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"Relations on Sets

e A relation is a collection ordered pairs.

® The Less-than Relation for Real Numbers: a relation L from R to
R: for all real numbers x and y,
xLye=x<y
(—17)L(—14),  (—17)L(—=10),  (=35)L1, ...
® The graph of L as a subset of the Cartesian plane R X R:
® All the points (x, y) with y > x are on the graph [.e., all the

points above the line x = =y. vt
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"Relations on Sets

® The Congruence Modulo 2 Relation: a relation E from Z to Z.:
® forall((m,n) €EZ X Z

mEn& m — niseven.

4 E O because 4 — 0 = 4 and 4 is even.
2 E 6 because 2 — 6 = —4 and —4 is even.

3 E (—3) because 3 — (—3) = 6 and 6 is even.

If n is any odd integer, thenn E 1.

Proof: Suppose n is any odd integer.

Then n = 2k + 1 for some integer k.

By definition of E, n E 1 if, and only if, n — 1 is even.

By substitution,n — 1 = (2k + 1) — 1 = 2k, and since k is an
integer, 2k is even. Hence n E 1.

@ d
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'Relations on Sets

® A Relation on a Power Set:
P({a, b, ch={@, {a}, (b, {c}, {a, b, {a, c}, {byc}, {absc}}
relation S from P({a, b, c}): for all sets A and B in P({a,b,c})
A S B & A has at least as many elements as B.
{a,b} S {b, c}

fa} S @ because {a} has one element and @ has zero elements,

and 1 = 0.

CHEREY
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"Relations on Sets

® The Inverse of a Relation: let R be a relation from A to B.
The inverse relation R™! from B to A:
R = {(y,x) EBXA | (x,y) € R}.
Forallx EAandy€B, (y,x) ER' & (x,y) ER.
Example: Let A = {2,3,4} and B= {2, 6, 8} and let R be the
“divides” relation from A to B: for all (x,y) €A X B,
xRy & x|y (xdividesy).
R=1{(2,2),(2,6),(2,8),(3,6),(#,8)} R7={(2,2), (s, 2)’1(28’ 2),(6,3), (8, 4)}
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a Forall (y,x) e Bx A,y R x e vyisamultiple of x.
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~  Relations on Sets

® The Inverse of an Infinite Relation: a relation R from R to R as follows: for all (x, y) E R X R,
xRy & y=2%*|x].

R and R !in the Cartesian plane:

R={(x,y)|y=2|x]} R'={(y.x)|y=2lx]}
X y y X
0 0 0
| 2 2 |
— 1 2 2 —1
2 4 4 2
—2 4\ K -2
7 . 7 ™
| st coordinate 2nd coordinate 1st coordinate 2nd coordinate
A A
Graph of R Graph of R~
u
:T\I (u, v) r bt \

C—— (v, )

I5 K

\J

R~ is not a function because. for instance. both (2. 1) and (2. —1) are in R~!.




"Relations on Sets

® A relation on a set A is a relation from A to A:

® the arrow diagram of the relation becomes a directed graph

For all points x and y in A, there is an arrow from x to y ©&xRy&(x,y)ER
Example: let A = {3,4,5,6,7, 8} and define a relation R on A:

forall x,y €A, xRy & 2| (x—y)
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4 N
N-ary Relations and Relational Databases

® GivensetsA, A,,..., A, an n-ary relation R on A; XA, X---A isa
subset of A XA, XA |

® The special cases of 2-ary, 3-ary, and 4-ary relations are called binary,

ternary, and quaternary relations, respectively.

* A Simple Database: (a;, a,, a3, a,) € R < a patient with patient ID
number a,, named a,, was admitted on date a;, with primary diagnosis
Ay
(011985, John Schmidt, 120111, asthma)

(244388, Sarah Wu, 010310, broken leg)
(574329, Tak Kurosawa, 120111, pneumonia)

® In the database language SQL:

SELECT Patient—ID#, Name FROM S WHERE
Admission—Date = 120111
011985 John Schmidt, 574329 Tak Kurosawa
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4 ™
Reflexivity, Symmetry, and Transitivity

°* LetA = {2,3,4,6,7,9} and detine a relation R on A as follows:

forallx,y EA,xRye=3 | x—y).

2
7% .

I..h ) .-I-I

R is reflexive, symmetric and transitive.
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Reflexivity, Symmetry, and Transitivity

. Ris reflexive if, and only if, for all x € A,xRx ((x,x)€ER).
. R is symmetric if, and only if, for all x, y € A, if xRy then yRx
. R is transitive if, and only if, for all x, y, z € A, if xRy and yRz then xRz.

. Reflexive: each point of the graph has an arrow looping around from it back
. Symmetric: in each case where there is an arrow going from one point to a

3. Transitive: in each case where there is an arrow going from one point to a

™~

[et R be a relation on a set A.

Direct graph properties:
to itsell.
second, there is an arrow going from the second point back to the first.

second and from the second point to a third, there is an arrow going from
the first point to the third.
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4 ™
Reflexivity, Symmetry, and Transitivity

* R is not reflexive € there is an element x in A such that x R x [that is,

such that (x, x) € R].

* R isnot symmetric < there are elements x and yinA such that x R y but

y R x [that is, such that (x, y) € R but (y, X)é R].

® Risnot transitive < there are elements x, y and zin A such that xRy

and y R z but x R z [that is, such that (x,y) € R and (y,z) € R but (x,2)€R]

(c) Paul Fodor (CS Stony Brook) /




"Relations on Sets

o LetA:{O 1,2,3}.
= 10,0),(0,1),(0,3), (1,0), (1, 1), (2, 2), 3,0), 3, 3);

ek

2
|| 'lI /.\|
\_/ \_/
R is reflexive: There is a loop at each point of the directed graph.
R is symmetric: In each case where there is an arrow going from one point of the

graph to a second, there is an arrow going from the second point back to the first.

R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to 3, but

there is no arrow going from 1 to 3.
\ (c) Paul Fodor (CS Stony Brook)




"Relations on Sets

e LetA = {0,1,2, 3.
S = {(0,0), (0, 2), (0, 3), (2, 3)}

N g0 ol

311 o’

S is not reflexive: There is no loop at 1.
S is not symmetric: There is an arrow from O to 2 but not from 2 to O.

S is transitive!

K (c) Paul Fodor (CS Stony Brook)




"Relations on Sets

° LetA = {0, 1,2,3}.
T=1(0,1),(2,3)}
Oe »>e |

3 ex e

T is not reflexive: There is no loop at 0.
T is not symmetric: There is an arrow from O to 1 but not from 1 to O.

T is transitive: The transitivity condition is Vacuously true for T.

(c) Paul Fodor (CS Stony Brook)




"Relations on Sets

® Properties of Relations on Infinite Sets:
® Suppose a relation R is defined on an infinite set A:

Reflexivity:Vx €A, x R x.

Symmetry: Vx,y €A, if x R y then y R x.

Transitivity: Vx,y,z €A, if x Ryand yR z then xR z.
* Example: property of equality

* R s arelation on R, for all real numbers x and y:

xRyex=y
R is retlexive: For all x € R, x R x (x=x).
R is symmetric: For all x, y € R, if x Ry then y R x.

if x =y theny = x.
R is transitive: For all x,y,z € R,if x Ryand y Rzthen xR z

ifX:yandyzzthenX:Z.
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"Relations on Sets

® Example: properties of “Less Than”
Forallx,y ER,x Ry = x<y.

R is not reflexive: R is reflexive if, and only if, Vx € R,x R x. By
definition of R, this means that Vx € R, x < x.

This is false: 3x=0 € R such that x < x.

R is not symmetric: R is symmetric if, and only if, Vx, y ER,if xRy
then y R x.

By definition of R, this means that Vx, y € R, it x<y then y<x
This is false: 3x=0, y=1 € R such that x <y and y £ x.

R is transitive: R is transitive if, and only if, for all x, y,z € R, it
xRy and y R z, then x R z.

By definition of R, this means that for all x, y, z € R, it x<y and

@ }’<Z, then X < Z. (c) Paul Fodor (CS Stony Brook) /




"Relations on Sets

o Example: congruence modulo 3
Foralm,n€Z, mTn < 3 | (m — n).

T is reflexive: Suppose m is a particular but arbitrarily chosen
integer. [We must show that mT m.] Nowm —m = 0.But 3 | 0
since 0 = 3 - 0. Hence 3 | (m — m). Thus, by definition of T,

mIm

T is symmetric: Suppose m and n are particular but arbitrarily
chosen integers that satisty the condition m T n. [We must show
that n T m.] By definition of T, since m T n then 3 | (m — n). By
definition of “divides,” this means that m — n = 3k, for some
integer k. Multiplying both sides by —1 givesn — m = 3(—k).
Since —k is an integer, this equation shows that 3 | (n — m).

@ Hence, by definition of T, n'T m.

(c) Paul Igodor (CS Stony Brook) /




"Relations on Sets

* Example: congruence modulo 3
Forallx,y €EZ, mTn& 3 | (m —n).

T is transitive: Suppose m, n, and p are particular but arbitrarily
chosen integers that satisty the condition m T nand n'T p. [We
must show that m T p.] By definition of T , sincemTnand nT p,
then 3 | (m —n)and 3 | (n — p). By definition of “divides,” this
means that m — n = 3r and n — p = 3s, for some integers r and
s. Adding the two equations gives (m —n) + (n — p) = 3r + 3s,
and simplifying gives thatm — p = 3(r + ). Sincer + sisan
integer, this equation shows that 3 | (m — p). Hence, by
definition of T , mTp.

(c) Paul Fodor (CS Stony Brook) /




4 ™
The Transitive Closure of a Relation

® [ et A be asetand R arelation on A. The transitive closure of R is the

relation R'on A that satisfies the following three properties:

1. Rtis transitive

2.R CR!
3. If Sis any other transitive relation that contains R, then R'CS

Example: LetA = {0, 1, 2, 3}
R={(0,1),(1,2),(2,3)} R'={(0, 1), (0,2), (0, 3), (1, 2), (1, 3), (2, 3)}

(e >e |
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"Equivalence Relation

® [etA beasetandR arelation on A.

R is an equivalence relation <> R is reflexive, symmetric, and transitive
* Example: X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1,2,3}}
Arelation R on X: A R B & the least element of A equals the least element of B
R is an equivalence relation on X:
R is reflexive: Suppose A is a nonempty subset of {1, 2, 3} [We must show that A R A]
By definition of R, A R A : the least element of A equals the least element of A.
R is symmetric: Suppose A and B are nonempty subsets of {1, 2, 3} and A R B.

[ We must show that B R A] By A R B, the least element of A equals the least element of B. Thus,
by symmetry of equality, BR A.

R is transitive: Suppose A, B, and C are nonempty subsets of {1,2,3} AR B,and BR C.
[ We must show that A R C.] By A R B, the least element of A equals the least element of B

By B R C, the least element of B equals the least element of C.

By transitivity of equality, the least element of A equals the least element of C: AR C.

@ (c) Paul Fodor (CS Stony Brook) /




4 ™
The Relation Induced by a Partition

® Example: The Relation Induced by a Partition: given a partition of a
set A, the relation induced by the partition, R, is defined on A as
follows: for all x, y € A, x R y < there is a subset A, of the partition
such that both x and y are in A,.

® Example: Let A = {0, 1, 2, 3, 4} and consider the following partition
of A: {0, 3,4}, {1}, {2}.

O R 3 because both 0 and 3 are in {0, 3, 4} 1 R 1 because both 1 and 1 are in {1}

3 R 0 because both 3 and 0 are in {0, 3, 4} 2 R 2 because both 2 and 2 are in {2}

O R 4 because both 0 and 4 are in {0, 3, 4} R = {(0, 0), (0, 3), (0,4), (1, 1), (2, 2),
4 R 0 because both 4 and 0 are in {0, 3, 4} (3,0), (3, 3), (3,4), (4, 0),
3 R 4 because both 3 and 4 are in {0, 3, 4} 4,3), (4,4)}.

4 R 3 because both 4 and 3 are in {0, 3, 4}
0 R 0 because both 0 and 0 are in {0, 3, 4}
3 R 3 because both 3 and 3 are in {0, 3, 4}
4 R 4 because both 4 and 4 are in {0, 3, 4}
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4 ™
The Relation Induced by a Partition

® [et A be a set with a partition and let R be the relation induced

by the partition. Then R is reflexive, symmetric, and transitive.
Proot: Suppose A is a set with a partition (finite): A{,A,,...,A,
AiﬂAj:F@ wheneveri Fjand A|UA,U---UA =A.

For all x, y €A, x Ry < there is a set A, of the partition such that
x EAand y EA,.

Proof that R is reflexive: Suppose x € A. Since A ,A,,...,A_is
a partition of A;A|U A,U---UA_= A, it follows that x € A, for

some 1.
There is a set A, of the partition such that x € A..
By definition of R, x R x.

@ (c) Paul Fodor (CS Stony Brook) /




4 ™
The Relation Induced by a Partition

Proof that R is symmetric: Suppose x and y are
clements of A such that x R y. Then there is a subset A,
of the partition such that x € A, and y € A, by definition
of R. It tollows that the statement there is a subset A, of
the partition such that yEA, and x€A,is also true. By
definition of R, y R x.

(c) Paul Fodor (CS Stony Brook) /




e
The Relation Induced by a Partition

Proof that R is transitive: Suppose x, y, and z are in A and
xRy and yRz. By definition of R, there are subsets A, and A, of

the partition such that x and y are in A, and y and z are in AJ..

Suppose A, # A; . [We will deduce a contradiction.] Then
AiﬂAj:Q) since {A,A,,A;,...,A_} is a partition of A. Buty
is in A, and y is in AJ. also. Hence AiﬂAﬂt@. [This contradicts
the fact that AiﬂAjZQ .] Thus A=A Tt follows that x, y, and z

are all in A,; and so in particular, x and z are in A..

Thus, by definition of R, x R z.

(c) Paul Fodor (CS Stony Brook)
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'Equivalence Classes

® [etAbeasetand R an equivalence relation on A. For each

element a in A, the equivalence class of a (the class of a) is the set of

all elements x in A such that x is related to a by R
[a] = {x €A |xRa}
o Example: LetA = {0, 1, 2, 3,4} and R be a relation on A:
= {0,010, 49,1, 11,3, 2,6, 1,6, 3),(4.0), (49}

R is an equivalence relation Ufw/ \’* )
0] = {x EA |[xRO} = {0, 4}=[4] // /;

/ /
1= {x€A [xR1} = {1,3}=p3] %
2] = {x €A |xR2} = {2} () ()

{O 4—} {1 3} and {2} are distinct equivalence classes

(c) Paul Fodor (CS Stony Brook)




4 N
Equivalence Classes of a Relation on a Set of Subsets

© X =15, 125, 35, 11, 255 41,35, 42, 35, 41, 2, 35

A R B & the least element of A equals the least element of B
({13 = 4413, 41,25,{1,3},{1,2,3} } =[{1,2}]=[{1,3}]=

= [{1,2,3}]

[12}1= {42}, {2, 3} } =[{2, 3}]

[351= 1335

(c) Paul Fodor (CS Stony Brook) /
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Equivalence Classes of the Identity Relation

™~

® Let A be any set and R a relation on A: For all x and yin A,

xRye=x=y
Given any ain A, the class of a is:
[a] = {x EA |xRa} = {a}

since the only element of A that equals ais a.

(c) Paul Fodor (CS Stony Brook)
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'Equivalence Classes

® [etA beasetand R an equivalence relation on A.

2

For any a and b elements of A, if a R b, then [a] = [b].
Proof: [a] = [b] <~ [a] € [b] and [b] € [a].
1.[a] & [b]

Let x € [a] iff then x R a.
a R b by hypothesis =2 by transitivity of R, x R b = x € [b]

. [b] < [a]

Let x € [b] ift then x R b.

b R a by hypothesis and symmetry -> by transitivity of R, xRa
= x € [a]

(c) Paul Fodor (CS Stony Brook)




'Equivalence Classes

* [fAisaset, R is an equivalence relation on A, and a and b are
elements of A, then either [a] N [b] = @ or [a] = [b].
Proof:

Suppose A is a set, R is an equivalence relation on A, a and b are

elements of A:
Casel: a R b: by the previous theorem, [a] = [b].
Therefore, [a] N [b] = @ or [a] = [b] is true.
Case 2: a R b (we will prove the [a] N [b] = 0).
By element method, by contradiction,there exists an element x in A s.t.

xE[a] N [b] =P x E[a]and x E [b] =P sox Raand xR b
By symmetry and transitivity, a R b (contradiction).

@ (c) Paul Fodor (CS Stony Brook) /




/Congruence Modulo 3

® Let R be the relation of congruence modulo 3 on the set Z of all
integers: for all integers m and n,
mRné& 3| (m—n) &S m=n (mod 3).
Solution For each integer a,
[a] ={x€Z]| 3| (x—a)} ={xEZ|x—a=3k, for some integer k}
= {x €Z | x = 3k t a, for some integer k}.
0] = {x €EZ| x = 3k + 0, for some int k} = {x € Z| x=3Kk, for some integer k }
={...—/9,76,—3,0, 3,6,9,...} =[3]=[-3]=[6]=[—6]=...
[1] = {x €Z| x = 3k + 1, for some integer k}
={..—8,-5-2,1,4,7,10,..} =[4] = [~2] = [7] =[~5]=...
[2] = {x € Z| x = 3k + 2, for some integer k}
= {4 =1,2, A= [5] = [~1] = [8] = [4] = ...

@ (c) Paul Fodor (CS Stony Brook) /




" Congruence Modulo

® Let m and n be integers and let d be a positive integer.
m 1s congruent to n modulo d:
m=n (modd) & d | (m —n)
Example:
12="7 (mod 5) because 12 —=7=5=5"-1
> 4
51 12—=7).

@ (c) Paul Fodor (CS Stony Brook)

™~




e

Rational Numbers Are Equivalence Classes
® Let A be the set of all ordered pairs of integers for which the
second element of the pair is nonzero: A = Z X (Z — {0})

R is a relation on A: for all (a, b), (¢, d) EA,
(a,b) R (¢, d) & a/b=c/d
R is an equivalence relation

Example equivalence class:

i -3
= —— and so forth.

1 -1 2 =2 3
2 2 4 -4 6 -6

(c) Paul Fodor (CS Stony Brook)
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" Antisymmetry

® [ et R be arelation on a set A.

R is antisymmetric<:>for all a,b€A, if aRb and bRa then a=b

N

R is not antzsymmetrzc<:>there eX1st a,bEA s.t. aRb, bRa,but a:|=b

O.R“ 1
x \ /
\
. \

H"“““-i.-#
2

OR 2 and 2 R 0 but 0F2

(c) Paul Fodor (CS Stony Brook)




4 ™
Antisymmetry of “Divides” Relations

*Foralla,bEZ",aR,bsa | b.

R, is antisymmetric: Suppose a, b € Z" such that aR b and bR ja. [We
must show that a = b]

By definition of R;,a|band b|a =>b=k,aand a=k,b, k ,k,E Z (and
both are positive since a and b are positive)=2® b=k k,b=>

Dividing both sides by b gives k k,=1 (and both >0) =2 k,=k,=1=2
a=b
°*Foralla,b€EZ,aR,b&a | b.
R, is not antisymmetric:
Counterexample:a =2 andb=—2 =2 a#b
a | bsince—=2=(—1)-2=»aR,b
b | asince2 = (—1)(—2)=2»bR,a
° )




" Partial Order Relations

® [ et R be a relation defined on a set A.

R is a partial order relation <R is reflexive, antisymmetric and

transitive.
® Example: The “Subset” Relation
Let A be any collection of sets and & (the “subset™) relation on A:
ForalUWVEA, UCSV & forall x,if x € Uthenx EV.
C is a partial order (reflexive, transitive and
antisymmetric)

Proof that € is antisymmetric: for all sets U andV in A
if U &V andV & U then U =V (by definition of equality of sets)

@ (c) Paul Fodor (CS Stony Brook) /




4 ™
The “Less Than or Equal to” Relation

® The “less than or equal to” relation < on R (reals): for all x,yER
xSyex<yorx=y.
< is a partial order relation:

< is reflexive: x < x for all real numbers. x < x means that x < x or x =

x, and x = x is always true.
< is antisymmetric: for all x,y€ER,if x <yand y<xthenx =y.
< is transitive: for all x,y,zER, if x <yand y <z then x < z.

@ (c) Paul Fodor (CS Stony Brook) /




" Lexicographic Order h

® Order in an English dictionary: compare letters one by one from left

to right in words.

® Let A be a set with a partial order relation R, and let S be a set of

strings over A. X is a relation on S:for any 2 strings in S,aa,...a
andb.b,...b mn€EZ":

1. If m <nand a=b, forall i=1,2,...;m, then a,a,...a_<b,b,...b_

2. It for some integer k with k<m, k<n, and k=1,a,=b, for all
i=1,2,...,k—1, and a,#b,, but a Rb, then aa,...a_<bb,...b_.

3. It €is the null string and s is any string in S, then € <'s.

If no strings are related other than by these three conditions, then < is
a partial order relation (lexicographic order for S).

@ (c) Paul Fodor (CS Stony Brook) /




" Lexicographic Order

® Let A = {x, y} and R the partial order relation on A:

R={(xx),&y), N}
Let S be the set of all strings over A, and < the

lexicographic order for S that corresponds to R.

X X XX x < Xy
yXy < YXYXXX x < y
XX XyX XXXy < Xy

EX X e XYXYyX

(c) Paul Fodor (CS Stony Brook)




"Hasse Diagrams

on a finite set

foralla,b €A, a|b < b = katorsome integer k.

\ ) 18
g .
I 8/*1&'&' \.I .
e
\\\ /’/ /
N //< \\\3’/_{/
:v e 24
i \
¥ e
AN 1

that all arrows point upward. Eliminate:

1. the loops at all the vertices

(c) Paul Fodor (CS Stony Brook)

@3. the direction indicators on the arrows

™~

® A Hasse Diagram is a simpler graph with a partial order relation defined

* Example: let A = {1, 2, 3,9, 18} and the “divides” relation | on A:

—~9 9
Iy
s
Iy

e Start with a directed graph of the relation, placing vertices on the page so

2. all arrows whose existence is implied by the transitive property




"Hasse Diagrams

® The “subset” relation € on the set P({a, b, c}): for all sets U andV in P({a, b, c})
UEVES Vx,ifx€EUthenx €EV

Draw the directed graph of the relation in such a way that all arrows except loops point

upward.

Strip away all loops, unnecessary arrows, and direction indicators to obtain the Hasse

diagram.

{a. b, c}

(c) Paul Fodor (CS Stony Brook)




"Hasse Diagrams

e (Obtain the original directed graph from the Hasse diagram:

1. Reinsert the direction markers on the arrows making all arrows point

upward.
2. Add loops at each vertex.

3. For each sequence of arrows from one point to a second and from that

second point to a third, add an arrow from the first point to the third.

(c) Paul Fodor (CS Stony Brook)




4 N
Partially and Totally Ordered Sets

® [et <X bea partial order relation on a set A. Elements a and b of
A are comparable <> either a < b or b < a. Otherwise, aand b

are noncomparable.

* If R is a partial order relation on a set A, and any two elements a

and b in A are comparable, then R is a total order relation on A.

® The Hasse diagram for a total order relation can be drawn as a

sinole vertical “chain.”
g

® A setAis called a partially ordered set (or poset) with respect to a

relation X & < isa partial order relation on A.

® A setA is called a totally ordered set with respect to a relation <
& A s partially ordered with respect to < and <X is a total
order.

@ (c) Paul Fodor (CS Stony Brook) /
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4 N
Partially and Totally Ordered Sets

® [ et A be a set that is partially ordered with respect
to a relation <. A subset B of A is called a chain &
the elements in each pair of elements in B is

comparable.

® The length of a chain is one less than the number of

elements in the chain.
® Example: Chain of Subsets

The set P({a, b, c}) is partially ordered with respect
to &.

Chain of length 3: O C {a} € {a,b} € {a,b, c}

(c) Paul Fodor (CS Stony Brook) /
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Partially and Totally Ordered Sets

® An element ain A is called a maximal element <> for all b in A, either b<Xa

or b and a are not comparable.
® An element ain A is called a greatest element of A <> for all b in A, b<Xa.

® An element ain A is called a minimal element < for all b in A, either a<b

or b and a are not comparable.

® An element ain A is called a least element of A < for all b in A, a<b.

* Example: P

® one maximal element = g= also the greatest element
® minimal elements: ¢, d and i

® there is no least element

@ (c) Paul Fodor (CS Stony Brook) /




"Topological Sorting

® Given partial order relations < and <" onasetA,
compatible with < < forallaand bin A ifa<b then

ax’b

® Given partial order relations < and <X’ onasetA, <’ is
a topological sorting for X <» X’ is a total order that is
compatible with <.

* Example: P({a, b, c}) with partial order & (any
element in P({a,b,c}) we can either compare them or
not, e.g., {a,b} with {a,c}

Total order:

O<"{a} M {b <7 {7 {a, by <7 {a, ¢ 7 {b, ¢} <7 {a, b, ¢
@ {}{}{}{}{}{}{}/

(c) Paul Fodor (CS Stony Brook)




"Topological Sorting

* Constructing a Topological Sorting:

1. Pick any minimal element x in A with respect to <.
[Such an element exists since A is nonempty.]

2. SetA’ =A — {x}

3. Repeat steps a—c while A’ #

a. Pick any minimal element y in A’.
b. Define x X’ y.
c. SetA’=A"— {y} and x = y.

@ (c) Paul Fodor (CS Stony Brook)




