How to troubleshoot a hardware failure

- Later lectures will deal with software
- Problems:
 - Machine won’t power on
 - No display once powered on
 - Random OS crashes
 - Disk sector failures
 - Heat issues
 - Other misc issues
 - Network cable testing and construction
- Tools you need in an admin’s physical toolbox

Disclaimer

- A lot of this is based on my own anecdotal experience with fixing failed computers
- Not any comprehensive study
- But I think there are some good rules of thumb here
- Your mileage may vary

Machine won’t turn on?

- Power supply tester
Power supply testing

- Power off the machine!
- Move plugs from motherboard to tester
 -- Start with motherboard, then try disk power
- Power on the machine, read voltage
 -- Check that it matches the specification
- Many have a simple design, that just lights all green lights if ok:

What I would buy

- A cheap tester is usually sufficient (<$20)
- Be sure it tests at least connectors for:
 -- ATX motherboard
 -- IDE disk
 -- SATA disk
- The digital display is nice, but the green lights are sufficient

No voltage at all?

- Double check the switch on the back of the power supply
 -- Really do this first
- Test the outlet too

Burning smell, no power?

- On a really old system, check the voltage selector
- Most modern power supplies are rated for both 120V (US) and 240V (Europe + some US data centers)
 -- Your laptop probably is, but check the fine print on the power cord
 -- Older ones had to manually select the voltage
 -- Get it wrong, cook the hardware
 -- Release the "new computer smell"

Power supply = weak link

- Anecdotally, power supply failures are a substantial cause of systems I’ve had to replace
 -- Failures tend to cook the motherboard + disks
 -- RAID? A bad power supply cooks all the disks
 -- Make sure you have a backup disk on a different power supply!
- Sadly, not a lot of warning before one fails

The importance of good power

- In some areas, power is “dirty”
 -- Including Long Island
- Clean power has a regular wave pattern
 -- Dirty pattern is irregular
- Dirty power stresses equipment, shortens lifespan
- What to do?
 -- Buy a decent Uninterrupted Power Supply (UPS)
What is a UPS?

- Basically, a big battery backup for the computer
 - Come in lots of sizes
 - One sufficient for a beefy computer is ~$150
- Main purpose is to keep the machine up if the power goes out (e.g., in a storm)
 - Or at least allow the computer time to shutdown cleanly
 - Most newer ones include a USB cable and monitoring software
- Bonus: they tend to also be good at power conditioning (smooth out power waves)

No power recap

- Is the outlet hot?
- Is the power supply on?
- Is the power supply emitting correct voltage?
- If the power supply is good, you should at least hear/see case fans spin up
- UPSes are nice, and important if you have dirty power

No display?

Digression: The BIOS

- The Basic Input/Output System (BIOS) is the first thing a computer runs
 - Initializes the hardware, including video card
 - Usually shows a boot screen, some output messages
 - Press F2 (or Del) to configure
 - Passes control to the bootloader, which then load the OS
- Note: newer systems replace a PC BIOS with UEFI
 - A more principled, but similar idea

Power-On Self Test (POST)

- One of the first things the BIOS usually does
- As the name implies, makes sure all sub-components turn on and appear to be working
- If not, may stop booting
 - Sometimes before turning on video
 - If you are lucky, it prints an error message on monitor
- How to debug this?

POST Code Reader

- Plugs into PCI slot
- Displays a hex code indicating error or success of POST
Alternatives

• Some motherboards have a “bell” and send morse-code like messages
• Dell includes 4 lights (usually marked ABCD) that encode an error message based on which ones are amber and which are green
• In all cases, need a manual to decode these values and figure out what is wrong

Now what?

• Sometimes you can use a message to identify a bad component that is replaceable
 – E.g., CPU, RAM
• In most cases, the component is on the motherboard and you are hosed

POST Summary

• POST readers are also handy
 – At least for systems that can’t display an error on the case
• Diagnose some errant hardware installations or failed components
• Often, one chip on the motherboard is bad
 – But you have to replace the whole thing

Random system crashes

• POST readers are also handy
 – At least for systems that can’t display an error on the case
• Diagnose some errant hardware installations or failed components
• Often, one chip on the motherboard is bad
 – But you have to replace the whole thing

Random crashes

• I mean crashes that happen after the machine has been on for a while
• Can’t be reproduced with a specific task
• But seem to happen a lot

• What are the most likely culprits?

2 Usual Suspects

1. Bad RAM
2. Binary corruption on disk
Bad RAM
- Sometimes part of a RAM chip goes bad and sporadically flips bits
 - Tends to be somewhat heat sensitive
 - Some evidence this could be a latent manufacturing flaw
- There is a pretty good test for this: memtest86
 - Installed as an option in bootloader
 - Runs for a while (hours) stress testing memory
 - Reports errors if any found
 - If errors, buy new RAM

OS Corruption
- In my experience, much more likely that bits get flipped on disk
- What to do?
 - Reinstall everything
 - Try updates (e.g., Service Packs)
 - Hidden blessing when users don’t keep up with service packs

Unfortunately
- At least in Windows, most problems are hard to solve except by reinstalling everything
- Some even consider this good hygiene

Random crashes
- Test the memory
- Try applying OS updates
- Reinstall
 - If a fresh install also crashes randomly, buy a new computer

Disk sector failures
- Disks store data at the granularity of a sector
 - Usually 512 or 4096 bytes
- Individual sectors can fail
- Disks have a small number of “spare” sectors
 - Can remap a failed sector to a spare
 - At least until the spares run out
- As spares get low, probably time to replace the disk
 - Disks generally wear out after 3—5 years of use

SMART monitoring
- Most disks include a certain amount of built-in health monitoring
 - Including remapped sector count
 - Can signal approaching doom
 - Called SMART
- BIOS can often report SMART errors, as can utility programs
 - Probably a good idea to install a SMART monitoring application to notify you of a pending disk failure
Disk summary

- Install a smart monitoring tool
- Replace the disk when remapped sector count gets too high, or other SMART errors reported

Heat

- A lot of computer components are sensitive to heat
- Disks are the worst—cuts their lives shorter
- CPU and RAM can get bit flips when operating outside of their expected temperature range
 - Although should work correctly when cooled back down

Heat Sources

- Hot room (obviously)
- Poorly ventilated rack
- Failed fan inside the case
- Obstructed airflow through the case
- Dust — like putting a sweater on the components

What to do?

- Your CPU reports its temperature, as do disks and other components
- Lots of tools to read this:
 - Mac: `istat nano`
 - Linux: `/proc/cpuid`, etc.
- If too high, and room isn’t hot:
 - Check airflow
 - Dust
 - Pause CPU-intensive programs

Remote Access

- Lights-out manager (aka IPMI, other names)
- A small system that runs on the motherboard
 - Even when the power (switch) is off
 - Listens for network connections
 - (shared or dedicated network plug)
- Key features:
 - Turn power on/off/reboot over the network
 - Remote video/serial console
- Extremely useful for managing server rooms
Network Cables (CAT 5/6)

- Easy to make, and cheap!
 - Get the cable by the foot at Lowes/Home Depot
 - Ends come in a package as well
- Just need to know the pinout for the ends
- And need a crimping tool

Cat 5 Basics

- 4 twisted pairs of wires inside a cable
 - Each pair is a color + white with color stripe
 - Green, Orange, Blue, Brown
- To terminate a cable:
 - Carefully remove sheath of cable
 - Untwist pairs, trim to same length
 - Follow pinout of ends
 - Crimp
 - Test

Finished cable

Ends

Pinouts

- More than one that work
 - What actually matters is where the pairs of wires go

Network Cable Straight

From: http://www.iongboon.com/projects/2006-03-06_serial_communication/

Crimping tool

End has a spikey-thing that presses into the wires, holding end on and wires in place

RJ-45 (Cat 5)
RJ 11 (phone)
Wire cutter
Crimping Tool

Open
Closed

A little tab comes down when closed pushes the spikey thing down

Straight vs. Crossover

• Straight wiring is for a computer to a switch
• You can also go computer-to-computer if you change the pinout
 – Usually indicated with a red cable
 – Some NICs can cross using a straight cable, and vice versa

Testing a cable

• Tester can tell if some wires aren’t making good connection
• Good ones have a remote so you can test one in a wall
• Tone generators can also be helpful for finding a wire

Network cabling crash course

• Not hard to make custom cables
 – Just follow the pinout and crimp
 – Female ends (wall plugs) work similarly
• You may need to troubleshoot a network cable/plug that doesn’t work

Summary

• Crash course in hardware troubleshooting
• A few inexpensive tools can be very useful
• A big part of any IT/IS job is tech support
 – Even my CS PhD students troubleshoot hardware