PDE-based Geometric Modeling and Interactive Sculpting for Graphics Hong Qin **Center for Visual Computing Department of Computer Science**

SUNY at Stony Brook

Geometric Modeling

Background Review

- Introduction to PDEs
- PDE techniques and applications
 Geometric modeling, visualization, simulation, animation, image processing,
- Other modeling techniques
 Free-form splines, implicit functions, physicsbased techniques, medial axis extraction

PDE Techniques and Applications

- Elliptic PDEs for geometric modeling
- Level set method
- Diffusion equations
- Other applications
 - Simulation and animation
 - Image processing

.

PDEs for Geometric Modeling

- Geometric objects are defined by a set of PDEs
- PDE objects are controlled by a few parameters
- Powerful numerical techniques to solve PDEs are available
- PDE is related to energy optimization
- PDE models can potentially unify geometric and physical aspects

Geometric Modeling

- Shape representations
 - -Explicit model
 - Defines objects by positions
 - free-form splines, parametric PDE model, Subdivision model,
 - -Implicit model
 - Defines objects by level set of scalar functions
 - CSG model, level-set model, splines,.....

Geometric Applications

• Shape design

Geometric Applications

- Shape design
- Object deformation

Level Set Illustration

Geometric Applications

- Shape design
- Object deformation
- Model reconstruction

Geometric Applications

- Shape design
- Object deformation
- Model reconstruction
- Shape blending

A PDE Example

• PDE (Partial Differential Equation)

 $\sum_{n=0}^{r} \sum_{l,m\geq 0}^{l+m=n} \alpha_{l,m}(u,v) \frac{\partial^{n}}{\partial u^{l} \partial v^{m}} f(u,v) = g(u,v)$

- Order r
- $= \alpha_{l,m}(u,v), g(u,v) : \text{ control functions} \\ = f(u,v): \text{ unknown function of } u,v$

Related Work of Physics-based Modeling

[Terzopoulos et al. 87] [Terzopoulos and Fleisher 88] [Celniker and Gossard 91] [Qin and Terzopoulos 94, 96] [Koch *et al.* 96] [Mandal *et al.* 98, 99] [Dachille et al. 99]

Background Summary

- Geometric PDE techniques
- Level set method
- Diffusion equations with applications
- PDE-based simulation and image processing
- Implicit models
- Physics-based techniques
- Medial axis extraction

PDE Techniques for Graphics

- Using differential properties
- Various applications
 Image processing

[Bertalmio et al. 00]

Image Inpainting

- Inpainting:
 - Modify images in an undetectable way
 - Damage recovery, selected area removal
- Use gradient information, especially around the boundary of selected regions
- Propagate information from the surrounding areas using certain PDEs of gradient vectors

[Bertalmio et al.00]

Modeling Fracture

[O'Brien and Hodgins99]

Fluid Dynamics

- Navier-Stokes equations
 - (a)
 - $\begin{cases} \nabla \cdot \mathbf{u} = 0 \\ \frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} \frac{1}{\rho} \nabla \mathbf{p} + v \nabla^2 \mathbf{u} + \mathbf{f} \end{cases}$ (b)
 - **u**: velocity field
 - p: pressure field
 - $-\rho$: density
 - -v: kinematic viscosity of the fluid
 - f: external force
 - $-\nabla = (\partial/\partial x, \partial/\partial y), \nabla = (\partial/\partial x, \partial/\partial y, \partial/\partial z)$

Applications of Fluid Dynamics

- Gas simulation
- Water simulation
- Explosions
- Nature texturing

.

Simulating Gaseous Phenomena

[Foster and Metaxas97b]

Animating Explosions

[Yngve et al.00]

PDE Techniques for Graphics

- Using differential properties
- Various applications
 - Image processing
 - Simulation
 - Visualization
 - Geometric modeling

Surface Fairing

• Curvature flow

$\kappa \mathbf{n} = \frac{1}{4A} \sum_{j} (\cot \alpha_{j} + \cot \beta_{j}) (\mathbf{p}_{i} - \mathbf{p}_{j})$

PDE Approach for Surface Fairing

- PDE approach can solve the fairing problem directly $\Delta_B H = 0$
- Fairing based on geometric invariants
- Construct surfaces based on discrete data with subdivision connectivity of regular patches

$$\Delta_B = \frac{1}{\lambda(u,v)^2} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) = \frac{1}{\lambda(u,v)^2} \Delta^2$$

Surface Fairing

Taubin

$$\mathbf{P}_{new} = \mathbf{P}_{old} - (\mu - \lambda)\mathbf{U}(\mathbf{P}_{old}) - \mu\lambda\mathbf{U}^2(\mathbf{P}_{old})$$

where $\mu > \lambda > 0$.

• Membrane or thin-plate energy

$$E_{membrane}(X) = \frac{1}{2} \int_{\Omega} X_u^2 + X_v^2 \, du dv$$

$$E_{thin \ plate}(X) = \frac{1}{2} \int_{\Omega} X_{uu}^2 + 2X_{uv}^2 + X_{vv}^2 \ dudv.$$

$$L(X) = X_{uu} + X_{vv}$$

$$L^{2}(X) = L \circ L(X) = X_{uuuu} + 2X_{uuvv} + X_{vvvv}.$$

(4)

Outline

- Motivation and contributions
- Related work
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Outline

- Motivation and contributions
- Related work
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Motivation: Why PDE Techniques?

- Formulate natural physical process
- Satisfy continuity requirements
- Minimize energy functionals
- Define objects using boundary information
- Provide intuitive and natural control
- Unify geometric and physical attributes
- Employ powerful numerical techniques

Motivation: Limitations of Prior Work

- Indirect manipulation for PDE objects
- Limit constraints for geometric PDE objects
- Lack of local control for regional shape sculpting
- No intuitive manipulation with physical properties
- Limitations of acceptable shape representations for PDE models
- Lack of integration framework of different types of PDEs
- Limit applications of geometric PDE modeling system

Motivation: A General PDE Framework

- General modeling framework for geometric objects of different data formats
- Direct manipulation and interactive sculpting with global/local control
- Integration of physical properties for realistic modeling
- Comprehensive toolkits for various modeling functionalities

Design, reconstruction, abstraction, manipulation

Contributions: Overview

Contributions: System Functions

- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit PDE shape design and manipulation
 - PDE-based free-form modeling and deformation

Contributions: System Components

PDE-based Geometric Modeling System

Outline

- Motivation and contributions
- Related work
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Another Classification of PDEs

- Initial value problem
 - Given information at t_0 , the solution will propagate forward in time

- Boundary value problem
 - Given boundary information of the region of interest of variables
 - Solution will be a static function within the region

Summary of PDE Classifications

PDE types	Hyperbolic	Parabolic	Elliptic
	PDE	PDE	PDE
Initial value	Wave	Diffusion	
problem	equation	equation	
Boundary value problem			Poisson equation

- Poisson equation:
 Geometric modeling, image processing.....
- Diffusion equation:

Texture synthesis, image processing,

• Wave equation: Fluid simulation, nature texturing,

PDE-based Geometric Modeling

- PDE surfaces and solids:
 - Blending problem [Bloor and Wilson 89]
 - Free-form surfaces [Bloor and Wilson 90b]
 - B-spline approximation [Bloor and Wilson 90a]
 - Functionality design [Lowe et al. 90]
 - PDE solids [Bloor and Wilson 93]
 - Interactive design [Ugail et al. 99]
- Variational models:

Surface fairing [Schneider and Kobbelt 00]

PDE Surfaces and Solids

• PDE surface formulation

$$\left(\frac{\partial^2}{\partial u^2} + a^2 \frac{\partial^2}{\partial v^2}\right)^2 \mathbf{X}(u, v) = \mathbf{0}$$

Biharmonic equation if a=1

PDE solid formulation

$$\left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} + \frac{\partial^2}{\partial w^2}\right) \mathbf{X}(u, v, w) = \mathbf{0}$$

Level Set Method

Originally defined for front propagation φ_t - F |∇φ| = 0, F is the speed function; φ(x,t = 0) = ±d(x), d(x) is the distance from x to Γ₀; Moving front is the zero - level set : Γ_t = {x | φ(x,t) = 0}.

Prior work of level set method

- Front propagation
 - [Osher and Sethian88], [Adalsteinsson and Sethian95]
- Shape reconstruction
 - [Zhao et al.00], [Zhao et al.01]
- Shape transformation
 [Breen and Whitaker01]

.

- Shape modeling and editing

[Barentzen and Christensen02], [Museth et al.02]

[SIGGRAPH'02 Course Notes 10]

Classification of PDEs

- 3 types of PDEs based on *characteristics*
 - *B²*-*AC*>0: <u>hyperbolic</u>

• Wave equation
$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

- $-B^2$ -AC=0: parabolic
 - Diffusion equation $\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right)$
- *B²*-*AC*<0: <u>elliptic</u>
 - Poisson equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$
STONY
R

Shape Reconstruction Using Level Set Method

[Zhao et al.00]

Shape Morphing Using Level Set Method

[Breen and Whitaker 01]

Diffusion Equations

- Reaction-diffusion textures [Witkin and Kass91], [Turk91]
- Tensor field visualization [Kindlmann *et al.*00]
- Vector field visualization [Diewald *et al.*00]
- Image processing Image enhancement, filtering,.....

Reaction-Diffusion Texture

• Synthesizing natural textures

Reaction-diffusion system

 Diffusion of morphogens
 Nonlinear PDEs
 Biological patterns

Reaction-Diffusion Equation

- Diffusion, dissipation, reaction
- Reaction-diffusion equation:
 - $\dot{C} = a^2 \nabla^2 C bC + R,$

 \dot{C} is the time derivative of C,

$$\nabla^2 C = \frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2},$$

a is the rate constant for diffusion,

- b is the rate constant for dissipation,
- *R* is the reaction function.

Reaction-diffusion texture buttons

1.reptile, giraffe, coral, scalloped.

2.spiral, triweave, twisty maze, replication, purple thing

3.sand, maze, zebra haunch, radial

4.space giraffe, zebra, stucco, beats us, weave

By type: Isotropic, multi-orientation, and diffusion mapped

[Witkin and Kass 91]

Vector Field Visualization

Different time steps of the anisotropic diffusion for both principal curvature directions

[Diewald *et al.* 00]

Other Applications of PDEs

- Modeling fracture [O'Brien and Hodgins99], [O'Brien00]
- Simulating gas [Foster and Metaxas97b]
- Water simulation [Kass and Miller90], [Foster and Metaxas96,97a], [Stam99]

STANY

- Modeling explosion
 [Yngve *et al.*00]
- Image processing [Bertalmio *et al.*00], [Pérez *et al.*03]

Implicit Model

- Implicit surfaces and solids: $\{(x,y,z)|f(x,y,z)=c\}, \{(x,y,z)|f(x,y,z)\leq c\}$
- Techniques to model implicit objects
 - Particle based implicit surface sculpting [Witkin and Heckbert 94]
 - Trivariate B-splines for implicit models
 [Raviv and Elber 99], [Hua and Qin01,02]
 - Level set method

.

- [Zhao et al.00,01]
- Variational implicit functions
 [Turk and O'Brien 99,02], [Morse *et al.*01]

Example of Implicit Models

[Turk and O'Brien02]

Physics-based Modeling

- Combines physical properties with geometric models
- Leads to deformable models
- Allows direct manipulation of objects via forces
- Creates natural-looking motions through simulation
- Can be integrated with general PDE framework

Deformable Models

 Controlled by Lagrangian equations of motion

$$\frac{\partial}{\partial t} \left(\mu \frac{\partial \mathbf{r}}{\partial t} \right) + \gamma \frac{\partial \mathbf{r}}{\partial t} + \frac{\delta \varepsilon (\mathbf{r})}{\partial \mathbf{r}} = \mathbf{f} (\mathbf{r}, t)$$

- $-\mathbf{r}(\mathbf{a},t)$: position of particle **a** at time *t*
- $-\mu$ (a): mass density of the body at a
- $-\gamma$ (a): damping density
- $-\mathbf{f}(\mathbf{r}, t)$: external force
- $-\varepsilon$ (r): measures the potential energy of the elastic deformation of the body

Discretized Mass-Spring Model

$M\ddot{p} + D\dot{p} + Kp = f$

- M: mass matrix
- D: damping matrix
- K: stiffness matrix
- f: external force
- p: discrete sample points

Applications of Physics-based Modeling

- Dynamics NURBS (DNURBS) [Qin and Terzopoulos 94, 95, 96]
- Physics-based subdivision [Mandal et al. 98, 99], [McDonnell et al. 00, 01]
- Cloth simulation and animation [Carignan *et al.* 92], [Baraff and Witkin 98]
- Facial simulation [Lee *et al.* 95], [Koch *et al.* 96]
- Physics-based implicit functions [Jing and Qin 01,02]

Medial Axis Extraction

- Locus of all centers of circles/spheres inside the object
- Collection of points with more than one closest points on the boundary
- Set of singularities of signed distance function from boundary

Medial Axis Extraction Techniques

Thinning

[Arcelli and Baja85][Lee and kashyap94][Manzanera etal.99]

Distance functions

[Arcelli and Baja92][Leymarie and Levine92][Bitter et al.01]

- Voronoi skeletons [Goldak et al.91][Ognievicz93][Amenta et al.01]
- Level set method [Kimmel *et al.*95][Ma *et al.*03]
- Direction testing [Bloomenthal and Lim99]
- Hybrid techniques
 [Bouix and Siddiqi00]

Outline

- Motivation and contributions
- Related work
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Outline

- Motivation and contributions
- Background review
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

System Outline

PDE-based Geometric Modeling System

PDE Surfaces

• PDE surface formulation:

$$\left(\frac{\partial^2}{\partial u^2} + a^2(u,v)\frac{\partial^2}{\partial v^2}\right)^2 \mathbf{X}(u,v) = 0$$
$$\mathbf{X}(u,v) = \begin{bmatrix} x(u,v) & y(u,v) & z(u,v) \end{bmatrix}$$

-a(u,v): blending coefficient function controlling the contributions of the parametric directions

PDE Surface Displacements

• Displacements

• PDE surface displacement formulation: $\mathbf{X}(u,v) = \mathbf{X}^{0}(u,v) + \mathbf{O}(u,v),$ $\left(\frac{\partial^{2}}{\partial u^{2}} + a^{2}(u,v)\frac{\partial^{2}}{\partial v^{2}}\right)^{2}\mathbf{O}(u,v) = \mathbf{0}$

Finite Difference Method

• Divides the working space into discrete grids

Finite Difference Method

- Divides the working space into discrete grids
- Samples the PDE at grid points with discretized approximations

Finite Difference Method

- Divides the working space into discrete grids
- Samples the PDE at grid points with discretized approximations
- Forms a set of algebraic equations $\mathbf{HX} = \mathbf{Z}$
- Enforcing additional constraints $\mathbf{H}_c \mathbf{X} = \mathbf{z}_c$
- Physics-based discrete PDE model: $M\ddot{X} + D\dot{X} + (K + H_c)X = f + z_c$

Discretized Approximations

- Displacement model: $\mathbf{H}_{c}\mathbf{O} = \mathbf{Z}_{c}$ $\mathbf{X} = \mathbf{X}^{0} + \mathbf{O}$
- Iterative techniques and multi-grid algorithm to improve the performance
- Easy for local control

Flexible Boundary Conditions

• Generalized boundary conditions $\mathbf{X}(u_i, v) = f_i(v)$

 $\mathbf{X}(u,v_j) = \mathbf{g}_j(u)$

- where $0 \le u_i \le 1$ and $0 \le v_j \le 1$, and $f_i(v)$ and $g_j(u)$ are isoparametric curves
- Hermite-like boundary constraints
- Coons-like boundary constraints
- Gordon-like boundary constraints

Hermite-like Boundary Constraints

Coons-like Boundary Constraints

Gordon-like Boundary Constraints

Joining Multiple PDE Surfaces

• Boundary curves:

Three connected surfaces:

PDE Surface Manipulations

- Boundary sculpting
- Blending coefficient control
- Direct manipulation
 - Point based sculpting: position, normal, curvature
 - Curve deformation
 - Region manipulation
- Displacement deformation

Boundary Curve Sculpting

Effect of a(u,v)

• The value of $a(u_i, v_j)$ at each (u_i, v_j) can be changed interactively.

- a(u,v)=3.1
- a(*u*,*v*)=5.2 at yellow part

•
$$a(u,v)=5.2$$

Point-based Manipulation

Curve and Region Sculpting

Local Sculpting

Curve Editing

- Select an arbitrary source curve on the PDE surface by picking points on the *u-v* domain;
- 2. Define a cubic B-spline curve with desired shape as the destination curve;
- 3. Map the source curve to the shape of the destination curve, i.e. put the constraints into the system;
- 4. Solve the constrained equations to get the new surface.

Curve Editing

Region Sculpting

- 1. Select an area on the PDE surface;
- 2. Define a cubic B-spline patch with the same number of sample points of the source region;
- Map the source region to the shape of the destination patch, i.e. put those constraints into the linear equation system;
- 4. Solve the constrained equations to get the new surface.

Region Sculpting

Interface of PDE Surfaces

Point Editing on Displacements

Displacement Curve and Region Sculpting

B-spline Approximation

- B-spline surfaces $\mathbf{X}(u,v) = \sum_{i=1}^{k} \sum_{j=1}^{l} B_{i,c}(u) B_{j,d}(v) \mathbf{p}_{i,j}$
- Obtain B-spline control mesh from PDE surfaces
 BP = X
 - $\mathbf{B}^{\mathrm{T}} \mathbf{B} \mathbf{P} = \mathbf{B}^{\mathrm{T}} \mathbf{X}$
- B-spline approximation for dynamic models

B-Spline Formulation

• B-Spline curve and surface: $\mathbf{s}(u) = \sum_{i} \mathbf{d}_{i} N_{i}^{n} (u)$ $\mathbf{S}(u,v) = \sum_{i} \sum_{j} \mathbf{d}_{i,j} N_{i}^{n}(u) N_{j}^{m}(v)$ B-Spline basis function: 1, if r = 0 and $u \in [u_i, u_{i+1}]$; $N_{i}^{r}(u) = \{0, \text{ if } r = 0 \text{ and } u \notin [u_{i}, u_{i+1}]\}$ $\left[(u - u_i) \frac{N_i^{r-1}(u)}{u_{i+r} - u_i} + (u_{i+r+1} - u) \frac{N_{i+1}^{r-1}(u)}{u_{i+r+1} - u_{i+1}}, r > 0 \right]$

Knots sequence: $\begin{bmatrix} u_0, u_1, \cdots \end{bmatrix}$ STONY BROWK

NURBS Formulation

$$\mathbf{C}(u) = \frac{\sum_{i=0}^{n} w_i \mathbf{P}_i N_i^p(u)}{\sum_{i=0}^{n} w_i N_i^p(u)}$$

$$\mathbf{S}(u,v) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} \mathbf{P}_{i,j} N_{i}^{p}(u) N_{j}^{q}(v)}{\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} N_{i}^{p}(u) N_{j}^{q}(v)}$$

Weights: $W_i, W_{i,j}$

Free-Form Splines

- Piecewise polynomials with certain differentiability constraints
- Local control and extra DOF for manipulation
- NURBS
 - <u>Non-Uniform Rational B-Splines</u>
 - Industrial standard

Pros and Cons of NURBS

- Model both analytic and free-form shapes
- Local control
- Clear geometric interpretations
- Smooth objects
- Powerful modeling toolkits
- Invariant under various manipulations

- Extra storage for traditional objects
- Too many degrees of freedom
- Difficult to model intersection, overlapping
- Less natural and counter-intuitive
- Strong mathematics
- Difficult for arbitrary topology

Examples of B-spline Approximation

Physics-based PDE Surfaces

- Physics-based PDE surface and displacement model
- Flexible boundary conditions
- Global manipulations Joining multiple surfaces, boundary sculpting
- Direct local sculpting Coefficient control, point, curve, region sculpting, displacement manipulation, material property modification
- B-spline approximation

System Outline

PDE-based Geometric Modeling System

Outline

- Motivation and contributions
- Background review
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Interface

STATE UNIVE

PDE-based Arbitrary Mesh Model

- Traditional PDE surfaces
 - Defined on regular domain
 - Difficult to model arbitrary topological surfaces
- Polygonal meshes
 - Define surfaces as collection of points and their relations
 - Shape of arbitrary topology
- Goal: use PDE techniques to model arbitrary polygonal meshes

PDE Approximation of Arbitrary Meshes

• Umbrella operator for discrete Laplacian:

$$\nabla^2 \mathbf{p}_i \approx \frac{1}{n} \sum_{j \in N_1(i)} \mathbf{p}_j - \mathbf{p}_i, \quad \nabla^2 \mathbf{p}_i \approx \frac{2}{E} \sum_{j \in N_1(i)} (\mathbf{p}_j - \mathbf{p}_i) / e_{i,j}$$

• Approximating formulations:

$$\nabla^2 \mathbf{p} = \mathbf{F}, \nabla^4 \mathbf{p} = \mathbf{F}$$

$$\nabla^{4} \mathbf{p}_{i} = \nabla^{2} (\nabla^{2} \mathbf{p}_{i}) \approx \frac{1}{n} \sum_{i} \nabla^{2} \mathbf{p}_{j} - \nabla^{2} \mathbf{p}_{i}$$

 $I \in$

(l)

Direct Manipulation of Arbitrary Meshes

- Take input meshes as general constraints
- Use umbrella operators to approximate the PDEs
- Point-based manipulation for shape deformation
- Local control by selecting regions of interests
- Possible to integrate with subdivision models

Direct Manipulation of Arbitrary Meshes

PDE-based Medial Axis Extraction

- Compact representation of arbitrary polygonal meshes
- Diffusion-based equations to simulate grassfire process
- Approximates medial axes for manipulation purposes
- Facilitates skeleton-based shape sculpting for arbitrary meshes

Formulations

- Diffusion-based PDE $\frac{\partial \mathbf{S}(\mathbf{p},t)}{\partial t} = \mathbf{D}(\mathbf{N},\kappa)\nabla^2 \mathbf{S}$
- Normal approximation

$$\mathbf{N}_{i} = \mathbf{t}_{1} \times \mathbf{t}_{2} = \sum_{j=0}^{n-1} \cos \frac{2\pi j}{n} \mathbf{p}_{j} \times \sum_{j=0}^{n-1} \sin \frac{2\pi j}{n} \mathbf{p}_{j}$$

STATE UNIVERSITY OF NEW YORK

Gaussian curvature approximation

$$\kappa_{i} = \frac{2\pi - \sum_{j=0}^{n-1} \phi_{j}}{\frac{1}{3} \sum_{j=0}^{n-1} A_{j}}, \kappa_{i} = \frac{\pi - \sum_{j=0}^{n-1} \phi_{j}}{\frac{1}{3} \sum_{j=0}^{n-1} A_{j}}$$
STONY
BR

Medial Axis Extraction Algorithm

- Initialization
 - Approximate surface normal and other differential properties
- Skeletonization
 - Compute evolving surface
 - Collision detection to find skeletal points
 - Surface optimization
- User interaction

- User-defined skeleton, local skeletonization

Progressive Medial Axis Extraction

Local Region Skeletonization

User-defined Skeleton

Skeleton-based Sculpting

BROKK

Skeleton-based Sculpting

Curvature Manipulation

TATE UNI

RSITY OF NEW YOR

PDE-based Arbitrary Mesh Modeling

- Direct manipulation on polygonal meshes
- Diffusion-based medial axis extraction
 - Progressive visualization
 - User interaction
 - Local region skeletonization
- Skeleton-based shape manipulation

Outline

- Motivation and contributions
- Background review
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Implicit PDE Modeling

- Implicit elliptic PDE formulation
- General boundary constraints
- Radial Basis Function (RBF) for initial guess
- Direct manipulation in the implicit working space
- Interactive sculpting of implicit PDE objects

RBF Method (1)

- RBF: Radial Basis Function
- Solving interpolation problems by minimizing thin-plate energy in 3D $\iint f_{xx}^2 + 2f_{xy}^2 + f_{yy}^2 dxdy$
- Basis function:
 - $\phi(\mathbf{x}) = |\mathbf{x}|^3$

Interpolation function:

$$f(\mathbf{x}) = \sum_{j=1}^{n} w_{j} \phi(\mathbf{x} - \mathbf{c}_{j}) + P(\mathbf{x})$$

RBF Method (2)

- Interpolation constraints: $h_i = f(\mathbf{c}_i) = \sum_{j=1}^k w_j \phi(\mathbf{c}_i - \mathbf{c}_j) + P(\mathbf{c}_i)$
- Linear equation system:

ϕ_{11}	ϕ_{12}	• • •	ϕ_{1k}	1	c_1^x	c_1^y	c_1^z	$\begin{bmatrix} w_1 \end{bmatrix}$		$\begin{bmatrix} h_1 \end{bmatrix}$
ϕ_{21}	ϕ_{22}	•••	ϕ_{2k}	1	c_2^x	c_2^y	c_2^z	W_2		h_2
•	• • •	••••	• • •	• •	• • •	• •	• •	• •		• • •
ϕ_{k1}	ϕ_{k2}	•••	$\phi_{_{kk}}$	1	c_k^x	c_k^y	c_k^z	W_k	_	h_k
1	1	•••	1	0	0	0	0	p_0		0
c_1^x	c_2^x	•••	c_k^x	0	0	0	0	p_1		0
c_1^y	c_2^y	•••	c_k^y	0	0	0	0	p_2		0
$\lfloor c_1^z \rfloor$	c_2^z	•••	c_k^z	0	0	0	0	$\lfloor p_3 \rfloor$		0

Interface of Implicit PDE Model

Blending Coefficient Manipulation

System Outline

PDE-based Geometric Modeling System

Implicit PDE Model

- Generalized boundary constraints
 - Initial guess
 - RBF (Radial Basis Function) interpolation
 - Distance field approximation
 - Smoothing

Boundary Constraints for Implicit PDE

- Traditional boundary conditions (crosssectional constraints)
- Boundary constraints for shape blending
- Arbitrary sketch curves

 Initial guess: variational interpolation (RBF)
- Unorganized scattered data points

 Initial guess: distance field approximation

Traditional Boundary Conditions

STATE UN

Traditional Boundary Conditions

Κ

Boundary Constraints for Shape Blending

Boundary Conditions of Sketch Curves

Local RBF Method for Complex Model

S

BR

Κ

Boundary Conditions of Scattered Points

Manipulation of Implicit PDE Objects

- Sketch curve sculpting
 - Shape, intensity, and gradient directions
- Blending control coefficient manipulation
- Direct manipulations
 - Iso-contour
 - Region intensity
 - CSG tools
 - Gradient sculpting
 - Curvature manipulation

Sculpting of Sketch Curves

Changing Gradient Directions

Direct Intensity Manipulations

Direct CSG Manipulations

STATE UN

Gradient and Curvature Approximation

Gradient approximation

$$\nabla d(x, y, z) \approx (\frac{d_{i+1, j, k} - d_{i-1, j, k}}{2\Delta x}, \frac{d_{i, j+1, k} - d_{i, j-1, k}}{2\Delta y}, \frac{d_{i, j, k+1} - d_{i, j, k-1}}{2\Delta z})$$

- Curvature approximation
 Mean curvature:
 - $\nabla \cdot \nabla d(x, y, z)$

Gradient Manipulations

Curvature Manipulations

Summary of Implicit PDE Modeling

- General boundary constraints for shape design, reconstruction, blending, and recovery
- RBF method or distance field approximation for initial guess with generalized constraints
- Manipulation of implicit PDE objects
 - Sketch curve sculpting
 - Blending coefficient manipulation
 - Direct manipulation of implicit objects

Outline

- Motivation and contributions
- Background review
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Free-Form PDE Modeling and Deformation

- Formulations
 - Geometry
 - Intensity Integration
- Boundary constraints and manipulations
- Direct sculpting of PDE solid geometry
- Intensity-based free-form modeling and deformation

Interface of PDE Solids

Numerical Techniques

- Spectral approximation
- Finite-element method (FEM)
- Finite-difference method (FDM)
- Solving linear equation system
 - Iterative method
 - Multi-grid improvement

Finite Element Method

- Approximate the infinite problem by interpolation functions over sub-domains
 - Discretize the domain into sub-domains
 - Select the interpolation functions
 - Formulate the system of equations
 - Solve the equations for coefficients of the interpolation to approximate the solution

Typical Finite Elements

Finite Difference Method

- Divides the working space into discrete grids
- Samples the PDE at grid points with discretized approximations
- Forms a set of algebraic equations
- Uses iterative techniques and multi-grid algorithm to improve the performance

Working Space Discretization

Difference Equation Approximation

$$\begin{split} \frac{\partial^4 f_{i,j}}{\partial u^4} &= \frac{f_{i-2,j} + f_{i+2,j} - 4f_{i-1,j} - 4f_{i+1,j} + 6f_{i,j}}{\Delta u^4}, \\ \frac{\partial^4 f_{i,j}}{\partial v^4} &= \frac{f_{i,j-2} + f_{i,j+2} - 4f_{i,j-1} - 4f_{i,j+1} + 6f_{i,j}}{\Delta v^4}, \\ \frac{\partial^4 f_{i,j}}{\partial u^2 v^2} &= \frac{f_{i-1,j-1} + f_{i+1,j-1} + f_{i-1,j+1} + f_{i+1,j+1} - 2f_{i-1,j} - 2f_{i+1,j} - 2f_{i,j-1} - 2f_{i,j+1} + 4f_{i,j}}{\Delta u^2 \Delta v^2} \end{split}$$

Finite Difference Method

- Simple and easy for implementation
- Allows flexible and generalized boundary conditions and additional constraints
- Enables local control and direct manipulation
- Guarantees an approximate solution
- Time performance depends on resolution of discretization of working space

Solving Linear Equations

- Iterative methods
 - Gauss-Seidel iteration $AX = b, A = A_d - A_r, A_d X = A_r X + b$
 - $\mathbf{A}_{d}\mathbf{X}^{(n)} = \mathbf{A}_{r}\mathbf{X}^{(n-1)} + \mathbf{b}$
 - SOR iteration
 - Difference between approximation and the real solution
- Multi-grid method improvement
 - Starting from coarsest grids, linear interpolating the coarse solution to get initial guess of finer resolution

System Outline

PDE-based Geometric Modeling System

Free-Form PDE Solid Geometry

• PDE formulation:

$$\left(a^{2}(u,v,w)\frac{\partial^{2}}{\partial u^{2}}+b^{2}(u,v,w)\frac{\partial^{2}}{\partial v^{2}}+c^{2}(u,v,w)\frac{\partial^{2}}{\partial w^{2}}\right)^{2}\mathbf{X}(u,v,w)=\mathbf{0}$$

• Free-form deformation for explicit model:

Free-Form PDE Solid Geometry

- Boundary conditions:
 - Surfaces:

 $\mathbf{X}(0, v, w) = \mathbf{U}_0(v, w), \mathbf{X}(1, v, w) = \mathbf{U}_1(v, w),$ $\mathbf{X}(u, 0, w) = \mathbf{V}_0(u, w), \mathbf{X}(u, 1, w) = \mathbf{V}_1(u, w),$ $\mathbf{X}(u, v, 0) = \mathbf{W}_0(u, v), \mathbf{X}(u, v, 1) = \mathbf{W}_1(u, v)$

- Curve network:

 $\mathbf{X}(u, v_{i}, w_{j}) = \mathbf{U}_{ij}(u), v_{i} \in \{0, 1\} \text{ or } w_{j} \in \{0, 1\};$ $\mathbf{X}(u_{k}, v, w_{l}) = \mathbf{V}_{kl}(v), u_{k} \in \{0, 1\} \text{ or } w_{l} \in \{0, 1\};$ $\mathbf{X}(u_{r}, v_{s}, w) = \mathbf{W}_{rs}(w), u_{r} \in \{0, 1\} \text{ or } v_{s} \in \{0, 1\}$

PDE Solid from Boundary Surfaces

Boundary surfaces Corresponding PDE solid

PDE Solid from Boundary Surfaces

Boundary surfaces

Corresponding PDE solid

PDE Solids from Boundary Curves

Boundary Surface Sculpting

Curve editing on the boundary surface of u=1

Direct Manipulation of PDE Solids

Modifying selected regions on an embedded dataset

Direct Manipulation of PDE Solids

Directly moving a point on an embedded dataset

Geometric Free-Form Deformation

From a PDE solid cube

From a PDE solid sphere

Integrating Intensity Attributes

• Formulation:

$$\begin{pmatrix} \mathbf{a}^{2}(u,v,w)\frac{\partial^{2}}{\partial u^{2}} + \mathbf{b}^{2}(u,v,w)\frac{\partial^{2}}{\partial v^{2}} + \mathbf{c}^{2}(u,v,w)\frac{\partial^{2}}{\partial w^{2}} \end{pmatrix}^{2} \mathbf{P}(u,v,w) = \mathbf{0}, \\ \mathbf{P}(u,v,w) = \begin{pmatrix} \mathbf{X}(u,v,w)\\d(u,v,w) \end{pmatrix}, \\ \mathbf{a}(u,v,w) = \begin{bmatrix} a_{x}(u,v,w) & 0\\0 & a_{d}(u,v,w) \end{bmatrix}$$

Intensity Initialization

Intensity Initialization

Arbitrary Shape Blending

STNY

Arbitrary Shape Blending

Iso-surface Deformation

BROKK

Intensity Field Modification

Intensity Field Modification

TATE UNIVE

Free-Form PDE Modeling Summary

- Boundary surfaces or curve network as boundary constraints
- Boundary surfaces manipulation for solid deformation
- Free-form deformation for embedded datasets
- Sculpting toolkits for direction manipulation
- Integrating with implicit PDE for more general modeling
 - Arbitrary shape blending based on intensity
 - Intensity-based shape manipulation and deformation

Outline

- Motivation and contributions
- Related work
- PDE-based geometric modeling system
 - Physics-based PDE surfaces/displacements
 - PDE-based arbitrary mesh modeling
 - Implicit elliptic PDE model
 - PDE-based free-form modeling and deformation
- Conclusion

Conclusion

- Integrated PDE modeling system for parametric objects, arbitrary meshes, and implicit models
- Incorporation of popular geometric modeling techniques and representations
- Information recovery from partial input
- Physical properties for dynamic behavior
- Various modeling toolkits for direct manipulation and interactive sculpting
- Shape design, recovery, abstraction, and modification in a single framework

Future Work

- Geometric modeling
 - Shape design, morphing, reconstruction
- Image processing and medical imaging
 - Enhancement, denoising, medical data reconstruction
- Simulation and animation
 - Natural phenomena simulation, medical simulation

Related Publications

- Haixia Du and Hong Qin. Dynamic PDE-Based Surface Design Using Geometric and Physical Constraints. Accepted by *Graphical Models*, 2003.
- Haixia Du and Hong Qin. A Shape Design System Using Volumetric Implicit PDEs. Accepted by CAD Special Issue of the ACM Symposium on Solid Modeling and Applications, 2003.
- Haixia Du and Hong Qin. PDE-based Free-Form Deformation of Solid Objects. In preparation for journal submission, 2004.
- Haixia Du and Hong Qin. PDE-based Skeletonization and Propagation for Abitrary Topological Shapes. In preparation for journal submission, 2004.
- Haixia Du and Hong Qin. Medial Axis Extraction and Shape Manipulation of Solid Objects Using Parabolic PDEs. Accepted by *The Nineth ACM Symposium on Solid Modeling and Applications 2004*.
- Haixia Du and Hong Qin. Interactive Shape Design Using Volumetric Implicit PDEs. In Proceedings of *The Eighth ACM Symposium on Solid Modeling and Applications 2003*, p235-246.
- Haixia Du and Hong Qin. Integrating Physics-based Modeling with PDE Solids for Geometric Design. In Proceedings of *Pacific Graphics 2001*, p198-207.
- Haixia Du and Hong Qin. Dynamic PDE Surfaces with Flexible and General Constraints. In Proceedings of *Pacific Graphics 2000*, p213-222,
- Haixia Du and Hong Qin. Direct Manipulation and Interactive Sculpting of PDE Surfaces. In Proceedings of *EuroGraphics 2000*, pC261-C270.

Acknowledgements

- Committee members
- Members of VisLab

