby model — a center surrounded by a density
field, where the density attributed to the center
decreases with distance from the center.

» By simply summing the influences of each blobby
model on a given location, we can obtain very smooth
blends of the spherical density fields.

& { rY, z) = E ¢4 { x, 1, z2) — threshold = 0
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Distance Functions




Case Studies: Distance Functions

o D(p) =R »
— Sphere: Distance to a -
point
— Cylinder: Distance to a
line
— More examples




Design Using Blobs

» None of these parameters
allow the designer to specify
exactly where the surface Is
actually located.

» A designer only has indirect
control over the shape of a
blobby implicit surface.

» Blobby models facilitate the
design of smooth, complex,
organic-appearing shapes.
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Example with Blobs

|

ing isEBlob, buge charatig
N -

5 e N eval
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What Is It?

e “Metaball, or ‘Blobby’, Modeling is a technique
which uses implicit surfaces to produce models
which seem more ‘organic’ or ‘blobby’ than
conventional models built from flat planes and
rigid angles”™

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Examples
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Examples
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Blobby Modeling: Its Utility

 Organic forms and nonlinear shapes

» Scientific modeling (electron orbitals, some
medical imaging)

» Muscles and joints with skin

 Rapid prototyping

« CAD/CAM solid geometry
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| Mathematics for Blobby Models

 Implicit equation:
F(xy,2)= ZWigi(X’ y,z)=d

» The w; are weights — just numbers
 The g; are functions, one common choice IS:
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| Skeletal Design

 Use skeleton technigue to design implicit
surfaces and solids toward interactive speed.

 Each skeletal element Is associated with a locally
defined implicit function.

 These local functions are blended using a
polynomial weighting function.

— [Bloomenthal and Wyvill 90, 95, 97] defined
skeletons consisting of points, splines, polygons.

— 3D skeletons [Witkin and Heckbert 94] [Chen 01]
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Skeletal Design

Global and local control in three separate ways:
— Defining or manipulating of the skeleton;

— Defining or adjusting those implicit functions defined for each
skeletal element;

— Defining a blending function to weight the individual implicit
functions. 2

—— bones T

tendons
velins
— muscle
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Rendering Implicit Surfaces

» Some methods can render then directly
— Raytracing - find intersections with Newton’s method

 For polygonal renderer, must convert to

polygons

» Advantages:
— Good for organic looking shapes e.g., human body
— Reasonable interfaces for design

 Disadvantages:
— Difficult to render and control when animating
— Being replaced with subdivision surfaces, It appears
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Display Implicit Surfaces

e Recursive subdivision:
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Display Implicit Surfaces

e Recursive subdivision:
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Display Implicit Surfaces

e Recursive subdivision:
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Display Implicit Surfaces

 Find the edges, separating hot from cold:
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Compression
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Deformation

* p’=D(p)
* D maps each point in 3-space to some new
location

» Twist, bend, taper, and offset
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Visualization

e Contours
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Visualization
» Particle Display




Particle Systems

« Witkin Heckbert S94

Constrain particle system to implicit surface
(Implicit surface f = 0 becomes constraint surface C
— ())

Particles exert repulsion forces onto each other to
spread out across surface

o Particles subdivide to fill'open gaps

» Particles commit suicide If overcrowded

» Display particle as oriented disk

2nlzONStraIN Implicit surface to particles! STCNY BR® K

Center for Visual Computing S UNIVERSITY OF NEW YORK



Meshing Particles

L2
L7

 Stander Hart S97
» Use particles as vertices
» Connect vertices into mesh
» Problems:
— Which vertices should be connected? ey,
_ How should vertices be reconnected when surface
» Solution: Morse theory %,,,,,,,,,M,W?’MW
» Track/find critical points of functlogwﬁw&%%%’@‘b‘}%?w
___intopology-ofimplicit-surface .
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Shrink-wrapping Mechanism

ook at family of surfaces f -1(s) fors >0
 For s large, f -(s) spherical
 Polygonize sphere

 Reduce s to zero
— Allow vertices to track surface

— Subdivide polygons as necessary whan
curvature increases
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Visualization

« Ray Tracing
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Other Coordinate Systems

- ‘
. N
Spherical Coordinates Cylindrical Coordinates
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Summary

 Surface defined implicitly by f(p) =0

 Easy to test If point Is on surface, inside, or
outside

 Easy to handle blending, interpolation, and
deformation

e Difficult to render
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