Python

CSE 307 – Principles of Programming Languages
Stony Brook University
http://www.cs.stonybrook.edu/~cse307
Python’s History

- Created by Guido van Rossum in Netherlands in 1990
- Open source: http://www.python.org
Python 2.7x vs. Python 3.x

- Python 3.x is a newer version, but it is not backward compatible with Python 2.7x
- That means if you write a program using Python 2, it may not work on Python 3.x
Launch Python

```
C:\>python
Python 3.1.2 (r312:79149, Mar 21 2010, 00:41:52) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Welcome to Python")
Welcome to Python
>>> print("Python is fun")
Python is fun
>>> ^Z
```

(c) Paul Fodor (CS Stony Brook) and Pearson
Launch Python IDLE

Editor, Command line interface, Debugger

Many other IDEs.
A Simple Python Program

Display two messages
print("Welcome to Python")
print("Python is fun")
Run Python Script

c:\pybook>python Welcome.py
Welcome to Python
Python is fun
Python Example

Assign a radius
radius = 20 # radius is now 20
Compute area
area = radius * radius * 3.14159
Display results
print("The area for the circle of radius " + str(radius) + " is " + str(area))
Reading Input from the Console

1. Use the input function

 variable = input("Enter a string: ")

2. Use the eval function

 var = eval(stringVariable)

 eval("51 + (54 * (3 + 2))") returns 321.
Variables

Compute the first area
radius = 1.0
area = radius * radius * 3.14159
print("The area is ", area, " for radius ", radius)

Compute the second area
radius = 2.0
area = radius * radius * 3.14159
print("The area is ", area, " for radius ", radius)
Expression

\[x = 1 \] \# Assign 1 to variable \(x \)

\[\text{radius} = 1.0 \] \# Assign 1.0 to variable \(\text{radius} \)

\# Assign the value of the expression to \(x \)
\[x = 5 \times (3 \div 2) + 3 \times 2 \]

\[x = y + 1 \] \# Assign the addition of \(y \) and 1 to \(x \)

\[\text{area} = \text{radius} \times \text{radius} \times 3.14159 \] \# Compute area
Overflow

- When a variable is assigned a value that is too large (in size) to be stored, it causes overflow. For example, executing the following statement causes overflow:

```python
>>> 245.0 ** 1000
OverflowError: 'Result too large'
```
Type Conversion and Rounding

- `datatype(value):`
i.e., `int(4.5) => 4`
 `float(4) => 4.0`
 `str(4) => “4”`
 `round(4.6) => 5`
 `round(4.5) => 4`
Built-in Functions and math Module

```python
>>> max(2, 3, 4)  # Returns a maximum number
4

>>> min(2, 3, 4)  # Returns a minimum number
2

>>> round(3.51)  # Rounds to its nearest integer
4

>>> round(3.4)  # Rounds to its nearest integer
3

>>> abs(-3)  # Returns the absolute value
3

>>> pow(2, 3)  # Same as 2 ** 3
8
```
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>fabs(x)</td>
<td>Returns the absolute value of the argument.</td>
<td>fabs(-2) is 2</td>
</tr>
<tr>
<td>ceil(x)</td>
<td>Rounds x up to its nearest integer and returns this integer.</td>
<td>ceil(2.1) is 3</td>
</tr>
<tr>
<td>floor(x)</td>
<td>Rounds x down to its nearest integer and returns this integer.</td>
<td>floor(2.1) is 2</td>
</tr>
<tr>
<td>exp(x)</td>
<td>Returns the exponential function of x (e^x).</td>
<td>exp(1) is 2.71828</td>
</tr>
<tr>
<td>log(x)</td>
<td>Returns the natural logarithm of x.</td>
<td>log(2.71828) is 1.0</td>
</tr>
<tr>
<td>log(x, base)</td>
<td>Returns the logarithm of x for the specified base.</td>
<td>log10(10, 10) is 1</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>Returns the square root of x.</td>
<td>sqrt(4.0) is 2</td>
</tr>
<tr>
<td>sin(x)</td>
<td>Returns the sine of x. x represents an angle in radians.</td>
<td>sin(3.14159 / 2) is 1</td>
</tr>
<tr>
<td>asin(x)</td>
<td>Returns the angle in radians for the inverse of sine.</td>
<td>asin(1.0) is 1.57</td>
</tr>
<tr>
<td>cos(x)</td>
<td>Returns the cosine of x. x represents an angle in radians.</td>
<td>cos(3.14159 / 2) is 0</td>
</tr>
<tr>
<td>acos(x)</td>
<td>Returns the angle in radians for the inverse of cosine.</td>
<td>acos(1.0) is 0</td>
</tr>
<tr>
<td>tan(x)</td>
<td>Returns the tangent of x. x represents an angle in radians.</td>
<td>tan(3.14159 / 4) is 1</td>
</tr>
<tr>
<td>fmod(x, y)</td>
<td>Returns the remainder of x/y as double.</td>
<td>fmod(2.4, 1.3) is 1.1</td>
</tr>
<tr>
<td>degrees(x)</td>
<td>Converts angle x from radians to degrees</td>
<td>degrees(1.57) is 90</td>
</tr>
<tr>
<td>radians(x)</td>
<td>Converts angle x from degrees to radians</td>
<td>radians(90) is 1.57</td>
</tr>
</tbody>
</table>
A string is a sequence of characters. *String* literals can be enclosed in matching *single quotes* (') or *double quotes* ('"'). Python does not have a data type for characters. A single-character string represents a character.

```
letter = 'A'    # Same as letter = "A"
numChar = '4'   # Same as numChar = "4"
message = "Good morning"
    # Same as message = 'Good morning'
```
Functions ord and chr

```python
>>> ch = 'a'
>>> ord(ch)
97
>>> chr(98)
'b'
```
The `str` Function

The `str` function can be used to convert a number into a string. For example,

```python
>>> s = str(3.4) # Convert a float to string
>>> s
'3.4'

>>> s = str(3) # Convert an integer to string
>>> s
'3'
```
The String Concatenation Operator

You can use the `+` operator to add two numbers. The `+` operator can also be used to concatenate (combine) two strings. Here are some examples:

```python
>>> message = "Welcome " + "to " + "Python"
>>> message
'Welcome to Python'
```

```python
>>> chapterNo = 1
>>> s = "Chapter " + str(chapterNo)
>>> s
'Chapter 1'
```

```python
>>> s = "Chapter " + chapterNo
TypeError: Can't convert 'int' object to str implicitly
```
Introduction to Objects and Methods

• In Python, all data—including numbers and strings—are actually objects.

• An object is an entity. Each object has an id and a type. Objects of the same kind have the same type. You can use the `id` function and `type` function to get these information for an object.
Object Types and Ids

The **id** and **type** functions are rarely used in programming, but they are good pedagogical tools for understanding objects.

```python
>>> n = 3  # n is an integer
>>> id(n)
505408904
>>> type(n)
<class 'int'>

>>> f = 3.0  # f is a float
>>> id(f)
26647120
>>> type(f)
<class 'float'>

>>> s = "Welcome"  # s is a string
>>> id(s)
36201472
>>> type(s)
<class 'str'>
```
str Object Methods

```python
>>> s = "Welcome"
>>> s1 = s.lower() # Invoke the lower method
>>> s1
'welcome'
>>> s2 = s.upper() # Invoke the upper method
>>> s2
'WELCOME'
```
Formatting Floating-Point Numbers

```python
print(format(57.467657, '10.2f'))
print(format(12345678.923, '10.2f'))
print(format(57.4, '10.2f'))
print(format(57, '10.2f'))
```

Field width: 10
Precision: 2
Conversion code: f
Format specifier: `10.2f`
if...else Example

if radius >= 0:
 area = radius * radius * math.pi
 print("The area for the circle of radius", radius, "is", area)
else:
 print("Negative input")
Multiple Alternative if Statements

(a)
```python
if score >= 90.0:
    grade = 'A'
else:
    if score >= 80.0:
        grade = 'B'
    else:
        if score >= 70.0:
            grade = 'C'
        else:
            if score >= 60.0:
                grade = 'D'
            else:
                grade = 'F'
```

(b)
```python
if score >= 90.0:
    grade = 'A'
elif score >= 80.0:
    grade = 'B'
elif score >= 70.0:
    grade = 'C'
elif score >= 60.0:
    grade = 'D'
else:
    grade = 'F'
```

This is better
Loops

i = initialValue # Initialize loop-control variable
while i < endValue:
 # Loop body
 ...
 i++ # Adjust loop-control variable

for i in range(initialValue, endValue):
 # Loop body
range(a, b)

>>> for i in range(4, 8):
 print(i)

4
5
6
7

>>>
range(b)

```python
>>> for i in range(4):
    print(i)

0
1
2
3
```
range(a, b, step)

```python
>>> for v in range(3, 9, 2):
...     print(v)
...
...
3
5
7
```
Functions

def sum(i1, i2):
 result = 0
 for i in range(i1, i2):
 result += i
 return result

def main():
 print("Sum from 1 to 10 is", sum(1, 10))
 print("Sum from 20 to 37 is", sum(20, 37))
 print("Sum from 35 to 49 is", sum(35, 49))

main() # Call the main function
import math

class Circle:
 # Construct a circle object
 def __init__(self, radius = 1):
 self.radius = radius

 def getPerimeter(self):
 return 2 * self.radius * math.pi

 def getArea(self):
 return self.radius * self.radius * math.pi

 def setRadius(self, radius):
 self.radius = radius
from Circle import Circle

def main():
 # Create a circle with radius 1
 circle1 = Circle()
 print("The area of the circle of radius", circle1.radius, "is", circle1.getArea())
 # Create a circle with radius 25
 circle2 = Circle(25)
 print("The area of the circle of radius", circle2.radius, "is", circle2.getArea())
 # Create a circle with radius 125
 circle3 = Circle(125)
 print("The area of the circle of radius", circle3.radius, "is", circle3.getArea())
 # Modify circle radius
 circle2.radius = 100
 print("The area of the circle of radius", circle2.radius, "is", circle2.getArea())
main() # Call the main function
Inheritance

from GeometricObject import GeometricObject
import math

class Circle(GeometricObject):
 def __init__(self, radius):
 super().__init__()
 self.__radius = radius
 def getRadius(self):
 return self.__radius
 def setRadius(self, radius):
 self.__radius = radius
 def getArea(self):
 return self.__radius * self.__radius * math.pi
 def getDiameter(self):
 return 2 * self.__radius
 def getPerimeter(self):
 return 2 * self.__radius * math.pi
 def printCircle(self):
 print(self.__str__() + " radius: " + str(self.__radius))
Exceptions

from GeometricObject import GeometricObject
import math
class Circle(GeometricObject):
 def __init__(self, radius):
 super().__init__()
 self.setRadius(radius)

 def setRadius(self, radius):
 if radius < 0:
 raise RuntimeError("Negative radius")
 else:
 self.__radius = radius
The str Class

Creating Strings

s1 = str() # Create an empty string
s2 = str("Welcome") # Create a string Welcome

Python provides a simple syntax for creating string using a string literal. For example,

s1 = "" # Same as s1 = str()
s2 = "Welcome" # Same as s2 = str("Welcome")
Strings are Immutable

A string object is immutable. Once it is created, its contents cannot be changed. To optimize performance, Python uses one object for strings with the same contents.

- both s1 and s2 refer to the same string object.

```python
>>> s1 = "Welcome"
>>> s2 = "Welcome"
>>> id(s1)
505408902
>>> id(s2)
505408902

After executing `s = "HTML";`

```
Functions for \texttt{str}

\begin{verbatim}
>>> s = "Welcome"

>>> len(s)
7

>>> max(s)
o

>>> min(s)
W
\end{verbatim}
The +, *, [:], and in Operators

```python
>>> s1 = "Welcome"
>>> s2 = "Python"
>>> s3 = s1 + " to " + s2
>>> s3
'Welcome to Python'
>>> s4 = 2 * s1
>>> s4
'WelcomeWelcome'
>>> s1[3 : 6]
'com'
>>> 'W' in s1
True
>>> 'X' in s1
False
```
Negative Index

```python
>>> s1 = "Welcome"
>>> s1[-1]
'e'
>>> s1[-3 : -1]
'om'
```
The in and not in Operators

```python
>>> s1 = "Welcome"
>>> "come" in s1
True
>>> "come" not in s1
False
```
Foreach Loops

```python
for ch in string:
    print(ch)

for i in range(0, len(s), 2):
    print(s[i])
```
Comparing Strings

```python
>>> s1 = "green"
>>> s2 = "glow"
>>> s1 == s2
False
>>> s1 != s2
True
>>> s1 > s2
True
>>> s1 >= s2
True
>>> s1 < s2
False
>>> s1 <= s2
False
```
Testing Characters in a String

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>str isalnum()</td>
<td>Return True if all characters in this string are alphanumeric and there is at least one character.</td>
</tr>
<tr>
<td>str isalpha()</td>
<td>Return True if all characters in this string are alphabetic and there is at least one character.</td>
</tr>
<tr>
<td>str isdigit()</td>
<td>Return True if this string contains only number characters.</td>
</tr>
<tr>
<td>str isidentifier()</td>
<td>Return True if this string is a Python identifier.</td>
</tr>
<tr>
<td>str islower()</td>
<td>Return True if all characters in this string are lowercase letters and there is at least one character.</td>
</tr>
<tr>
<td>str isupper()</td>
<td>Return True if all characters in this string are uppercase letters and there is at least one character.</td>
</tr>
<tr>
<td>str isspace()</td>
<td>Return True if this string contains only whitespace characters.</td>
</tr>
</tbody>
</table>
Searching for Substrings

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>str.endswith(s1: str): bool</code></td>
<td>Returns True if the string ends with the substring <code>s1</code>.</td>
</tr>
<tr>
<td><code>str.startswith(s1: str): bool</code></td>
<td>Returns True if the string starts with the substring <code>s1</code>.</td>
</tr>
<tr>
<td><code>str.find(s1): int</code></td>
<td>Returns the lowest index where <code>s1</code> starts in this string, or -1 if <code>s1</code> is not found in this string.</td>
</tr>
<tr>
<td><code>str.rfind(s1): int</code></td>
<td>Returns the highest index where <code>s1</code> starts in this string, or -1 if <code>s1</code> is not found in this string.</td>
</tr>
<tr>
<td><code>str.count(substring): int</code></td>
<td>Returns the number of non-overlapping occurrences of this substring.</td>
</tr>
</tbody>
</table>
Converting Strings

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>capitalize()</td>
<td>Returns a copy of this string with only the first character capitalized.</td>
</tr>
<tr>
<td>lower()</td>
<td>Returns a copy of this string with all characters converted to lowercase.</td>
</tr>
<tr>
<td>upper()</td>
<td>Returns a copy of this string with all characters converted to uppercase.</td>
</tr>
<tr>
<td>title()</td>
<td>Returns a copy of this string with the first letter capitalized in each word.</td>
</tr>
<tr>
<td>swapcase()</td>
<td>Returns a copy of this string in which lowercase letters are converted to uppercase and uppercase to lowercase.</td>
</tr>
<tr>
<td>replace(old, new)</td>
<td>Returns a new string that replaces all the occurrence of the old string with a new string.</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td><code>str</code></td>
<td></td>
</tr>
<tr>
<td><code>lstrip()</code>: <code>str</code></td>
<td>Returns a string with the leading whitespace characters removed.</td>
</tr>
<tr>
<td><code>rstrip()</code>: <code>str</code></td>
<td>Returns a string with the trailing whitespace characters removed.</td>
</tr>
<tr>
<td><code>strip()</code>: <code>str</code></td>
<td>Returns a string with the starting and trailing whitespace characters removed.</td>
</tr>
</tbody>
</table>
Formatting Strings

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>str</code></td>
<td>Returns a copy of this string centered in a field of the given width.</td>
</tr>
<tr>
<td><code>center(width): str</code></td>
<td>Returns a string left justified in a field of the given width.</td>
</tr>
<tr>
<td><code>ljust(width): str</code></td>
<td>Returns a string right justified in a field of the given width.</td>
</tr>
<tr>
<td><code>rjust(width): str</code></td>
<td>Formats a string. See Section 3.6.</td>
</tr>
<tr>
<td><code>format(items): str</code></td>
<td></td>
</tr>
</tbody>
</table>
Python GUIs with tkinter

from tkinter import * # Import tkinter

root = Tk() # Create a root window
Create a label
label = Label(root, text = "Welcome to Python")
button = Button(root, text = "Click Me") # Create a button
label.pack() # Display the label in the window
button.pack() # Display the button in the window

root.mainloop() # Create an event loop
Creating Lists

Creating list using the list class

list1 = list() # Create an empty list
list2 = list([2, 3, 4]) # Create a list with elements 2, 3, 4
list3 = list(["red", "green", "blue"]) # Create a list with strings
list4 = list(range(3, 6)) # Create a list with elements 3, 4, 5
list5 = list("abcd") # Create a list with characters a, b, c, d

For convenience, you may create a list using the following syntax:

 list1 = [] # Same as list()
 list2 = [2, 3, 4] # Same as list([2, 3, 4])
 list3 = ["red", "green"] # Same as list(["red", "green"])
list Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>append(x: object): None</td>
<td>Add an item x to the end of the list.</td>
</tr>
<tr>
<td>insert(index: int, x: object): None</td>
<td>Insert an item x at a given index. Note that the first element in the list has index 0.</td>
</tr>
<tr>
<td>remove(x: object): None</td>
<td>Remove the first occurrence of the item x from the list.</td>
</tr>
<tr>
<td>index(x: object): int</td>
<td>Return the index of the item x in the list.</td>
</tr>
<tr>
<td>count(x: object): int</td>
<td>Return the number of times item x appears in the list.</td>
</tr>
<tr>
<td>sort(): None</td>
<td>Sort the items in the list.</td>
</tr>
<tr>
<td>reverse(): None</td>
<td>Reverse the items in the list.</td>
</tr>
<tr>
<td>extend(l: list): None</td>
<td>Append all the items in L to the list.</td>
</tr>
<tr>
<td>pop([i]): object</td>
<td>Remove the item at the given position and return it. The square bracket denotes that parameter is optional. If no index is specified, list.pop() removes and returns the last item in the list.</td>
</tr>
</tbody>
</table>
Functions for lists

```python
>>> list1 = [2, 3, 4, 1, 32]
>>> len(list1)
5
>>> max(list1)
32
>>> min(list1)
1
>>> sum(list1)
42
>>> import random
>>> random.shuffle(list1) # Shuffle the items in the list
>>> list1
[4, 1, 2, 32, 3]
```
The $+$, \ast, $[\ :]$, and in Operators

```python
>>> list1 = [2, 3]
>>> list2 = [1, 9]
>>> list3 = list1 + list2
>>> list3
[2, 3, 1, 9]
>>> list3 = 2 * list1
>>> list3
[2, 3, 2, 3]
>>> list4 = list3[2 : 4]
>>> list4
[2, 3]
```
The +, *, [:], and in Operators

```python
>>> list1 = [2, 3, 5, 2, 33, 21]
>>> list1[-1]
21
>>> list1[-3]
2
>>> list1 = [2, 3, 5, 2, 33, 21]
>>> 2 in list1
True
>>> list1 = [2, 3, 5, 2, 33, 21]
>>> 2.5 in list1
False
```
Comparing Lists

```python
>>> list1 = ["green", "red", "blue"]
>>> list2 = ["red", "blue", "green"]
>>> list2 == list1
False
>>> list2 != list1
True
>>> list2 >= list1
False
>>> list2 > list1
False
>>> list2 < list1
True
>>> list2 <= list1
True
```
Splitting a String to a List

```python
items = "Welcome to the US".split()
print(items)
['Welcome', 'to', 'the', 'US']

items = "34#13#78#45".split("#")
print(items)
['34', '13', '78', '45']
```
def main():
 x = 1 # x represents an int value
 y = [1, 2, 3] # y represents a list
 m(x, y) # Invoke f with arguments x and y
 print("x is " + str(x))
 print("y[0] is " + str(y[0]))

def m(number, numbers):
 number = 1001 # Assign a new value to number
 numbers[0] = 5555 # Assign a new value to numbers[0]
def binarySearch(lst, key):
 low = 0
 high = len(lst) - 1
 while high >= low:
 mid = (low + high) // 2
 if key < lst[mid]:
 high = mid - 1
 elif key == lst[mid]:
 return mid
 else:
 low = mid + 1
 return -low - 1 # Now high < low, key not found
def selectionSort(lst):
 for i in range(0, len(lst) - 1):
 # Find the minimum in the lst[i..len(lst)-1]
 currentMin = lst[i]
 currentMinIndex = i
 for j in range(i + 1, len(lst)):
 if currentMin > lst[j]:
 currentMin = lst[j]
 currentMinIndex = j
 # Swap lst[i] with lst[currentMinIndex] if necessary
 if currentMinIndex != i:
 lst[currentMinIndex] = lst[i]
 lst[i] = currentMin
 return lst
Write to a File

outfile = open("test.txt", "w")
outfile.write("Welcome to Python")

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read([number: int]): str</td>
<td>Returns the specified number of characters from the file. If the argument is omitted, the entire remaining contents are read.</td>
</tr>
<tr>
<td>readline(): str</td>
<td>Returns the next line of file as a string.</td>
</tr>
<tr>
<td>readlines(): list</td>
<td>Returns a list of the remaining lines in the file.</td>
</tr>
<tr>
<td>write(s: str): None</td>
<td>Writes the string to the file.</td>
</tr>
<tr>
<td>close(): None</td>
<td>Closes the file.</td>
</tr>
</tbody>
</table>
Testing File Existence

import os.path

if os.path.isfile("Presidents.txt"):
 print("Presidents.txt exists")
Write/Read in/from File

def main():
 # write
 w = open("a.txt", "w")
 w.write("de")
 w.close()
 # read
 r = open("a.txt", "r")
 for line in r:
 print(line)
 r.close()

main()
Tuples

t1 = () # Create an empty tuple
t2 = (1, 3, 5) # Create a set with three elements
Create a tuple from a list
t3 = tuple([2 * x for x in range(1, 5)])
Create a tuple from a string
t4 = tuple("abac") # t4 is ['a', 'b', 'a', 'c']

Tuples vs. lists: you cannot modify a tuple!
Sets

s1 = set() # Create an empty set

s2 = {1, 3, 5} # Create a set with three elements

s3 = set([1, 3, 5]) # Create a set from a list

Create a set from a list
s4 = set([x * 2 for x in range(1, 10)])

Create a set from a string
s5 = set("abac") # s5 is {'a', 'b', 'c'}
Manipulating and Accessing Sets

```python
>>> s1 = {1, 2, 4}
>>> s1.add(6)
>>> s1
{1, 2, 4, 6}
>>> len(s1)
4
>>> max(s1)
6
>>> min(s1)
1
>>> sum(s1)
13
>>> 3 in s1
False
>>> s1.remove(4)
>>> s1
{1, 2, 6}
>>> ```
Subset and Superset

```python
>>> s1 = {1, 2, 4}
>>> s2 = {1, 4, 5, 2, 6}
>>> s1.issubset(s2) # s1 is a subset of s2
True

>>> s2.issuperset(s1) # s2 is a superset of s1
True
```
Equality Test

```python
>>> s1 = {1, 2, 4}
>>> s2 = {1, 4, 2}
>>> s1 == s2
True
>>> s1 != s2
False
```
Comparison Operators

Note that it makes no sense to compare the sets using the conventional comparison operators (> , >=, <=, < ), because the elements in a set are not ordered. However, these operators have special meaning when used for sets.

s1 > s2 returns true is s1 is a proper superset of s2.

s1 >= s2 returns true is s1 is a superset of s2.

s1 < s2 returns true is s1 is a proper subset of s2.

s1 <= s2 returns true is s1 is a subset of s2.
Set Operations (union, |)

```python
>>> s1 = {1, 2, 4}
>>> s2 = {1, 3, 5}
>>> s1.union(s2)
{1, 2, 3, 4, 5}

>>> s1 | s2
{1, 2, 3, 4, 5}
```
Set Operations (intersection, &)

```python
>>> s1 = {1, 2, 4}
>>> s2 = {1, 3, 5}
>>> s1.intersection(s2)
{1}
```

```python
>>> s1 & s2
{1}
```

```python
>>> s1 & s2
{1}
```
Set Operations (difference, -)

```python
>>> s1 = {1, 2, 4}
>>> s2 = {1, 3, 5}
>>> s1.difference(s2)
{2, 4}
>>> s1 - s2
{2, 4}
```
Creating a Dictionary

# Create an empty dictionary
dictionary = {}

# Create a dictionary
dictionary = {"john":40, "peter":45}
Looping Entries

for key in dictionary:
    print(key + "":" + str(dictionary[key]))