Relations

CSE 215, Foundations of Computer Science Stony Brook University <u>http://www.cs.stonybrook.edu/~cse215</u>

- A relation is a collection ordered pairs.
- The Less-than Relation for Real Numbers: a relation *L* from **R** to **R**: for all real numbers x and y,

(-17) L (-14), (-17) L (-10), (-35) L 1, ...

- The graph of L as a subset of the Cartesian plane $\mathbf{R} \times \mathbf{R}$:
 - All the points (x, y) with y > x are on the graph. I.e., all the points above the line x = y.

• The Congruence Modulo 2 Relation: a relation E from Z to Z:

• for all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$

m E n \Leftrightarrow m – n is even.

- $4 \ge 0$ because 4 0 = 4 and 4 is even.
- 2 E 6 because 2 6 = -4 and -4 is even.

3 E (-3) because 3 - (-3) = 6 and 6 is even.

If n is any odd integer, then n E 1.
Proof: Suppose n is any odd integer.
Then n = 2k + 1 for some integer k.
By definition of E, n E 1 if, and only if, n - 1 is even.
By substitution, n - 1 = (2k + 1) - 1 = 2k, and since k is an integer, 2k is even. Hence n E 1.

• A Relation on a Power Set:

 $P(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ relation S from P({a, b, c}): for all sets A and B in P({a, b, c}) A S B \Leftrightarrow A has at least as many elements as B. {a, b} S {b, c} {a} S Ø because {a} has one element and Ø has zero elements, and $1 \ge 0$.

 $\{c\} S \{a\}$

• The Inverse of a Relation: let R be a relation from A to B.

The inverse relation R^{-1} from B to A:

 $\mathbf{R}^{-1} = \{ (\mathbf{y}, \mathbf{x}) \in \mathbf{B} \times \mathbf{A} \mid (\mathbf{x}, \mathbf{y}) \in \mathbf{R} \}.$

For all $x \in A$ and $y \in B$, $(y, x) \in R^{-1} \Leftrightarrow (x, y) \in R$. Example: Let $A = \{2, 3, 4\}$ and $B = \{2, 6, 8\}$ and let R be the "divides" relation from A to B: for all $(x, y) \in A \times B$,

• The Inverse of an Infinite Relation: a relation R from **R** to **R** as follows: for all $(x, y) \in \mathbf{R} \times \mathbf{R}$,

$$\mathbf{x} \, R \, \mathbf{y} \Leftrightarrow \mathbf{y} = 2 \, \ast \, | \, \mathbf{x} \, | \, .$$

R and R^{-1} in the Cartesian plane:

 R^{-1} is not a function because, for instance, both (2, 1) and (2, -1) are in R^{-1} .

• A relation on a set A is a relation from A to A:

- the arrow diagram of the relation becomes a **directed graph**
 - For all points x and y in A, there is an arrow from x to $y \Leftrightarrow xRy \Leftrightarrow (x,y) \in R$

Example: let $A = \{3, 4, 5, 6, 7, 8\}$ and define a relation R on A:

for all x, $y \in A$, $xRy \Leftrightarrow 2 | (x-y)$

N-ary Relations and Relational Databases

- Given sets A₁, A₂,..., A_n, an *n*-ary relation R on A₁×A₂×···A_n is a subset of A₁×A₂×···A_n.
 - The special cases of 2-ary, 3-ary, and 4-ary relations are called binary, ternary, and quaternary relations, respectively.
 - A Simple Database: (a₁, a₂, a₃, a₄) ∈ R ⇔ a patient with patient ID number a₁, named a₂, was admitted on date a₃, with primary diagnosis a₄

```
(011985, John Schmidt, 120111, asthma)
(244388, Sarah Wu, 010310, broken leg)
```

(574329, Tak Kurosawa, 120111, pneumonia)

In the database language SQL:
 SELECT Patient-ID#, Name FROM SWHERE
 Admission-Date = 120111

011985 John Schmidt, 574329 Tak Kurosawa

Reflexivity, Symmetry, and Transitivity

- Let R be a relation on a set A.
- 1. R is reflexive if, and only if, for all $x \in A, xRx$ ((x,x) $\in R$).
- 2. R is symmetric if, and only if, for all x, $y \in A$, if xRy then yRx
- 3. R is transitive if, and only if, for all x, y, $z \in A$, if xRy and yRz then xRz.
- Direct graph properties:
- 1. Reflexive: each point of the graph has an arrow looping around from it back to itself.
- 2. Symmetric: in each case where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.
- 3. Transitive: in each case where there is an arrow going from one point to a second and from the second point to a third, there is an arrow going from the first point to the third.

Reflexivity, Symmetry, and Transitivity

- R is not reflexive ⇔ there is an element x in A such that x k x [that is, such that (x, x) ∉ R].
- R is not symmetric ⇔ there are elements x and y in A such that x R y but y R x [that is, such that (x, y) ∈ R but (y, x) ∉ R].
- R is not transitive ⇔ there are elements x, y and z in A such that x R y and y R z but x k z [that is, such that (x,y) ∈ R and (y,z) ∈ R but (x,z) ∉ R]

• Let $A = \{0, 1, 2, 3\}$.

 $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}$

R is reflexive: There is a loop at each point of the directed graph.

R is symmetric: In each case where there is an arrow going from one point of the graph to a second, there is an arrow going from the second point back to the first. R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to 3, but there is no arrow going from 1 to 3.

S is not reflexive: There is no loop at 1.

S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0.

S is transitive!

T is not reflexive: There is no loop at 0.

T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0.

T is transitive: The transitivity condition is vacuously true for T.

• Properties of Relations on Infinite Sets:

- Suppose a relation R is defined on an infinite set A:
 - Reflexivity: $\forall x \in A, x \in X$.
 - Symmetry: $\forall x, y \in A$, if x R y then y R x.
 - Transitivity: $\forall x, y, z \in A$, if x R y and y R z then x R z.
- Example: property of equality
 - R is a relation on **R**, for all real numbers x and y:

$$x \mathrel{R} y \Leftrightarrow x = y$$

R is reflexive: For all $x \in R$, $x \in R$, $x \in x$.

R is symmetric: For all $x, y \in R$, if x R y then y R x. if x = y then y = x.

R is transitive: For all x, y, $z \in R$, if x R y and y R z then x R z

if
$$x \equiv y$$
 and $y \equiv z$ then $x \equiv z$.

Relations on Sets • Example: properties of "Less Than" For all x, $y \in R$, x R y \Leftrightarrow x < y. **R** is not reflexive: R is reflexive if, and only if, $\forall x \in R, x \in R$. By definition of R, this means that $\forall x \in R, x \leq x$. This is false: $\exists x=0 \in \mathbb{R}$ such that $x \not\leq x$. **R** is not symmetric: R is symmetric if, and only if, $\forall x, y \in R$, if x R y then y R x. By definition of R, this means that $\forall x, y \in R$, if x < y then y < xThis is false: $\exists x=0, y=1 \in \mathbb{R}$ such that x < y and $y \not< x$. **R** is transitive: R is transitive if, and only if, for all x, y, $z \in R$, if xRy and y R z, then x R z. By definition of R, this means that for all x, y, $z \in R$, if x < y and y < z, then x < z.

Relations on Sets Example: congruence modulo 3

- For all m, $n \in Z$, mT n $\Leftrightarrow 3 \mid (m n)$.
- T is reflexive: Suppose m is a particular but arbitrarily chosen integer. [*We must show that* mTm.] Now m - m = 0. But 3 | 0 since 0 = 3 · 0. Hence 3 | (m - m). Thus, by definition of T, mTm
- T is symmetric: Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition m T n. [*We must show that* n T m.] By definition of T, since m T n then 3 | (m - n). By definition of "divides," this means that m - n = 3k, for some integer k. Multiplying both sides by -1 gives n - m = 3(-k). Since -k is an integer, this equation shows that 3 | (n - m). Hence, by definition of T, n T m.

• Example: congruence modulo 3

For all x, $y \in Z$, $mTn \Leftrightarrow 3 \mid (m - n)$.

T is transitive: Suppose m, n, and p are particular but arbitrarily chosen integers that satisfy the condition m T n and n T p. [We must show that mTp.] By definition of T, since mTn and nTp, then $3 \mid (m - n)$ and $3 \mid (n - p)$. By definition of "divides," this means that m - n = 3r and n - p = 3s, for some integers r and s. Adding the two equations gives (m - n) + (n - p) = 3r + 3s, and simplifying gives that m - p = 3(r + s). Since r + s is an integer, this equation shows that $3 \mid (m - p)$. Hence, by definition of T, mTp.

The Transitive Closure of a Relation

- Let A be a set and R a relation on A. The transitive closure of R is the relation R^t on A that satisfies the following three properties:
- 1. R^t is transitive
- 2. R \subseteq R^t
- 3. If S is any other transitive relation that contains R, then $R^{t} \subseteq S$ Example: Let A = {0, 1, 2, 3} $R = \{(0, 1), (1, 2), (2, 3)\}$ $R^{t} = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}$

Equivalence Relation

• Let A be a set and R a relation on A.

R is an *equivalence relation* \Leftrightarrow R is reflexive, symmetric, and transitive

• Example: $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

A relation R on X: A R B \Leftrightarrow the least element of A equals the least element of B

R is an equivalence relation on **X**:

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}[*We must show that A R A*]
By definition of R, A R A : the least element of A equals the least element of A. **R is symmetric:** Suppose A and B are nonempty subsets of {1, 2, 3} and A R B.

[*We must show that B R A*] By A R B, the least element of A equals the least element of B. Thus, by symmetry of equality, B R A.

R is transitive: Suppose A, B, and C are nonempty subsets of {1, 2, 3}, A R B, and B R C. [*We must show that A R C.*] By A R B, the least element of A equals the least element of B By B R C, the least element of B equals the least element of C.

By transitivity of equality, the least element of A equals the least element of C: A R C.

The Relation Induced by a Partition

- Example: The Relation Induced by a Partition: given a partition of a set A, the relation induced by the partition, R, is defined on A as follows: for all x, y ∈ A, x R y ⇔ there is a subset A_i of the partition such that both x and y are in A_i.
 - Example: Let A = {0, 1, 2, 3, 4} and consider the following partition of A: {0, 3, 4}, {1}, {2}.

0 R 3 because both 0 and 3 are in {0, 3, 4}
3 R 0 because both 3 and 0 are in {0, 3, 4}
0 R 4 because both 0 and 4 are in {0, 3, 4}
4 R 0 because both 4 and 0 are in {0, 3, 4}
3 R 4 because both 3 and 4 are in {0, 3, 4}
4 R 3 because both 4 and 3 are in {0, 3, 4}
0 R 0 because both 0 and 0 are in {0, 3, 4}
3 R 3 because both 3 and 3 are in {0, 3, 4}
4 R 4 because both 4 and 4 are in {0, 3, 4}

1 R 1 because both 1 and 1 are in $\{1\}$ 2 R 2 because both 2 and 2 are in $\{2\}$ R = $\{(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)\}.$

The Relation Induced by a Partition

- Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.
 Proof: Suppose A is a set with a partition (finite): A₁, A₂,..., A_n
 A_i∩A_j≠Ø whenever i ≠ j and A₁∪ A₂∪…UA_n = A.
 For all x, y ∈ A, x R y ⇔ there is a set A_i of the partition such that x ∈ A_i and y ∈ A_i.
- **Proof that R is reflexive:** Suppose $x \in A$. Since $A_1, A_2, ..., A_n$ is a partition of A, $A_1 \cup A_2 \cup \cdots \cup A_n = A$, it follows that $x \in A_i$ for some i.

There is a set A_i of the partition such that $x \in A_i$. By definition of R, x R x. The Relation Induced by a Partition **Proof that R is symmetric:** Suppose x and y are elements of A such that x R y. Then there is a subset A_i of the partition such that $x \in A_i$ and $y \in A_i$ by definition of R. It follows that the statement there is a subset A_i of the partition such that $y \in A_i$ and $x \in A_i$ is also true. By definition of R, y R x.

The Relation Induced by a Partition

Proof that R is transitive: Suppose x, y, and z are in A and xRy and yRz. By definition of R, there are subsets A_i and A_i of the partition such that x and y are in A_i and y and z are in A_j . Suppose $A_i \neq A_j$. [We will deduce a contradiction.] Then $A_i \cap A_i = \emptyset$ since $\{A_1, A_2, A_3, \dots, A_n\}$ is a partition of A. But y is in A_i and y is in A_j also. Hence $A_i \cap A_j \neq \emptyset$. [This contradicts the fact that $A_i \cap A_i = \emptyset$.] Thus $A_i = A_i$. It follows that x, y, and z are all in A_i , and so in particular, x and z are in A_i . Thus, by definition of R, x R z.

Equivalence Classes

• Let A be a set and R an equivalence relation on A. For each element a in A, *the equivalence class of a (the class of a)* is the set of all elements x in A such that x is related to a by R.

 $[a] \equiv \{ \mathbf{x} \in \mathbf{A} \mid \mathbf{x} \in \mathbf{R} \}$

• Example: Let $A = \{0, 1, 2, 3, 4\}$ and R be a relation on A: $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$ R is an equivalence relation $[0] = \{x \in A \mid x R 0\} = \{0, 4\} = [4]$ $[1] = \{x \in A \mid x R 1\} = \{1, 3\} = [3]$ $[2] = \{x \in A \mid x R 2\} = \{2\}$ Equivalence Classes of a Relation on a Set of Subsets

X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
A R B ⇔ the least element of A equals the least element of B
[{1}] = {{1}, {1,2}, {1,3}, {1,2,3}} = [{1,2}] = [{1,3}] =
= [{1,2,3}]

$$[\{2\}] = \{\{2\}, \{2, 3\}\} = [\{2, 3\}]$$

 $[\{3\}] = \{\{3\}\}\$

Equivalence Classes of the Identity Relation

• Let A be any set and R a relation on A: For all x and y in A,

 $\mathbf{x} \mathbf{R} \mathbf{y} \Leftrightarrow \mathbf{x} = \mathbf{y}$

Given any a in A, the class of a is:

$$[a] = \{ \mathbf{x} \in \mathbf{A} \mid \mathbf{x} \in \mathbf{R} \} = \{ \mathbf{a} \}$$

since the only element of A that equals a is a.

Equivalence Classes

• Let A be a set and R an equivalence relation on A. For any a and b elements of A, if a R b, then [a] = [b]. Proof: $[a] = [b] \Leftrightarrow [a] \subseteq [b]$ and $[b] \subseteq [a]$. 1. [a] \subseteq [b] Let $x \in [a]$ iff then $x \in R$ a. a R b by hypothesis \rightarrow by transitivity of R, x R b \rightarrow x \in [b] 2. [b] \subseteq [a] Let $x \in [b]$ iff then $x \in B$. b R a by hypothesis and symmetry \rightarrow by transitivity of R, xRa \rightarrow x \in [a]

Equivalence Classes

• If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either $[a] \cap [b] = \emptyset$ or [a] = [b].

Proof:

- Suppose A is a set, R is an equivalence relation on A, a and b are elements of A:
- Case1: a R b: by the previous theorem, [a] = [b].
- Therefore, [a] \cap [b] = \emptyset or [a] = [b] is true.
- Case 2: a $\not k$ b (we will prove the [a] \cap [b] = $\not 0$).
- By element method, by contradiction, there exists an element x in A s.t.
 x∈[a] ∩ [b] → x ∈ [a] and x ∈ [b] → so x R a and x R b
 By symmetry and transitivity, a R b (contradiction).

Congruence Modulo 3

• Let R be the relation of congruence modulo 3 on the set Z of all integers: for all integers m and n,

 $m R n \Leftrightarrow 3 \mid (m - n) \Leftrightarrow m \equiv n \pmod{3}.$

Solution For each integer a,

 $[a] = {x \in \mathbb{Z} \mid 3 \mid (x-a)} = {x \in \mathbb{Z} \mid x-a=3k, \text{ for some integer } k}$ $= \{x \in Z \mid x = 3k + a, \text{ for some integer } k\}.$ $[0] = \{x \in Z \mid x = 3k + 0, \text{ for some int } k\} = \{x \in Z \mid x = 3k, \text{ for some integer } k\}$ $=\{\dots -9, -6, -3, 0, 3, 6, 9, \dots\} = [3] = [-3] = [6] = [-6] = \dots$ $[1] = \{x \in \mathbb{Z} \mid x = 3k + 1, \text{ for some integer } k\}$ $=\{\dots - 8, -5, -2, 1, 4, 7, 10, \dots\} = [4] = [-2] = [7] = [-5] = \dots$ $[2] = \{x \in \mathbb{Z} \mid x = 3k + 2, \text{ for some integer } k\}$ $=\{\dots -4, -1, 2, \dots\} = [5] = [-1] = [8] = [-4] = \dots$

Rational Numbers Are Equivalence Classes

Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero: A = Z × (Z - {0})

R is a relation on A: for all (a, b), $(c, d) \in A$,

(a, b) R (c, d)
$$\Leftrightarrow$$
 a/b=c/d

R is an equivalence relation

Example equivalence class:

 $[(1, 2)] = \{(1, 2), (-1, -2), (2, 4), (-2, -4), (3, 6), (-3, -6), \ldots\}$

$$\frac{1}{2} = \frac{-1}{-2} = \frac{2}{4} = \frac{-2}{-4} = \frac{3}{6} = \frac{-3}{-6}$$
 and so forth.

Antisymmetry

• Let R be a relation on a set A.

R is *antisymmetric* \Leftrightarrow for all a, b \in A, if a Rb and bRa then a=b

R is not antisymmetric \Leftrightarrow there exist a, b \in A s.t. aRb, bRa, but a \neq b

0 R 2 and 2 R 0 but $0 \ddagger 2$

Antisymmetry of "Divides" Relations

- For all a, b $\in \mathbb{Z}^+$, a \mathbb{R}_1 b \Leftrightarrow a | b.
- R_1 is antisymmetric: Suppose $a, b \in Z^+$ such that aR_1b and bR_1a . [We must show that a = b]

By definition of R₁, a | b and b | a → b=k₁a and a=k₂b, k₁,k₂∈ Z (and both are positive since a and b are positive) → b=k₁k₂b →
Dividing both sides by b gives k₁k₂=1 (and both >0) → k₁=k₂=1 → a=b

• For all a, b \in Z, a R₂ b \Leftrightarrow a | b.

R₂ is not antisymmetric:

Counterexample: a = 2 and $b = -2 \rightarrow a \neq b$

- a | b since $-2 = (-1) \cdot 2 \rightarrow a R_2 b$
- b | a since $2 = (-1)(-2) \rightarrow b R_2 a$

Partial Order Relations

- Let R be a relation defined on a set A.
- R is a *partial order relation* ⇔R is reflexive, antisymmetric and transitive.
- Example: The "Subset" Relation Let A be any collection of sets and \subseteq (the "subset") relation on A: For all $U, V \in A$, $U \subseteq V \Leftrightarrow$ for all x, if $x \in U$ then $x \in V$. \subseteq is a partial order (reflexive, transitive and antisymmetric) Proof that \subseteq is antisymmetric: for all sets U and V in A if $U \subseteq V$ and $V \subseteq U$ then U = V (by definition of equality of sets)

The "Less Than or Equal to" Relation

• The "less than or equal to" relation \leq on **R** (reals): for all x,y \in **R**

 $x \le y \Leftrightarrow x < y \text{ or } x = y.$

 \leq is a partial order relation:

 \leq is reflexive: $x \leq x$ for all real numbers. $x \leq x$ means that x < x or x = x, and x = x is always true.

 \leq is antisymmetric: for all x,y $\in \mathbf{R}$, if $x \leq y$ and $y \leq x$ then x = y.

 \leq is transitive: for all x,y,z $\in \mathbf{R}$, if $x \leq y$ and $y \leq z$ then $x \leq z$.

Lexicographic Order

- Order in an English dictionary: compare letters one by one from left to right in words.
- Let A be a set with a partial order relation R, and let S be a set of strings over A. \leq is a relation on S:for any 2 strings in S, $a_1a_2...a_m$ and $b_1b_2...b_n$, m, $n \in Z^+$:
- 1. If $m \le n$ and $a_i = b_i$ for all i = 1, 2, ..., m, then $a_1 a_2 ... a_m \le b_1 b_2 ... b_n$
- 2. If for some integer k with k≤m, k≤n, and k≥1, $a_i = b_i$ for all i=1,2,...,k-1, and $a_k \neq b_k$, but $a_k Rb_k$ then $a_1a_2...a_m \preccurlyeq b_1b_2...b_n$.
- 3. If ε is the null string and s is any string in S, then $\varepsilon \preccurlyeq s$.
- If no strings are related other than by these three conditions, then \leq is a partial order relation (**lexicographic order for S**).

Lexicographic Order • Let $A = \{x, y\}$ and R the partial order relation on A: $R = \{(x, x), (x, y), (y, y)\}.$ Let S be the set of all strings over A, and \leq the lexicographic order for S that corresponds to R. $x \preccurlyeq xx$ $x \leq xy$ $x \preccurlyeq y$ $yxy \preccurlyeq yxyxxx$ $xx \preccurlyeq xyx$ $xxxy \preccurlyeq xy$ $\varepsilon \leq x$ $\varepsilon \preccurlyeq xyxyyx$

Hasse Diagrams

- A Hasse Diagram is a simpler graph with a partial order relation defined on a finite set
- Example: let $A = \{1, 2, 3, 9, 18\}$ and the "divides" relation | on A:
- for all a, $b \in A$, $a \mid b \Leftrightarrow b = ka$ for some integer k.

- Start with a directed graph of the relation, placing vertices on the page so that all arrows point upward. Eliminate:
- 1. the loops at all the vertices
- 2. all arrows whose existence is implied by the transitive property
- 3. the direction indicators on the arrows

Hasse Diagrams

40

• The "subset" relation \subseteq on the set $P(\{a, b, c\})$: for all sets U and V in $P(\{a, b, c\})$

 $U \subseteq V \Leftrightarrow \forall x, \text{ if } x \in U \text{ then } x \in V$

Draw the directed graph of the relation in such a way that all arrows except loops point upward.

Strip away all loops, unnecessary arrows, and direction indicators to obtain the Hasse diagram.

Hasse Diagrams

- Obtain the original directed graph from the Hasse diagram:
- 1. Reinsert the direction markers on the arrows making all arrows point upward.
- 2. Add loops at each vertex.
- 3. For each sequence of arrows from one point to a second and from that second point to a third, add an arrow from the first point to the third.

Partially and Totally Ordered Sets

- Let ≤ be a partial order relation on a set A. Elements a and b of A are *comparable* ⇔ either a ≤ b or b ≤ a. Otherwise, a and b are *noncomparable*.
- If R is a partial order relation on a set A, and any two elements a and b in A are comparable, then R is a *total order relation on* A.
 - The Hasse diagram for a total order relation can be drawn as a single vertical "chain."
- A set A is called a *partially ordered set* (or *poset*) with respect to a relation $\leq \Leftrightarrow \leq$ is a partial order relation on A.
- A set A is called a *totally ordered set* with respect to a relation ≤
 ⇔ A is partially ordered with respect to ≤ and ≤ is a total order.

Partially and Totally Ordered Sets

- Let A be a set that is partially ordered with respect to a relation ≤. A subset B of A is called a *chain* ⇔ the elements in each pair of elements in B is comparable.
- The *length* of a chain is one less than the number of elements in the chain.
- Example: Chain of Subsets
 The set P({a, b, c}) is partially ordered with respect to ⊆.
- Chain of length 3: $\emptyset \subseteq \{a\} \subseteq \{a, b\} \subseteq \{a, b, c\}$

Partially and Totally Ordered Sets

- An element a in A is called a *maximal element* ⇔ for all b in A, either b≤a or b and a are not comparable.
- An element a in A is called a *greatest element* of A \Leftrightarrow for all b in A, b \leq a.
- An element a in A is called a *minimal element* ⇔ for all b in A, either a≤b or b and a are not comparable.
- An element a in A is called a *least element* of A \Leftrightarrow for all b in A, a \preccurlyeq b.

- one maximal element = g = also the greatest element
- minimal elements: c, d and i
- there is no least element

Topological Sorting

- Given partial order relations ≤ and ≤' on a set A, ≤' is compatible with ≤ ⇔ for all a and b in A, if a ≤ b then a≤'b
- Given partial order relations ≤ and ≤' on a set A, ≤' is a *topological sorting* for ≤ ⇔ ≤' is a total order that is compatible with ≤.
- Example: P({a, b, c}) with partial order ⊆ (any element in P({a,b,c}) we can either compare them or not, e.g., {a,b} with {a,c}
 Total order:

 $\emptyset \leq \{a\} \leq \{c\} \leq \{c\} \leq \{a, b\} \leq \{a, c\} \leq \{b, c\} \leq \{a, b, c\}$ Paul Fodor (CS Stony Brook)

Topological Sorting

- Constructing a Topological Sorting:
- Pick any minimal element x in A with respect to ≤.
 [Such an element exists since A is nonempty.]

2. Set A' = A -
$$\{x\}$$

- 3. Repeat steps a–c while $A' \neq \emptyset$:
 - a. Pick any minimal element y in A'.
 - b. Define $x \leq y$.
 - c. Set $A' \equiv A' = \{y\}$ and $x \equiv y$.