deBGR: An Efficient and Near-Exact Representation of the Weighted de Bruijn Graph

Prashant Pandey1, Michael A. Bender1, Rob Johnson12, and Rob Patro1

1Stony Brook University, NY USA, 2VMWare Inc USA
de Bruijn graphs are ubiquitous

A de Bruijn graph is the data representation at the heart of a lot of sequence analyses.
de Bruijn graph (dBG)

A **read** is a string of bases over the DNA alphabet A, C, T, and G.

A **k-mer** is a substring of length k. Here, k is 5.
de Bruijn graph (dBG)

Read: ….CAAAAA….

Prefix (k-1)-mer

Suffix (k-1)-mer

An edge is a k-mer connecting its two k-1 substrings.
de Bruijn graph (dBG)

Read 1: ….CAAAAAT….
Read 2: ….CAAAAC….
Weighted de Bruijn graphs

- Topology-only de Bruijn graphs are not adequate for transcriptome assembly.

- Abundance information of each k-mer is critical for transcriptome assembly.
Weighted de Bruijn graphs

- Topology-only de Bruijn graphs are not adequate for transcriptome assembly.
- Abundance information of each k-mer is critical for transcriptome assembly.

Weighted de Bruijn graphs pose an extra obligation and opportunity.
A weighted de Bruijn graph associates each edge (k-mer) its abundance in the underlying dataset.
Measuring dBG representation

de Bruijn graphs store only k-mers, memory usage scales with the number of unique k-mers.

- **Human genome (few Billion k-mers):** >100 GB
- **Soil metagenomes (few Million species):** Few TBs

Beefy server machines are needed to perform weighted de Bruijn graph analysis.
WdBG as a multiset

<table>
<thead>
<tr>
<th>MultiSet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TCCG, 2</td>
<td></td>
</tr>
<tr>
<td>CCGC, 9</td>
<td></td>
</tr>
<tr>
<td>CCGA, 6</td>
<td></td>
</tr>
<tr>
<td>CGCT, 5</td>
<td></td>
</tr>
<tr>
<td>AGCT, 2</td>
<td></td>
</tr>
</tbody>
</table>
Past work on Probabilistic dBG representation

- **Pell et al. 2012**: Represented dBG using a Bloom filter.
Past work on Probabilistic dBG representation

• **Pell et al. 2012**: Represented dBG using a Bloom filter.

• **Pellow et al. 2016**: Showed how to exploit redundancy in k-mers to reduce the false-positive rate of the Bloom filter without increasing the space.
Past work on Probabilistic dBG representation

- **Pell et al. 2012**: Represented dBG using a Bloom filter.

- **Pellow et al. 2016**: Showed how to exploit redundancy in k-mers to reduce the false-positive rate of the Bloom filter without increasing the space.

- **Chikhi and Rikz 2013 and Salikhov et al. 2013**: They showed how to convert a probabilistic representation into an exact one using a small and exact auxiliary data structure.
A counting filter is a lossy representation of a *multiset*. Operations: inserts, count, and delete. Generalizes AMQs. False positives \approx over-counts. Counting quotient filter [Pandey et al. 2017]
Probabilistic weighted de Bruijn graph

[Counting quotient filter]

TCCG, 4
CCGC, 9
CCGA, 6
CGCT, 5
AGCT, 4
GAGC, 2
CGAG, 1
GAGT, 1
AAAA, 1

[Abundance error]

[Topological errors]
This paper: deBGR

• An **exact representation** of the weighted de Bruijn graph.

• An algorithm that uses counts in the approximate representation in an AMQ to iteratively **self-correct approximation errors**.

• It corrects both kinds of errors, **abundance and topological errors** and supports **membership queries**.

• It **supports deletion** of k-mers from the structure.

• It takes 18-28% more space than the approximate representation and has **no errors**.
A weighted de Bruijn graph invariant

Read 1: ….CAAAAAT….
Read 2: ….CAAAAAC…..

Total incoming abundance = Total outgoing abundance
A weighted de Bruijn graph invariant

Total incoming abundance = Total outgoing abundance*

*After accounting for read starts and ends.
WdBG representation in deBGR

Read 1: CAAAAAT
Read 2: CAAAAAC

<table>
<thead>
<tr>
<th>Edge</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAAAA</td>
<td>2</td>
</tr>
<tr>
<td>AAAAT</td>
<td>1</td>
</tr>
<tr>
<td>AAAAC</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Start reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAAA</td>
<td>2</td>
</tr>
<tr>
<td>CAAAA</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>End reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAT</td>
<td>1</td>
</tr>
<tr>
<td>AAAC</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram showing nodes and edges with read abundance and counts.
WdBG representation in deBGR

<table>
<thead>
<tr>
<th>Edge</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAAAA</td>
<td>2</td>
</tr>
<tr>
<td>AAAAT</td>
<td>2</td>
</tr>
<tr>
<td>AAAAC</td>
<td>1</td>
</tr>
<tr>
<td>CCGTA</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Start reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAAA</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>End reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>1</td>
</tr>
<tr>
<td>AAAC</td>
<td>1</td>
</tr>
</tbody>
</table>

- **CAAA**
 - Start reads: 2
 - End reads: 0

- **CCGT**
 - Start reads: 0
 - End reads: 0

- **CGTA**
 - Start reads: 0
 - End reads: 0

- **AAAT**
 - Start reads: 0
 - End reads: 1

- **AAAA**
 - Start reads: 0
 - End reads: 0

- **AAAC**
 - Start reads: 0
 - End reads: 1
Error correction

CCGT
- Start reads: 0
- End reads: 0

CGTA
- Start reads: 0
- End reads: 0

AAAAT
- Start reads: 0
- End reads: 1

AAAAC
- Start reads: 0
- End reads: 1

CCGT, 1

AAAAT, 2

AAAAC, 1

CCAAAA, 2

AAAA
- Start reads: 0
- End reads: 0

AAAT
- Start reads: 0
- End reads: 1

AAAC
- Start reads: 0
- End reads: 1
Error correction

- **CCGT**
 - Start reads: 0
 - End reads: 0

- **AAAA**
 - Start reads: 0
 - End reads: 0

- **AAAT**
 - Start reads: 0
 - End reads: 1

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **AAAAA**
 - Start reads: 0
 - End reads: 0

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **CCGT**
 - Start reads: 0
 - End reads: 0

- **AAAAT**
 - Start reads: 0
 - End reads: 1

- **AAAAC**
 - Start reads: 0
 - End reads: 1

- **CAAA**
 - Start reads: 2
 - End reads: 0

- **CAAAA**
 - Start reads: 2
 - End reads: 0

- **AAAT**
 - Start reads: 0
 - End reads: 1
Error correction

- **CCGT**
 - Start reads: 0
 - End reads: 0

- **CGTA**
 - Start reads: 0
 - End reads: 0

- **AAAT**
 - Start reads: 0
 - End reads: 1

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **AAAA**
 - Start reads: 0
 - End reads: 0

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **AAAAA**
 - Start reads: 2
 - End reads: 0

- **AAAAT**
 - Start reads: 0
 - End reads: 1

- **AAAAC**
 - Start reads: 0
 - End reads: 1

- **AAAA**
 - Start reads: 0
 - End reads: 0
Error correction

- **CCGT**
 - Start reads: 0
 - End reads: 0

- **CGTA**
 - Start reads: 0
 - End reads: 0

- **AAAT**
 - Start reads: 0
 - End reads: 1

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **CAAA**
 - Start reads: 2
 - End reads: 0

- **AAAA**
 - Start reads: 0
 - End reads: 0

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **AAAAT**
 - Start reads: 0
 - End reads: 1

- **CAAAA**
 - Start reads: 2
 - End reads: 0
Error correction

- **CCGT**
 - Start reads: 0
 - End reads: 0

- **CGTA**, +0

 - **CCGTA, +0**
 - **CGTA**
 - Start reads: 0
 - End reads: 0

- **AAAT**
 - Start reads: 0
 - End reads: 1

- **AAAA**
 - Start reads: 0
 - End reads: 0

- **AAAC, 1**

 - **AAAT, 2**
 - **AAAAA, 2**
 - **AAAAA, 2**

- **AAAC, 1**

- **AAAT, 2**

CAAA
- Start reads: 2
- End reads: 0

AAAA
- Start reads: 0
- End reads: 0

AAAC
- Start reads: 0
- End reads: 1
Error correction

CCGT
Start reads: 0
End reads: 0

CCGTA, + 0

CGTA
Start reads: 0
End reads: 0

AAAAT, 2

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAAC, 1

AAAC
Start reads: 0
End reads: 1

CAAAC, 2

CAAA
Start reads: 2
End reads: 0

CAAAA, 2

AAAAA, 2
Error correction

- **CCGT**
 - Start reads: 0
 - End reads: 0
 - Transition to **CGTA**

- **CGTA**
 - Start reads: 0
 - End reads: 0
 - Transition to **AAAT**

- **AAAT**
 - Start reads: 0
 - End reads: 1

- **CAAA**
 - Start reads: 2
 - End reads: 0
 - Transition to **AAAA**

- **AAAA**
 - Start reads: 0
 - End reads: 0
 - Transition to **AAAC**

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **AAAC**
 - Start reads: 0
 - End reads: 1

Error correction process and transitions between sequences.
Error correction

- **CCGT**
 - Start reads: 0
 - End reads: 0
 - Transition to: CGT

- **CGTA**
 - Start reads: 0
 - End reads: 0
 - Transition to: AAAT

- **AAAT**
 - Start reads: 0
 - End reads: 1
 - Transition from: CGTA

- **CCGTA, +0**

- **AAAA**
 - Start reads: 0
 - End reads: 0
 - Transition to: AAAAC, 1

- **AAAAAC, 1**

- **AAAAC, 1**

- **AAAAT, 2**

- **AAAC**
 - Start reads: 0
 - End reads: 1
 - Transition from: AAAAT, 2

- **AAAAA, 2**

- **CAAA**
 - Start reads: 2
 - End reads: 0
 - Transition to: AAAAA, 2

- **AAAAC, 1**

- **AAAAT, 2**

- **AAAC**
 - Start reads: 0
 - End reads: 1
 - Transition from: AAAAC, 1
Error correction

- **CCGT**
 - Start reads: 0
 - End reads: 0

- **AAAA**
 - Start reads: 0
 - End reads: 0

- **AAAT**
 - Start reads: 0
 - End reads: 1

- **AAAC**
 - Start reads: 0
 - End reads: 1

- **CCGTA**
 - Start reads: 0
 - End reads: 0

- **CGTA**
 - Start reads: 0
 - End reads: 0

- **AAAAC**
 - Start reads: 0
 - End reads: 1

- **AAAT, 2**
 - End reads: 1

- **AAAA, 2**
 - End reads: 2

- **CCGTA, + 0**

- **AAAAA, 2**
 - End reads: 2

- **AAAC, 1**
 - End reads: 1
Error correction algorithm

• We use a standard work queue algorithm.

• We bootstrap with a set C of edges for which we know the abundance is correct.

• We then expand the set C of edges using the weighted de Bruijn graph invariant.

• Please refer to the paper for exact set of rules for error correction.

• Running time: $O(n \cdot \log(n)/\log(1/4\varepsilon))$.
Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>#k-mer instances</th>
<th>#Distinct k-mers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM984609</td>
<td>26 GB</td>
<td>19,662,773,330</td>
<td>1,146,347,598</td>
</tr>
<tr>
<td>GSM981256</td>
<td>22 GB</td>
<td>16,470,774,825</td>
<td>1,118,090,824</td>
</tr>
<tr>
<td>GSM981244</td>
<td>43 GB</td>
<td>37,897,872,977</td>
<td>1,404,643,983</td>
</tr>
<tr>
<td>SRR1284895</td>
<td>33 GB</td>
<td>26,235,129,875</td>
<td>2,079,889,717</td>
</tr>
</tbody>
</table>
Space vs Accuracy

Datasets:
- GSM984609
- GSM981256
- GSM981244
- SRR1284895

Comparing Squeakr, Squeakr (exact), and deBGR.
Space vs Accuracy

Datasets
- GSM984609
- GSM981256
- GSM981244
- SRR1284895

Bits/k-mer
- Squeakr: 16,655,318
- Squeakr (exact): 15,864,754
- deBGR: 12,257,261
- deBGR: 27,200,821
Space vs Accuracy

Datasets

- GSM984609
- GSM981256
- GSM981244
- SRR1284895

Squeakr
- 16,655,318

Squeakr (exact)
- 15,864,754
- 12,257,261

deBGR
- 27,200,821

Number of errors in deBGR: 0!
Conclusion

• Abundance information is important for many data analyses.

• But abundance information is also useful for providing higher de Bruijn graph structural guarantees.

• We show that the abundance information can be used to remove effectively all the errors in an approximate weighted de Bruijn graph representation.

https://github.com/splatlab/debgr