Recursion

CSE 114, Computer Science 1
SUNY Korea

Pradipta De
pradipta.de@sunykorea.ac.kr

Acknowledgement for the slides: Dr. Paul Fodor (CS Stony Brook)
Motivation

• Suppose you want to find all the files under a directory that contains a particular word.

• The directory contains subdirectories that also contain subdirectories, and so on.

• The solution is to use recursion by searching the files in the subdirectories recursively.
Computing Factorial

\[n! = 1 \times 2 \times 3 \times 4 \times 5 \times \ldots \times (n-1) \times n \]
\[(n-1)! \quad = 1 \times 2 \times 3 \times 4 \times 5 \times \ldots \times (n-1) \]
So:
\[n! = n \times (n-1)! \]

factorial(0) = 1;
factorial(n) = n \times factorial(n-1);
import java.util.Scanner;

public class ComputeFactorial {
 public static void main(String[] args) {
 // Create a Scanner
 Scanner input = new Scanner(System.in);
 System.out.print("Enter a non-negative integer: ");
 int n = input.nextInt();
 // Display factorial
 System.out.println("Factorial of "+n+" is "+factorial(n));
 }
 /** Return the factorial for a specified number */
 public static long factorial(int n) {
 if (n == 0) // Base case
 return 1;
 else
 return n * factorial(n - 1); // Recursive call
 }
}
Computing Factorial

\[
\begin{align*}
\text{factorial}(3) & = \\
\text{factorial}(0) & = 1; \\
\text{factorial}(n) & = n \times \text{factorial}(n-1);
\end{align*}
\]
Computing Factorial

\[
\text{factorial}(3) = 3 \times \text{factorial}(2)
\]

\[
\text{factorial}(0) = 1;
\]

\[
\text{factorial}(n) = n \times \text{factorial}(n-1);
\]
Computing Factorial

\[\text{factorial}(3) = 3 \times \text{factorial}(2) \]
\[= 3 \times (2 \times \text{factorial}(1)) \]

\[\text{factorial}(0) = 1; \]
\[\text{factorial}(n) = n \times \text{factorial}(n-1); \]
Computing Factorial

\[
\text{factorial}(3) = 3 \times \text{factorial}(2)
\]

\[
= 3 \times (2 \times \text{factorial}(1))
\]

\[
= 3 \times (2 \times (1 \times \text{factorial}(0)))
\]

\[
\text{factorial}(0) = 1;
\]

\[
\text{factorial}(n) = n \times \text{factorial}(n-1);
\]
Computing Factorial

\[
\text{factorial}(3) = 3 \times \text{factorial}(2) \\
= 3 \times (2 \times \text{factorial}(1)) \\
= 3 \times (2 \times (1 \times \text{factorial}(0))) \\
= 3 \times (2 \times (1 \times 1))
\]

factorial(0) = 1;

factorial(n) = n \times \text{factorial}(n-1);
Computing Factorial

\[
\text{factorial}(3) = 3 \times \text{factorial}(2) = 3 \times (2 \times \text{factorial}(1)) = 3 \times (2 \times (1 \times \text{factorial}(0))) = 3 \times (2 \times (1 \times 1)) = 3 \times (2 \times 1)
\]

\[
\text{factorial}(0) = 1; \quad \text{factorial}(n) = n \times \text{factorial}(n-1);
\]
Computing Factorial

\[
\text{factorial}(3) = 3 \times \text{factorial}(2) \\
= 3 \times (2 \times \text{factorial}(1)) \\
= 3 \times (2 \times (1 \times \text{factorial}(0))) \\
= 3 \times (2 \times (1 \times 1)) \\
= 3 \times (2 \times 1) \\
= 3 \times 2
\]

\[
\text{factorial}(0) = 1; \\
\text{factorial}(n) = n \times \text{factorial}(n-1);
\]
factorial(3) = 3 * factorial(2)
= 3 * (2 * factorial(1))
= 3 * (2 * (1 * factorial(0)))
= 3 * (2 * (1 * 1)))
= 3 * (2 * 1)
= 3 * 2
= 6
Trace Recursive factorial

Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 4: executes factorial(0)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 9: return 24

Executes factorial(4)
Execute factorial(3)

Return 24

Main method

Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 4: executes factorial(0)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 9: return 24
Trace Recursive factorial

Step 0: executes factorial(4)
Step 1: executes factorial(3)
Step 2: executes factorial(2)
Step 3: executes factorial(1)
Step 4: executes factorial(0)
Step 5: return 1
Step 6: return 1
Step 7: return 2
Step 8: return 6
Step 9: return 24

Executes factorial(2)
Trace Recursive factorial

Step 0: executes factorial(4)
return 4 * factorial(3)

Step 1: executes factorial(3)
return 3 * factorial(2)

Step 2: executes factorial(2)
return 2 * factorial(1)

Step 3: executes factorial(1)
return 1 * factorial(0)

Step 4: executes factorial(0)
return 1

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 9: return 24
Trace Recursive factorial

Main method

Space Required for factorial(4)

Space Required for factorial(3)

Space Required for factorial(2)

Space Required for factorial(1)

Stack

Executes factorial(0)

Space Required for factorial(0)

Space Required for factorial(1)

Space Required for factorial(2)

Space Required for factorial(3)

Space Required for factorial(4)

Main method

Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1: executes factorial(3)

return 3 * factorial(2)

Step 2: executes factorial(2)

return 2 * factorial(1)

Step 3: executes factorial(1)

return 1 * factorial(0)

Step 4: executes factorial(0)

return 1

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 9: return 24
Trace Recursive factorial

Step 9: return 24
Step 8: return 6
Step 7: return 2
Step 6: return 1
Step 5: return 1

factorial(4)

return 4 * factorial(3)

Step 0: executes factorial(4)

return 3 * factorial(2)

Step 1: executes factorial(3)

return 2 * factorial(1)

Step 2: executes factorial(2)

return 1 * factorial(0)

Step 3: executes factorial(1)

return 1

Step 4: executes factorial(0)

return 1

Space Required for factorial(0)
Space Required for factorial(1)
Space Required for factorial(2)
Space Required for factorial(3)
Main method

Stack

3

Space Required for factorial(3)
Space Required for factorial(2)
Space Required for factorial(1)
Space Required for factorial(0)

returns 1
return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24

Step 8: return 6

Step 7: return 2

Step 6: return 1

Step 5: return 1

return 1

Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 4: executes factorial(0)

returns factorial(0)

Trace Recursive factorial

Main method

Stack

Space Required for factorial(4)

Space Required for factorial(3)

Space Required for factorial(2)

Space Required for factorial(1)

Main method
Trace Recursive factorial

Step 9: return 24
Step 8: return 6
Step 7: return 2
Step 6: return 1
Step 5: return 1
Step 4: executes factorial(0)

return 2 * factorial(1)
return 3 * factorial(2)
return 4 * factorial(3)
return factorial(4)

Stack

Main method

Space Required for factorial(4)
Space Required for factorial(3)
Space Required for factorial(2)

returns factorial(1)
Trace Recursive factorial

Step 9: return 24
Step 8: return 6
Step 7: return 2
Step 6: return 1
Step 5: return 1
Step 4: executes factorial(0)
Step 3: executes factorial(1)
Step 2: executes factorial(2)
Step 1: executes factorial(3)
return 4 * factorial(3)
return 3 * factorial(2)
return 2 * factorial(1)
return 1 * factorial(0)
return 1
returns factorial(2)

Stack
- Space Required for factorial(4)
- Space Required for factorial(3)
- Main method
Trace Recursive factorial

Step 9: return 24
Step 8: return 6
Step 7: return 2
Step 6: return 1
Step 5: return 1
Step 4: executes factorial(0)
Step 3: executes factorial(1)
Step 2: executes factorial(2)
Step 1: executes factorial(3)
Step 0: executes factorial(4)

returns factorial(3)
Trace Recursive factorial

Step 9: return 24
- Step 0: executes factorial(4)
 - return 4 * factorial(3)
- Step 1: executes factorial(3)
 - return 3 * factorial(2)
- Step 2: executes factorial(2)
 - return 2 * factorial(1)
- Step 3: executes factorial(1)
 - return 1 * factorial(0)
- Step 4: executes factorial(0)
 - return 1
- Step 5: return 1
- Step 6: return 1
- Step 7: return 2
- Step 8: return 6
- return factorial(4)
Fibonacci Numbers

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89...
indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;
fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); for integers index >=2

\[
\begin{align*}
\text{fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1)} \\
= (1 + 0) + \text{fib(1)} = 1 + \text{fib(1)} = 1 + 1 = 2
\end{align*}
\]
import java.util.Scanner;
public class ComputeFibonacci {
public static void main(String args[]) {
 // Create a Scanner
 Scanner input = new Scanner(System.in);
 System.out.print("Enter an index for the Fibonacci number: ");
 int index = input.nextInt();
 // Find and display the Fibonacci number
 System.out.println("Fibonacci(" + index + ") is " + fib(index));
}
/** The method for finding the Fibonacci number */
public static long fib(long index) {
 if (index == 0) // Base case
 return 0;
 else if (index == 1) // Base case
 return 1;
 else // Reduction and recursive calls
 return fib(index - 1) + fib(index - 2);
}
}
Fibonacci Numbers: Stack Trace

Starts here
```java
import java.util.Scanner;

public class ComputeFibonacciTabling {  // NO REPEATED COMPUTATION
    public static void main(String args[]) {
        Scanner input = new Scanner(System.in);
        System.out.print("Enter an index for the Fibonacci number: ");
        int index = input.nextInt();
        f = new long[n];
        System.out.println("Fibonacci(" + index + ") is " + fib(index));
    }

    public static long[] f;
    public static long fib(long index) {
        if (index == 0) return 0;
        if (index == 1) {
            f[1]=1;
            return 1;
        }
        else  // Reduction and recursive calls
            f[index] = fib(index - 1) + fib(index - 2);
        return f[index];
    }
}
```

Avoids Duplicate Computation
Characteristics of Recursion

All recursive methods have the following characteristics:

- One or more base cases (the simplest case) are used to stop recursion.
- Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.

In general, to solve a problem using recursion, you break it into subproblems.

- If a subproblem resembles the original problem, you can apply the same approach to solve the subproblem recursively.
- This subproblem is almost the same as the original problem in nature with a smaller size.
What is wrong with the code?

```java
public class Test {
    public static void main(String[] args) {
        xMethod(1234567);
    }

    public static void xMethod(double n) {
        if (n != 0) {
            System.out.print(n);
            xMethod(n / 10);
        }
    }
}
```

The base case or terminating condition is defined with respect to a double value becoming 0, double value can be imprecise ➔ may never terminate

```java
public class Test {
    public static void main(String[] args) {
        Test test = new Test();
        System.out.println(test.toString());
    }

    public Test() {
        Test test = new Test();
    }
}
```

There are repeated calls to the constructor ➔ infinite loop ➔ StackOverflow Exception
Problem Solving Using Recursion

- Print a message for \(n \) times
- break the problem into two subproblems:
 - print the message one time and
 - print the message for \(n-1 \) times
 - This new problem is the same as the original problem with a smaller size.
 - The base case for the problem is \(n == 0 \).

```java
public static void nPrintln(String message, int times) {
    if (times >= 1) {
        System.out.println(message);
        nPrintln(message, times - 1);
    } // The base case is times == 0
}
```
Think Recursively

• The palindrome problem (e.g., “eye”, “racecar”):

```java
public static boolean isPalindrome(String s) {
    if (s.length() <= 1) // Base case
        return true;
    else if (s.charAt(0) != s.charAt(s.length() - 1))
        // Base case
        return false;
    else
        return isPalindrome(s.substring(1, s.length() - 1));
}
```
Recursive Helper Methods

- The preceding recursive `isPalindrome` method is not efficient, because it creates a new string for every recursive call.
- To avoid creating new strings, use a helper method:

```java
public static boolean isPalindrome(String s) {
    return isPalindrome(s, 0, s.length() - 1);
}

public static boolean isPalindrome(String s, int low, int high) {
    if (high <= low) // Base case
        return true;
    else if (s.charAt(low) != s.charAt(high)) // Base case
        return false;
    else
        return isPalindrome(s, low + 1, high - 1);
}
```
Recursive Selection Sort

1. Find the smallest number in the list and swap it with the first number.
2. Ignore the first number and sort the remaining smaller list recursively.
public class SelectionSort {
 public static void sort(double[] list) {
 int low = 0, high = list.length - 1;
 while (low < high) {
 // Find the smallest number and its index in list(low .. high)
 int indexOfMin = low;
 double min = list[low];
 for (int i = low + 1; i <= high; i++)
 if (list[i] < min) {
 min = list[i];
 indexOfMin = i;
 }
 // Swap the smallest in list(low ... high) with list(low)
 list[indexOfMin] = list[low];
 list[low] = min;
 low = low + 1;
 }
 }

 public static void main(String[] args) {
 double[] list = { 2, 1, 3, 1, 2, 5, 2, -1, 0 };
 sort(list);
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 }
}
public class RecursiveSelectionSort {
 public static void sort(double[] list) {
 sort(list, 0, list.length - 1); // Sort the entire list
 }
 public static void sort(double[] list, int low, int high) {
 if (low < high) {
 // Find the smallest number and its index in list(low .. high)
 int indexOfMin = low;
 double min = list[low];
 for (int i = low + 1; i <= high; i++) {
 if (list[i] < min) {
 min = list[i];
 indexOfMin = i;
 }
 }
 // Swap the smallest in list(low .. high) with list(low)
 list[indexOfMin] = list[low];
 list[low] = min;
 // Sort the remaining list(low+1 .. high)
 sort(list, low + 1, high);
 }
 }
 public static void main(String[] args) {
 double[] list = {2, 1, 3, 1, 2, 5, 2, -1, 0};
 sort(list);
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 }
}
Recursive Binary Search

• Case 1: If the key is less than the middle element, \textit{recursively} search the key in the first half of the array.

• Case 2: If the key is equal to the middle element, the search ends with a match (Base case).

• Case 3: If the key is greater than the middle element, \textit{recursively} search the key in the second half of the array.
public class BinarySearch {
 public static int binarySearch(int[] list, int key) {
 int low = 0;
 int high = list.length - 1;
 while (low <= high) {
 int mid = (low + high) / 2;
 if (key < list[mid])
 high = mid - 1;
 else if (key == list[mid])
 return mid;
 else
 low = mid + 1;
 }
 // The list has been exhausted without a match
 return -low - 1;
 }
 public static void main(String[] args) {
 int[] list = {1, 2, 3, 4, 5, 6, 10};
 System.out.print(binarySearch(list, 6));
 }
}
public class RecursiveBinarySearch {
 public static int recursiveBinarySearch(int[] list, int key) {
 int low = 0;
 int high = list.length - 1;
 return recursiveBinarySearch(list, key, low, high);
 }
 public static int recursiveBinarySearch(int[] list, int key, int low, int high) {
 if (low > high) // The list has been exhausted without a match
 return -low - 1;
 int mid = (low + high) / 2;
 if (key < list[mid])
 return recursiveBinarySearch(list, key, low, mid - 1);
 else if (key == list[mid])
 return mid;
 else
 return recursiveBinarySearch(list, key, mid + 1, high);
 }
}
Directory Size

- **Example**: find the size of a directory.
- The size of a directory is the sum of the sizes of all files in the directory.
- A directory may contain subdirectories.
- Suppose a directory contains files and subdirectories

\[
\text{size}(d) = \text{size}(f_1) + \text{size}(f_2) + \ldots + \text{size}(f_m) + \text{size}(d_1) + \text{size}(d_2) + \ldots + \text{size}(d_n)
\]
import java.io.File;
import java.util.Scanner;

public class DirectorySize {
 public static void main(String[] args) {
 System.out.print("Enter a directory or a file: ");
 Scanner input = new Scanner(System.in);
 String directory = input.nextLine();
 System.out.println(getSize(new File(directory)) + " bytes");
 }

 public static long getSize(File file) {
 long size = 0; // Store the total size of all files
 if (file.isDirectory()) {
 File[] files = file.listFiles(); // All files and subdirectories
 for (int i = 0; i < files.length; i++) {
 size += getSize(files[i]); // Recursive call
 }
 } else { // Base case
 size += file.length();
 }
 return size;
 }
}
Towers of Hanoi

- There are \(n \) disks labeled 1, 2, 3, \ldots, \(n \), and three towers labeled A, B, and C.
- No disk can be on top of a smaller disk at any time.
- All the disks are initially placed on tower A.
- Only one disk can be moved at a time, and it must be the top disk on the tower.

Difficult to solve without recursion
Step 1: Move disk 1 from A to B

Step 2: Move disk 2 from A to C

Step 3: Move disk 1 from B to C

Step 4: Move disk 3 from A to B

Step 5: Move disk 1 from C to A

Step 6: Move disk 2 from C to B

Step 7: Move disk 1 from A to B
The Towers of Hanoi problem can be decomposed into three subproblems:

1. Step 1: Move the first $n-1$ disks from A to C recursively.
2. Move disk n from A to B.
3. Step 3: Move $n-1$ disks from C to B recursively.
Solution to Towers of Hanoi

• Move the first $n-1$ disks from A to C with the assistance of tower B.
• Move disk n from A to B.
• Move $n-1$ disks from C to B with the assistance of tower A.

• Base case: $n=1$
 • move the disk from A to B
import java.util.Scanner;

public class TowersOfHanoi {

 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 System.out.print("Enter number of disks: ");
 int n = input.nextInt(); System.out.println("The moves are: ");
 moveDisks(n, 'A', 'B', 'C');
 }

 public static void moveDisks(int n, char fromTower, char toTower, char auxTower) {
 if (n == 1) // Stopping condition
 System.out.println("Move disk " + n + " from " + fromTower + " to " + toTower);
 else {
 moveDisks(n - 1, fromTower, auxTower, toTower);
 System.out.println("Move disk " + n + " from " + fromTower + " to " + toTower);
 moveDisks(n - 1, auxTower, toTower, fromTower);
 }
 }
}

GCD (Greatest Common Divisor)

gcd(2, 3) = 1
gcd(2, 10) = 2
gcd(25, 35) = 5
gcd(205, 5) = 5

gcd(m, n):
- Approach 1: Brute-force, start from \(\min(n, m) \) down to 1, to check if a number is common divisor for both \(m \) and \(n \), if so, it is the greatest common divisor.
- Approach 2: Euclid’s algorithm
- Approach 3: Recursive method
Approach 1: GCD

```java
public static int gcd(int m, int n) {
    int min = n;
    if (m < n) min = m;
    for (int i = min; i > 1; i--)
        if (m % i == 0 && n % i == 0)
            return i;
    return 1;
}
```
Approach 2: Euclid’s algorithm

// Get absolute value of m and n;
t1 = Math.abs(m); t2 = Math.abs(n);
// r is the remainder of t1 divided by t2
r = t1 % t2;
while (r != 0) {
 t1 = t2;
 t2 = r;
 r = t1 % t2;
}
// When r is 0, t2 is the greatest
// common divisor between t1 and t2
return t2;
Approach 3: Recursive Method

\[
gcd(m, n) = n \quad \text{if} \quad m \% n = 0
\]
\[
gcd(m, n) = gcd(n, m \% n); \quad \text{otherwise}
\]

```java
public static int gcd(int m, int n) {
    if (m % n == 0) return n;
    else return gcd(n, m % n);
}
```
Tail Recursion

Tail recursion means that there is no pending operation on return from a recursive call.

Tail recursion

```java
public class ComputeFactorialTailRecursion {  
    /** Return the factorial for a specified number */
    public static long factorial(int n) {  
        return factorial(n, 1); // Call auxiliary method
    }

    /** Auxiliary tail-recursive method for factorial */
    private static long factorial(int n, int result) {  
        if (n == 0)  
            return result;
        else  
            return factorial(n - 1, n * result); // Recursive call
    }
}
```

Non-Tail recursion

```java
public class ComputeFactorialNonTailRecursion {  
    /** Return the factorial for a specified number */
    public static long factorial(int n) {  
        // Non-tail recursion example
        return factorial(n - 1, n * result) + 1; // Recursive call
    }
}
```