Backups

Portions courtesy Ellen Liu
Quick Digression: Scripts

• You probably need to write simple scripts for backups (and lab 3)

• A script is just a list of shell commands in a file
 – With permissions set executable, and the shell name at the front:

```
#!/bin/sh
ls | grep pdf | wc -l > pdf-count.txt
```
Outline

• Storage hardware and interface
• RAID
• Storage management layers
• Linux filesystem types and commands
• Backups
Local Storage Hardware

- Basic storage: hard disks, flash memory, magnetic tapes, optical media
 - Last two lack instance access and rewritability. Are mainly for backups
 - Solid state disks (SSD): flash-memory based devices
 - Hard disks (HD): continuous exponential increases in capacity

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>HD</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Terabytes</td>
<td>Gigabytes</td>
</tr>
<tr>
<td>Random access time</td>
<td>8ms</td>
<td>0.25ms</td>
</tr>
<tr>
<td>Sequential read</td>
<td>100MB/s</td>
<td>250MB/s</td>
</tr>
<tr>
<td>Random read</td>
<td>2MB/s</td>
<td>250MB/s</td>
</tr>
<tr>
<td>Cost</td>
<td>$0.10/GB</td>
<td>$3/GB</td>
</tr>
<tr>
<td>Limited writes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Storage Hardware Interfaces

• Metrics: speed, redundancy, mobility, and price

• PATA: parallel ATA. *Commonly called IDE.* 40- or 80-conductor ribbon cable. Medium to fast in speed, large capacity, very cheap

• SATA: serial ATA, successor of PATA. Higher transfer rate. Longer maximum cable length. Hot-swapping, command queueing (out-of-order command execution)

• SCSI: still popular. Supports multiple disks on a bus

• Fibre channel: a serial interface. High bandwidth. Can have many storage devices attached to it. Enterprise use

• USB and FireWire: serial interface. For external HDs
ATA Interfaces

- PATA on the left. SATA on the right.

PATA on top, SATA on bottom
SCSI, SAS, and SATA

• SCSI: was popular for high-end disks, tape drives, scanners, printers.
 – Most external devices now use USB
 – Distinguish parallel SCSI, and serial attached SCSI (SAS)
 – SAS improved over parallel SCSI. High-end devices now use SAS

• SCSI hold premium prices, used by the fastest and most reliable drives
 – SATA cheaper and good enough for many uses, limited number of devices
 – SAS faster and can handle many storage devices
RAID

• A disk failure on a server can be disastrous

• RAID: “redundant arrays of inexpensive disks” distributes or replicates data across multiple disks
 – Avoid data loss, minimizes downtime due to disk failure
 – Can be implemented by dedicated hardware, or by OS’s reading/writing multiple disks with RAID rules

• Two capabilities
 – Stripe data across multiple drives, allow several drives to supply or absorb a single data stream at the same time
 – Replicate data across multiple drives, decreasing the damage when a single disk fails
RAID Replication

- **Mirroring**: data blocks are reproduced bit-for-bit on several difference drives
 - Faster, consumes more disk space

- **Parity schemes**: one or more drives contain an error-correcting checksum of the blocks on remaining data drives
 - Disk-space efficient, lower performance

- **Parity example**: Have data 1, 1, 1, 0, 0, 1, 0, 1. With even parity, the parity bit is 1. I.e., the number of 1’s in both data and parity is even.
 - If 1st data is changed to 0, what’s the new parity bit?
 - If 4th data is changed to 1, what’s the new parity bit?
RAID Levels

• Linear mode: concatenate the block addresses of multiple drives to create a single, larger virtual drive
 – No data redundancy or performance benefit

• RAID 0: combine two or more drives of equal size, stripe data alternately among the disks in the pool

RAID 0: disk striping
• Increased performance
• No data redundancy
• Failure rate of a two-drive array is higher than a single drive
RAID 1

- **RAID 1**: known as *mirroring*. Writes are duplicated to two or more drives simultaneously.

RAID 1: mirroring
- Writes slightly slower
- RAID 0 read speed
- Data redundancy
RAID 0+1

- RAID 0+1: Mirrors of stripes
- RAID 1+0: Stripe of mirrors
- For both performance and redundancy
RAID 5

- Parity bits are distributed among the drives.

RAID 5: striping with parity
- Added redundancy: the parity bit
- Improved read performance
- More efficient use of disk space than RAID 1
 - N disks, N-1 data
RAID 6

- RAID 6: Two parity blocks (disks). Can withstand the complete failure of two drives without losing data
Drawbacks of RAID 5

• RAID 5 or others do not replace regular off-line backups
 – It does not protect against power supply failures, accidental deletion of files, fires, hackers, etc.

• RAID 5 write needs two reads and two writes
 – Reading old data and old parity, compute new parity, write new data and new parity
 – It does not compute parity using all old data, fast but less reliable. Thus an earlier erroneous parity causes error in all subsequent parities. Called “write hole”, it backfires if a disk fails
 – Can use “scrubbing” to validate parity blocks while idle
Storage Management Layers

- A hard disk can be conceptually divided into **partitions** or **logical volumes** for data management.
- To manage files, a **filesystem** mediates between raw disk blocks and standard filesystem interface.
- So roughly three layers:
 - Storage device and RAID on the bottom, Logical volumes and partitions in the middle, Filesystem on the top.
- There are different types of filesystems:
 - UNIX allows co-existence of more than one filesystem types.
- Filesystem implementation: inodes, superblock, etc.
 - Typically a chapter in an OS course.
Linux filesystems: the ext family

- **Ext2**: the second extended filesystem. Mainstream Linux filesystem type for a long time
- **Ext3**: added journaling capability to ext2, increases reliability. Default for Red Hat
- **Journaling**: ext3 sets aside an area on disk for a journal
 - When a filesystem operation occurs, the required modifications are first written to the journal
 - If it completes, the normal filesystem is modified
 - If a crash occurs during the update, journal is used to reconstruct a consistent filesystem
- **Ext4**: an update to the above ones. Common default.
Filesystem Commands

- **df**: report filesystems’ disk space usage
- **mkfs**: create new filesystem on a device, disk partition
- **fsck**: check and repair filesystems
- **mount**: attach the filesystem on some device to the big UNIX file tree
- **umount**: detach a filesystem from the big tree

```
[root@vl120 ~]# df
Filesystem            1K-blocks      Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00             19679908   1917152  16746948  11% /
/dev/sda1                  101086     26390     69477  28% /boot
tmpfs                        126192          0     126192   0% /dev/shm
```
Backups

• **Backups**: the process of making copies of data so that these additional copies may be used to restore the original after a data loss event
 – One of the most important tasks of sysadmins
 – Backups must be done carefully and on a strict schedule
 – Backup system and media must be tested regularly to verify that they are working correctly
Hints on Backups (1)

- Perform all backups from a central location
 - Run a script from a central location that executes dump on each machine, or use a backup software package
 - Centralization facilitates administration and restoration

- Label your media
 - Write lists of filesystems, backup dates, format of backups, the exact syntax of the commands used to create them
 - Allow quick restoration

- Pick a reasonable backup interval
 - More often backups are done, less data is lost in a crash
 - Backups use system resources and operator’s time
Hints (2)

• Choose filesystems carefully to backup
 – Filesystems that rarely change need less frequent backups
 – If only a few files change, copy them daily to a partition that is backed up regularly

• Make daily dumps fit on one piece of media
 – E.g., a single tape. If a dump spans multiple tapes, operator must be present to change the media. Hard if it is 4am every day

• Keep media off-site
 – Keep an off-line copy of data always
 – Off-site increases reliability
Hints (3)

• Protect your backups
 – Encrypt the backup media. Do not lose the encryption keys
 – Physical security too. With safes, lock and key
 – Make duplicates

• Limit activity during backups

• Verify your media

• Develop a media life cycle

• Design your data for backups

• Prepare for the worst
Backup Devices and Media (1)

• Optical media
 – CD-R/RW, DVD+R/RW, DVD-R/RW, DVD-RAM, Blu-ray
 – For small, isolated systems: CD <1GB, DVD 4.7-8.5GB
 – -R or +R are write-once, RW are re-writable
 – DVD-RAM has built-in defect mgmt, reliable, expensive
 – Quality varies. Shelf-life: 1-5 years
 – Blu-ray: 25-100GB

• Portable / removable hard disks
 – Up to few terabytes. SSD lower

• Magnetic tapes
 – Vulnerable to sources of electrical or magnetic fields: audio speakers, power supplies, motors, disk fans, etc.
Backup Devices and Media (2)

- **Small tape drives, DDS/DAT**
 - low end tape storage. Up to 10yrs’ life
 - up to 80GB, 6.9MB/s speed, 100 backups
- **DLT/S-DLT**: reliable, affordable, capacious
 - up to 800GB, 60MB/s, 20-30years
- **Others**
 - AIT, SAIT: advanced intelligent tape
 - VXA: a tape backup format
 - LTO: Linear Tape-Open, a tape tech.
 - Jukeboxes, stackers, tape libraries
 - Hard disks
 - Cloud backup services
Backup Summary

• Data needs to be in multiple machines
 – Multiple physical locations, and off-line (why?)
 • Protect against hackers, machine failure, natural disaster, etc.
 – And encrypted (why?)
 • Protect privacy of data on the backup
 • But don’t lose the keys!

• Backup intervals are a balance: data lost vs. load

• Incremental vs. full backups
 – Incremental only saves changes, but can’t lose the full

• Periodically (~yearly) check that you can actually restore from your backups using different hardware
Backup Summary (2)

• Periodically check the **integrity** of your backups
 – Is the media ok?
 – Are the same number of files on the backup as on the system?
 – Spot check file contents (compare md5sum hashes)

• If the local file system doesn’t support snapshots, you may have some weirdness with concurrent use + backups
 – Note: Databases usually need special steps to backups
Backup Tools

• Lots available

• Often divided into file system vs. block-level backups
 – Default windows backup is a block-level backup. Main drawback is that you can only restore onto a same-sized device
 – Apple Time machine is a file system-level backup

• I (Don) like rdiff-backup
 – Linux-compatible, does full and incremental backups
 – Weekly cron script containing:

 rdiff-backup /filer /backup
A Note on Destroying Media

• Don’t just put media in the recycling
 – Even if you cut up a tape, easy to re-spool; cheap services to read platters taken out of a disk
 – Someone might find and read sensitive data
 – Even encryption tools may be broken later

• Use a secure erase tool
 – shred is a good start – writes zeros over every sector
 • Can miss remapped sectors
 – hdpparm/sdparm and other utilities include something that clears remapped sectors