Quick Digression: Scripts

- You probably need to write simple scripts for backups (and lab 3)
- A script is just a list of shell commands in a file
 - With permissions set executable, and the shell name at the front:

```bash
#!/bin/sh
ls | grep pdf | wc -l > pdf-count.txt
```

Outline

- Storage hardware and interface
- RAID
- Storage management layers
- Linux filesystem types and commands
- Backups

Local Storage Hardware

- **Basic storage**: hard disks, flash memory, magnetic tapes, optical media
 - Last two lack instance access and re writability. Are mainly for backups
 - **Solid state disks (SSD)**: flash-memory based devices
 - **Hard disks (HD)**: continuous exponential increases in capacity

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>HD</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Terabytes</td>
<td>Gigabytes</td>
</tr>
<tr>
<td>Random access time</td>
<td>8ms</td>
<td>0.25ms</td>
</tr>
<tr>
<td>Sequential read</td>
<td>100MB/s</td>
<td>250MB/s</td>
</tr>
<tr>
<td>Random read</td>
<td>2MB/s</td>
<td>250MB/s</td>
</tr>
<tr>
<td>Cost</td>
<td>$0.10/GB</td>
<td>$3/GB</td>
</tr>
<tr>
<td>Limited writes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Storage Hardware Interfaces

- **Metrics**: speed, redundancy, mobility, and price
- **PATA**: parallel ATA. Commonly called IDE. 40- or 80-conductor ribbon cable. Medium to fast in speed, large capacity, very cheap
- **SATA**: serial ATA, successor of PATA. Higher transfer rate. Longer maximum cable length. Hot-swapping, command queueing (out-of-order command execution)
- **SCSI**: still popular. Supports multiple disks on a bus
- **Fibre channel**: a serial interface. High bandwidth. Can have many storage devices attached to it. Enterprise use
- **USB and FireWire**: serial interface. For external HDs

ATA Interfaces

- **PATA** on the left. **SATA** on the right.

Backups

Portions courtesy Ellen Liu
SCSI, SAS, and SATA

- SCSI: was popular for high-end disks, tape drives, scanners, printers.
 - Most external devices now use USB
 - Distinguish parallel SCSI, and serial attached SCSI (SAS)
 - SAS improved over parallel SCSI. High-end devices now use SAS
- SCSI hold premium prices, used by the fastest and most reliable drives
 - SATA cheaper and good enough for many uses, limited number of devices
 - SAS faster and can handle many storage devices

RAID

- A disk failure on a server can be disastrous
- RAID: "redundant arrays of inexpensive disks" distributes or replicates data across multiple disks
 - Avoid data loss, minimizes downtime due to disk failure
 - Can be implemented by dedicated hardware, or by OS’s reading/writing multiple disks with RAID rules
- Two capabilities
 - Strip data across multiple drives, allow several drives to supply or absorb a single data stream at the same time
 - Replicate data across multiple drives, decreasing the damage when a single disk fails

RAID Replication

- Mirroring: data blocks are reproduced bit-for-bit on several difference drives
 - Faster, consumes more disk space
- Parity schemes: one or more drives contain an error-correcting checksum of the blocks on remaining data drives
 - Disk-space efficient, lower performance
- Parity example: Have data 1, 1, 0, 0, 1, 0, 1. With even parity, the parity bit is 1. i.e., the number of 1’s in both data and parity is even.
 - If 1st data is changed to 0, what’s the new parity bit?
 - If 4th data is changed to 1, what’s the new parity bit?

RAID Levels

- Linear mode: concatenate the block addresses of multiple drives to create a single, larger virtual drive
 - No data redundancy or performance benefit
- RAID 0: combine two or more drives of equal size, stripe data alternately among the disks in the pool
 - Increased performance
 - No data redundancy
 - Failure rate of a two-drive array is higher than a single drive

RAID 1

- RAID 1: known as mirroring. Writes are duplicated to two or more drives simultaneously
 - RAID 1 mirroring
 - Writes slightly slower
 - RAID 0 read speed
 - Data redundancy

RAID 0+1

- RAID 0+1: Mirrors of stripes
- RAID 1+0: Stripe of mirrors
- For both performance and redundancy
RAID 5:
- stripe both data and parity information. In the graph, parity A1 computes for blocks A1, A2, A3. Parity Bp for B1, B2, B3, and so on.
- Parity bits are distributed among the drives.

RAID 5: striping with parity
- Added redundancy: the parity bit
- Improved read performance
- More efficient use of disk space than RAID 1
- \(N \) disks, \(N-1 \) data

Drawbacks of RAID 5
- RAID 5 or others do not replace regular off-line backups
 - It does not protect against power supply failures, accidental deletion of files, fires, hackers, etc.
- RAID 5 write needs two reads and two writes
 - Reading old data and old parity, compute new parity, write new data and new parity
 - It does not compute parity using all old data, fast but less reliable. Thus an earlier erroneous parity causes error in all subsequent parities. Called “write hole”, it backfires if a disk fails
 - Can use “scrubbing” to validate parity blocks while idle

Storage Management Layers
- A hard disk can be conceptually divided into partitions or logical volumes for data management
- To manage files, a filesystem mediates between raw disk blocks and standard filesystem interface
- So roughly three layers
 - Storage device and RAID on the bottom, Logical volumes and partitions in the middle, Filesystem on the top
- There are different types of filesystems
 - UNIX allows co-existence of more than one filesystem types
 - Filesystem implementation: inodes, superblock, etc.
 - Typically a chapter in an OS course

Ext2: the second extended filesystem. Mainstream Linux filesystem type for a long time
- Ext3: added journaling capability to ext2, increases reliability. Default for Red Hat
- Journaling: ext3 sets aside an area on disk for a journal
 - When a filesystem operation occurs, the required modifications are first written to the journal
 - If it completes, the normal filesystem is modified
 - If a crash occurs during the update, journal is used to reconstruct a consistent filesystem.
- Ext4: an update to the above ones. Common default.
Backups

- Backups: the process of making copies of data so that these additional copies may be used to restore the original after a data loss event
 - One of the most important tasks of sysadmins
 - Backups must be done carefully and on a strict schedule
 - Backup system and media must be tested regularly to verify that they are working correctly

Hints on Backups (1)

- Perform all backups from a central location
 - Run a script from a central location that executes dump on each machine, or use a backup software package
 - Centralization facilitates administration and restoration
- Label your media
 - Write lists of filesystems, backup dates, format of backups, the exact syntax of the commands used to create them
 - Allow quick restoration
- Pick a reasonable backup interval
 - More often backups are done, less data is lost in a crash
 - Backups use system resources and operator’s time

Hints (2)

- Choose filesystems carefully to backup
 - Filesystems that rarely change need less frequent backups
 - If only a few files change, copy them daily to a partition that is backed up regularly
- Make daily dumps fit on one piece of media
 - E.g., a single tape. If a dump spans multiple tapes, operator must be present to change the media. Hard if it is 4am every day
- Keep media off-site
 - Keep an off-line copy of data always
 - Off-site increases reliability

Hints (3)

- Protect your backups
 - Encrypt the backup media. Do not lose the encryption keys
 - Physical security too. With safes, lock and key
 - Make duplicates
- Limit activity during backups
- Verify your media
- Develop a media life cycle
- Design your data for backups
- Prepare for the worst

Backup Devices and Media (1)

- Optical media
 - CD-R/RW, DVD+R/RW, DVD-R/RW, DVD-RAM, Blu-ray
 - For small, isolated systems: CD <1GB, DVD 4.7-8.5GB
 - -R or +R are write-once, RW are re-writable
 - DVD-RAM has built-in defect mgmt, reliable, expensive
 - Quality varies. Shelf-life: 1-5 years
 - Blu-ray: 25-100GB
- Portable / removable hard disks
 - Up to few terabytes. SSD lower
- Magnetic tapes
 - Vulnerable to sources of electrical or magnetic fields: audio speakers, power supplies, motors, disk fans, etc.

Backup Devices and Media (2)

- Small tape drives, DDS/DAT
 - low end tape storage. Up to 10yrs’ life
 - up to 80GB, 6.9MB/s speed, 100 backups
- DLT/S-DLT: reliable, affordable, capacious
 - up to 800GB, 60MB/s, 20-30years
- Others
 - AIT, SAIT: advanced intelligent tape
 - VXA: a tape backup format
 - LTO: Linear Tape-Open, a tape tech.
 - Jukeboxes, stackers, tape libraries
 - Hard disks
 - Cloud backup services
Backup Summary

- Data needs to be in multiple machines
 - Multiple physical locations, and off-line (why?)
 - Protect against hackers, machine failure, natural disaster, etc.
 - And encrypted (why?)
 - But don’t lose the keys!
- Backup intervals are a balance: data lost vs. load
- Incremental vs. full backups
 - Incremental only saves changes, but can’t lose the full
 - Periodically (“yearly”) check that you can actually restore from your backups using different hardware

Backup Summary (2)

- Periodically check the integrity of your backups
 - Is the media ok?
 - Are the same number of files on the backup as on the system?
 - Spot check file contents (compare md5sum hashes)
- If the local file system doesn’t support snapshots, you may have some weirdness with concurrent use + backups
 - Note: Databases usually need special steps to backups

Backup Tools

- Lots available
- Often divided into file system vs. block-level backups
 - Default windows backup is a block-level backup. Main drawback is that you can only restore onto a same-sized device.
 - Apple Time machine is a file system-level backup
- I (Don) like rdiff-backup
 - Linux-compatible, does full and incremental backups
 - Weekly cron script containing:
 `rdiff-backup /filer /backup`

A Note on Destroying Media

- Don’t just put media in the recycling
 - Even if you cut up a tape, easy to re-spool; cheap services to read platters taken out of a disk
 - Someone might find and read sensitive data
 - Even encryption tools may be broken later
- Use a secure erase tool
 - shred is a good start – writes zeros over every sector
 - Can miss remapped sectors
 - hdparm/sdparm and other utilities include something that clears remapped sectors