Bootstrap Process

Pradipta De
pradipta.de@sunykorea.ac.kr
Booting (Pictorially)
Booting Overview

• BIOS: Basic Input/Output System
 – POST (Power-on Self Test)
 – Loads Bootloader

• Bootloader:
 – Loads the Operating System into memory
 – Implementation, GRUB (Grand Unified BootLoader)

• OS: starts the first user process /sbin/init
 – Checks inittab and triggers different runlevels
Power On \(\rightarrow\) BIOS

- When powered on, main memory is empty
- CPU begins execution by accessing a pre-defined address, 0xffff:fff0, which is mapped to the ROM
- BIOS (firmware) is loaded into memory
 - Addressing is real mode
 - Real mode address is \((\text{seg} \times 16 + \text{offset})\)
 - Provides device drivers for every hardware on the computer, like keyboard, video card, system board, memory, and other I/O devices
- BIOS checks the hardware devices – POST step – and then initializes the hardware
- BIOS locates the bootable device and loads the MBR
 - On disk, the sector 0 is called the Master Boot Record (MBR) and contains address of the bootloader for the active partition
 - MBR: Windows MBR, LILO or GRUB on Linux, even a virus 😞
Master Boot Record

MBR contains:
1. Master Boot Code/boot loader code (446 bytes)
2. Drive’s Partition Table (4 16-byte entries)
3. MBR signature (2 bytes)

Source: http://duartes.org/gustavo/blog/post/how-computers-boot-up/
Bootloader

- BIOS loads the MBR into memory location 0x7c00 and starts executing
 - MBR has information about multiple partitions
 - First sector of a partition is the boot sector

- Bootloader is a two stage process
 - MBR executes the first stage by loading another sector from disk with additional bootstrap code
 - Second stage loads the kernel of the OS
Bootloader → Kernel Initialization

• Bootloader performs
 – Loads OS kernel into memory
 – Initializes RAMdisk
 – Transfer execution to kernel

• Once initialized, the kernel performs
 – Scans hardware configs, initialize device drivers, and puts CPU into protected mode with virtual memory initialized
 – Mount root filesystem
 – Spawn the first user process (pid=1) -- /sbin/init
 – Init process executes the scripts to activate different subsystems
OS booted (logical view)

User Applications

Standard Libs (shell, commands, system lib)

System call interface

Process Management
- Scheduling
- Synchronization

Memory Management
- Virtual Memory
- Caching

FileSystems

Network Subsystem

Kernel interface to hardware (device drivers)

Devices (keyboard, mouse, memory Controllers)
Putting It Together

- How does the bootstrap process works?
 - Understand the steps involved from power on till the OS kernel takes over