CSE 504: Compiler Design

Static Single Assignment (SSA) Form

Pradipta De
pradipta.de@sunykorea.ac.kr
Current Topic

- Iterative Data Flow Analysis
- LiveOut sets
- Static Single Assignment (SSA) Form
Motivation

• Many dataflow problems require
 – The location where a defined variable is used
 – The location where a used variable is defined

• Can be captured using a def-use chain
 – Data structure that keeps
 • A list of pointers to all the use sites of variables that are defined there
 • A list of pointers to all definition sites of the variables defined there

• With N uses and M definitions, space and time complexity will be O(N.M) for def-use chains
SSA Form

- Each variable is assigned exactly one definition in the program text
 - Analysis becomes simpler with only one definition
 - SSA form needs space linear to size of program
 - Simplifies unrelated use of same variable

```plaintext
for i ← 1 to N do A[i] ← 0
for i ← 1 to M do s ← s + B[i]
```

Although i is used in both loops, the intermediate code temporary variable can rename it to different names while maintaining program correctness.
Why do we need SSA form?

Convert Straight-line code to use new variables

When two control paths merge, then how to assign new variable name?

Introduce a notation Φ that represents that two variables merge at some point
Although \(c_1 \leftarrow c_2 + b_2 \) is recomputed every time in the loop, the assignment statement does not change \(\Rightarrow \) the assignment is “static” (not dynamic)

Hence the name: **Static** Single Assignment (SSA) form
Convert a Program to SSA form

- Add ϕ functions
- Rename all definitions and the use of the variables using subscripts

Program:

```
i ← 1
j ← 1
k ← 0
while k < 100
  if j < 20
    j ← i
    k ← k + 1
  else
    j ← k
    k ← k + 2
return j
```

CFG:

```
1. i ← 1
   j ← 1
   k ← 0
2. if k < 100
3. if j < 20
4. return j
5. j ← i
   k ← k + 1
6. j ← k
   k ← k + 2
```

ϕ functions inserted:

```
1. i ← 1
   j ← 1
   k ← 0
2. if k < 100
3. if j < 20
4. return j
5. j ← i
   k ← k + 1
6. j ← k
   k ← k + 2
```

Variables Renamed:

```
1. i_1 ← 1
   j_1 ← 1
   k_1 ← 0
2. if k_2 < 100
3. if j_2 < 20
4. return j_2
5. j_3 ← i_1
   k_3 ← k_2 + 1
6. j_5 ← k_2
   k_5 ← k_2 + 2
```

CSE 504: Compiler Design
How to insert ϕ functions

• Add a ϕ function for every variable at join points
 – Unnecessary if a variable is reached by the same definition along both edges

• There should be a ϕ function for a variable a at node z of the flow graph, when all of the following conditions are true
 – 1. There is a block x containing a definition of a,
 – 2. There is a block y (with $y = x$) containing a definition of a,
 – 3. There is a nonempty path P_{xz} of edges from x to z,
 – 4. There is a nonempty path P_{yz} of edges from y to z,
 – 5. Paths P_{xz} and P_{yz} do not have any node in common other than z, and
 – 6. The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other
Simple method to add ϕ function

\[
\text{while there are nodes } x, y, z \text{ satisfying conditions 1–5 and } z \text{ does not contain a } \phi\text{-function for } a \\
\text{do insert } a \leftarrow \phi(a, a, \ldots, a) \text{ at node } Z
\]

The Φ function has as many ‘a’ arguments as there are predecessors of node z

The algorithm must examine every triple of nodes $<x, y, z>$ ➔ not efficient
The **dominance frontier** of a node x is the set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.

x strictly dominates w if x dominates w and $x \neq w$.

5 dominates all the nodes in the grey area (NOTE: d dominates n if every path from start node to n passes through d)

Dominance frontier of 5 is \{4, 5, 12, 13\}

Whenever node x contains a definition of some variable a, then any node z in the dominance frontier of x needs a φ-function for a

Any node in the dominance frontier of n is also a point of convergence of non intersecting paths, one from n and one from the root node
Computing Dominance Frontier

Definitions:
1. Given a node \(n \) in a flow graph, the set of nodes that strictly dominate \(n \) is given by \((\text{Dom}(n) - n)\). The node in that set that is closest to \(n \) is called \(n \)'s immediate dominator, denoted \(\text{IDom}(n) \).
2. Dominator Tree: contains all nodes of the flow graph, but there is an edge from \(m \) to \(n \), if \(m \) is \(\text{DOM}(n) \).

<table>
<thead>
<tr>
<th>(B)</th>
<th>(B_0)</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
<th>(B_4)</th>
<th>(B_5)</th>
<th>(B_6)</th>
<th>(B_7)</th>
<th>(B_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{DOM})</td>
<td>({0})</td>
<td>({0,1})</td>
<td>({0,1,2})</td>
<td>({0,1,3})</td>
<td>({0,1,3,4})</td>
<td>({0,1,5})</td>
<td>({0,1,5,6})</td>
<td>({0,1,5,7})</td>
<td>({0,1,5,8})</td>
</tr>
<tr>
<td>(\text{IDOM})</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Given a node \(n \) in the dominator tree, \(\text{IDom}(n) \) is just its parent in the tree.

Algorithm to compute Dominance Frontier uses the Dominator Tree
Efficiently Inserting ϕ functions

- A definition of x in block b forces a ϕ-function at every node in $DF(b)$
- ϕ-function is a new definition of x \Rightarrow it may force the insertion of additional ϕ-function
- A variable that is live within a single block can never have a live ϕ-function
Renaming

- After φ-functions are placed, walk the dominator tree and rename different definitions
- In straight-line program,
 - Rename all definitions of a
 - Rename each use of a variable, say x, to the most recent definition of x
- In control-flow with branches and joins,
 - Each use of x is renamed to the closest definition d of x that is above x in the dominator tree.
- The algorithm for renaming works by,
 - Traversing the dominator tree and remembers for each variable the most recently defined version of each variable
 - It uses a separate stack data structure for each variable
 - It takes time proportional to the size of the program
Convert to SSA Form using DF

\[i \leftarrow 1 \]
\[j \leftarrow 1 \]
\[k \leftarrow 0 \]

while \(k < 100 \)
 if \(j < 20 \)
 \[j \leftarrow i \]
 \[k \leftarrow k + 1 \]
 else
 \[j \leftarrow k \]
 \[k \leftarrow k + 2 \]
return \(j \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(DF(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
</tr>
<tr>
<td>3</td>
<td>{2}</td>
</tr>
<tr>
<td>4</td>
<td>{}</td>
</tr>
<tr>
<td>5</td>
<td>{7}</td>
</tr>
<tr>
<td>6</td>
<td>{7}</td>
</tr>
<tr>
<td>7</td>
<td>{2}</td>
</tr>
</tbody>
</table>
Application of SSA Form in Optimization

- **Dead Code Elimination**
 - A variable is live at its site of definition if and only if its list of uses is not empty.
 - Delete variable v with no use

- **Simple Constant Propagation**
 - If there is a statement of the form $v \leftarrow c$ for some constant c, then replace any use of v with c.
 - Any φ-function of the form $v \leftarrow \varphi(c_1,c_2,\ldots,c_n)$, where all c_is are equal, can be replaced by $v \leftarrow c$.
Simple Constant Propagation

\[W \leftarrow \text{a list of all statements in the SSA program} \]

\[\text{while } W \text{ is not empty} \]

\[\begin{align*}
\text{remove some statement } S \text{ from } W \\
\text{if } S \text{ is } v \leftarrow \phi(c, c, \ldots, c) \text{ for some constant } c \\
\text{replace } S \text{ by } v \leftarrow c \\
\text{if } S \text{ is } v \leftarrow c \text{ for some constant } c \\
\text{delete } S \text{ from the program} \\
\text{for each statement } T \text{ that uses } v \\
\text{substitute } c \text{ for } v \text{ in } T \\
W \leftarrow W \cup \{T\}
\end{align*} \]

More transformations can be incorporated in this algorithm:

- **Copy Propagation**: Replace a single argument \(\phi \)-function with the LHS value
- **Constant Folding**: For a statement \(x \leftarrow a \cdot b \), where \(a \) and \(b \) are constants, evaluate \(c \leftarrow a \cdot b \) and replace \(x \) with \(c \)
- **Constant Conditions**: If conditional branch conditions are constants, then replace code with labeled jumps.
- **Unreachable Code**: Deleting a predecessor may cause a block to be unreachable \(\Rightarrow \) delete all statements in the unreachable block
Summary

• Basic notion of SSA
 – Combine dataflow and control flow analysis using a single structure
• Techniques to convert program to SSA form
• Simple optimizations using SSA form