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(c) Paul Fodor (CS Stony Brook)

Relations on Sets
 A relation is a collection ordered pairs.

 The Less-than Relation for Real Numbers: a relation L from R to 

R: for all real numbers x and y,

x L y ⇔ x < y

(−17) L (−14),        (−17) L (−10),        (−35) L 1, …

 The graph of L as a subset of the Cartesian plane R × R:

 All the points (x, y) with y > x are on the graph. I.e., all the 

points above the line x = y.

2



(c) Paul Fodor (CS Stony Brook)

Relations on Sets
 The Congruence Modulo 2 Relation: a relation E from Z to Z: 

 for all (m, n) ∈ Z × Z

m E n ⇔ m − n is even.

4 E 0 because 4 − 0 = 4 and 4 is even.

2 E 6 because 2 − 6 = −4 and −4 is even.

3 E (−3) because 3 − (−3) = 6 and 6 is even.

 If n is any odd integer, then n E 1.

Proof: Suppose n is any odd integer. 

Then n = 2k + 1 for some integer k.

By definition of E, n E 1 if, and only if, n − 1 is even.

By substitution, n − 1 = (2k + 1) − 1 = 2k, and since k is an 

integer, 2k is even. Hence n E 1.
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Relations on Sets
 A Relation on a Power Set: 

P({a, b, c})={∅, {a}, {b}, {c}, {a, b}, {a, c}, {b,c},{a,b,c}}

relation S from P({a, b, c}): for all sets A and B in P({a,b,c})

A S B ⇔A has at least as many elements as B.

{a, b} S {b, c}

{a} S ∅ because {a} has one element and ∅ has zero elements, 

and 1 ≥ 0.

{c} S {a}

4



(c) Paul Fodor (CS Stony Brook)

Relations on Sets
 The Inverse of a Relation: let R be a relation from A to B. 

The inverse relation R−1 from B to A:

R −1 = {(y, x) ∈ B × A | (x, y) ∈ R}.

For all x ∈A and y ∈ B, (y, x) ∈ R −1 ⇔ (x, y) ∈ R.

Example: Let A = {2, 3, 4} and B = {2, 6, 8} and let R be the 

“divides” relation from A to B: for all (x, y) ∈A × B,

x R y ⇔ x | y   (x divides y).

R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)}      R −1 = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)}
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Relations on Sets
 The Inverse of an Infinite Relation: a relation R from R to R as follows: for all (x, y) ∈ R × R,

x R y ⇔ y = 2 *|x|.

R and R−1 in the Cartesian plane:
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Relations on Sets
 A relation on a set A is a relation from A to A:

 the arrow diagram of the relation becomes a directed graph

 For all points x and y in A, there is an arrow from x to y ⇔xRy⇔(x,y)∈R

Example: let A = {3, 4, 5, 6, 7, 8} and define a relation R on A: 

for all x, y ∈A, xRy⇔ 2|(x−y)
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N-ary Relations and Relational Databases
 Given sets A1, A2,..., An, an n-ary relation R on A1×A2×···An is a 

subset of A1×A2×···An. 

 The special cases of 2-ary, 3-ary, and 4-ary relations are called binary, 

ternary, and quaternary relations, respectively.

 A Simple Database: (a1, a2, a3, a4) ∈ R ⇔ a patient with patient ID 

number a1, named a2, was admitted on date a3, with primary diagnosis 

a4

(011985, John Schmidt, 120111, asthma)

(244388, Sarah Wu, 010310, broken leg)

(574329, Tak Kurosawa, 120111, pneumonia)

 In the database language SQL: 

SELECT Patient−ID#, Name FROM S WHERE

Admission−Date = 120111

011985 John Schmidt, 574329 Tak Kurosawa
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(c) Paul Fodor (CS Stony Brook)

Reflexivity, Symmetry, and Transitivity
 Let A = {2, 3, 4, 6, 7, 9} and define a relation R on A as follows:       

for all x, y ∈A, x R y ⇔ 3 | (x − y).

R is reflexive, symmetric and transitive.
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 Let R be a relation on a set A.

1. R is reflexive if, and only if, for all x ∈A,xRx ((x,x)∈R).

2. R is symmetric if, and only if, for all x, y ∈A, if xRy then yRx

3. R is transitive if, and only if, for all x, y, z ∈A, if xRy and yRz then xRz.

 Direct graph properties:

1. Reflexive: each point of the graph has an arrow looping around from it back 

to itself.

2. Symmetric: in each case where there is an arrow going from one point to a 

second, there is an arrow going from the second point back to the first.

3. Transitive: in each case where there is an arrow going from one point to a 

second and from the second point to a third, there is an arrow going from 

the first point to the third. 
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 R is not reflexive ⇔ there is an element x in A such that x R x [that is, 

such that (x, x) ∈ R].

 R is not symmetric ⇔ there are elements x and y in A such that x R y but 

y R x [that is, such that (x, y) ∈ R but (y, x)∈ R].

 R is not transitive ⇔ there are elements x, y and z in A such that x R y 

and y R z but x R z [that is, such that (x,y) ∈ R and (y,z) ∈ R but (x,z)∈R]
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Relations on Sets
 Let A = {0, 1, 2, 3}.

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

R is reflexive: There is a loop at each point of the directed graph.

R is symmetric: In each case where there is an arrow going from one point of the

graph to a second, there is an arrow going from the second point back to the first. 

R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to 3, but 

there is no arrow going from 1 to 3.
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Relations on Sets
 Let A = {0, 1, 2, 3}.

S = {(0, 0), (0, 2), (0, 3), (2, 3)}

S is not reflexive: There is no loop at 1.

S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0.

S is transitive!
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Relations on Sets
 Let A = {0, 1, 2, 3}.

T = {(0, 1), (2, 3)}

T is not reflexive: There is no loop at 0.

T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0. 

T is transitive: The transitivity condition is vacuously true for  T.
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 Properties of Relations on Infinite Sets:

 Suppose a relation R is defined on an infinite set A:

 Reflexivity:∀x ∈A, x R x. 

 Symmetry: ∀x, y ∈A, if x R y then y R x.

 Transitivity: ∀x, y, z ∈A, if x R y and y R z then x R z.

 Example: property of equality

 R is a relation on R, for all real numbers x and y:

x R y ⇔ x = y

R is reflexive: For all x ∈ R, x R x (x=x).

R is symmetric: For all x, y ∈ R, if x R y then y R x.

if x = y then y = x.

R is transitive: For all x, y, z ∈ R, if x R y and y R z then x R z

if x = y and y = z then x = z.
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 Example: properties of “Less Than”

For all x, y ∈ R, x R y ⇔ x < y.

R is not reflexive: R is reflexive if, and only if, ∀x ∈ R,x R x. By 

definition of R, this means that ∀x ∈ R, x < x. 

This is false: ∃x=0 ∈ R such that x ≮ x.

R is not symmetric: R is symmetric if, and only if, ∀x, y ∈ R, if x R y 

then y R x.

By definition of R, this means that ∀x, y ∈ R, if x<y then y<x

This is false: ∃x=0, y=1 ∈ R such that x < y and y ≮ x.

R is transitive: R is transitive if, and only if, for all x, y, z ∈ R, if 

xRy and y R z, then x R z. 

By definition of R, this means that for all x, y, z ∈ R, if x<y and 

y<z, then x < z.16
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 Example: congruence modulo 3

For all m, n ∈ Z, m T n ⇔ 3 | (m − n).

T is reflexive: Suppose m is a particular but arbitrarily chosen 

integer. [We must show that m T m.] Now m − m = 0. But 3 | 0 

since 0 = 3 · 0. Hence 3 | (m − m). Thus, by definition of T, 

mTm

T is symmetric: Suppose m and n are particular but arbitrarily 

chosen integers that satisfy the condition m T n. [We must show 

that n T m.] By definition of  T, since m T n then 3 | (m − n). By 

definition of “divides,” this means that m − n = 3k, for some 

integer k. Multiplying both sides by −1 gives n − m = 3(−k). 

Since −k is an integer, this equation shows that 3 | (n − m). 

Hence, by definition of  T, n T m.17
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 Example: congruence modulo 3

For all x, y ∈ Z, m T n ⇔ 3 | (m − n).

T is transitive: Suppose m, n, and p are particular but arbitrarily 

chosen integers that satisfy the condition m T n and n T p. [We 

must show that m T p.] By definition of T , since m T n and n T p, 

then 3 | (m − n) and 3 | (n − p). By definition of “divides,” this 

means that m − n = 3r and n − p = 3s, for some integers r and 

s. Adding the two equations gives (m − n) + (n − p) = 3r + 3s, 

and simplifying gives that m − p = 3(r + s). Since r + s is an 

integer, this equation shows that 3 | (m − p). Hence, by 

definition of  T , mTp.
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The Transitive Closure of a Relation
 Let A be a set and R a relation on A. The transitive closure of R is the 

relation Rt on A that satisfies the following three properties:

1. Rt is transitive

2. R ⊆ Rt

3. If S is any other transitive relation that contains R, then Rt⊆S

Example: Let A = {0, 1, 2, 3}

R = {(0, 1), (1, 2), (2, 3)} Rt={(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}

19



(c) Paul Fodor (CS Stony Brook)

Equivalence Relation
 Let A be a set and R a relation on A. 

R is an equivalence relation R is reflexive, symmetric, and transitive

 Example: X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

A relation R on X:      A R B ⇔ the least element of A equals the least element of B

R is an equivalence relation on X:

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}[We must show that A R A]

By definition of R, A R A : the least element of A equals the least element of A.

R is symmetric: Suppose A and B are nonempty subsets of {1, 2, 3} and A R B. 

[We must show that B R A] By A R B, the least element of A equals the least element of B. Thus, 

by symmetry of equality, B R A.

R is transitive: Suppose A, B, and C are nonempty subsets of {1, 2, 3}, A R B, and B R C.

[We must show that A R C.] By A R B, the least element of A equals the least element of B 

By B R C, the least element of B equals the least element of C. 

By transitivity of equality, the least element of A equals the least element of C:  A R C.
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 Example: The Relation Induced by a Partition: given a partition of a 

set A, the relation induced by the partition, R, is defined on A as 

follows: for all x, y ∈A, x R y ⇔ there is a subset Ai of the partition 

such that both x and y are in Ai.

 Example: Let A = {0, 1, 2, 3, 4} and consider the following partition 

of A: {0, 3, 4}, {1}, {2}.
0 R 3 because both 0 and 3 are in {0, 3, 4} 1 R 1 because both 1 and 1 are in {1}

3 R 0 because both 3 and 0 are in {0, 3, 4} 2 R 2 because both 2 and 2 are in {2}

0 R 4 because both 0 and 4 are in {0, 3, 4} R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), 

4 R 0 because both 4 and 0 are in {0, 3, 4} (3, 0), (3, 3), (3, 4), (4, 0), 

3 R 4 because both 3 and 4 are in {0, 3, 4} (4, 3), (4, 4)}.

4 R 3 because both 4 and 3 are in {0, 3, 4}

0 R 0 because both 0 and 0 are in {0, 3, 4}

3 R 3 because both 3 and 3 are in {0, 3, 4}

4 R 4 because both 4 and 4 are in {0, 3, 4}

21
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The Relation Induced by a Partition
 Let A be a set with a partition and let R be the relation induced 

by the partition. Then R is reflexive, symmetric, and transitive.

Proof: Suppose A is a set with a partition (finite): A1,A2,...,An

Ai∩Aj=∅ whenever i = j and A1∪A2∪···∪An = A.

For all x, y ∈A, x R y ⇔ there is a set Ai of the partition such that 

x ∈Ai and y ∈Ai.

Proof that R is reflexive: Suppose x ∈A. Since A1,A2,...,An is 

a partition of A, A1∪A2∪···∪An = A, it follows that x ∈Ai for 

some i. 

There is a set Ai of the partition such that x ∈Ai.

By definition of R, x R x.
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Proof that R is symmetric: Suppose x and y are 

elements of A such that x R y. Then there is a subset Ai

of the partition such that x ∈Ai and y ∈Ai by definition 

of R. It follows that the statement there is a subset Ai of 

the partition such that y∈Ai and x∈Ai is also true. By 

definition of R, y R x.

23
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Proof that R is transitive: Suppose x, y, and z are in A and 

xRy and yRz. By definition of R, there are subsets Ai and Aj of 

the partition such that x and y are in Ai and y and z are in Aj.

Suppose Ai = Aj . [We will deduce a contradiction.] Then 

Ai∩Aj=∅ since {A1, A2, A3,..., An} is a partition of A. But y 

is in Ai and y is in Aj also. Hence Ai∩Aj=∅. [This contradicts 

the fact that Ai∩Aj=∅.] Thus Ai=Aj. It follows that x, y, and z 

are all in Ai, and so in particular, x and z are in Ai.

Thus, by definition of R, x R z.

24
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Equivalence Classes
 Let A be a set and R an equivalence relation on A. For each 

element a in A, the equivalence class of a (the class of a) is the set of 

all elements x in A such that x is related to a by R.

[a] = {x ∈A |x R a}

 Example: Let A = {0, 1, 2, 3, 4} and R be a relation on A:

R = {(0, 0),(0, 4),(1, 1),(1, 3),(2, 2),(3, 1),(3, 3),(4,0),(4,4)}

R is an equivalence relation

[0] = {x ∈A |x R 0} = {0, 4}=[4]

[1] = {x ∈A |x R 1} = {1, 3}=[3]

[2] = {x ∈A |x R 2} = {2}

{0, 4}, {1, 3} and {2} are distinct equivalence classes
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Equivalence Classes of a Relation on a Set of Subsets

 X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

A R B ⇔ the least element of A equals the least element of B

[{1}] = {{1},{1,2},{1,3},{1,2,3}}=[{1,2}]=[{1,3}]=

= [{1,2,3}]

[{2}] = {{2}, {2, 3}} =[{2, 3}]

[{3}] = {{3}}
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Equivalence Classes of the Identity Relation

 Let A be any set and R a relation on A: For all x and y in A,

x R y ⇔ x = y

Given any a in A, the class of a is: 

[a] = {x ∈A |x R a} = {a} 

since the only element of A that equals a is a.

27



(c) Paul Fodor (CS Stony Brook)

 Let A be a set and R an equivalence relation on A.

For any a and b elements of A, if a R b, then [a] = [b].

Proof: [a] = [b]  [a] ⊆ [b] and [b] ⊆ [a].

1. [a] ⊆ [b] 

Let x ∈ [a] iff then x R a.

a R b by hypothesis ➔ by transitivity of R, x R b ➔ x ∈ [b]

2. [b] ⊆ [a] 

Let x ∈ [b] iff then x R b.

b R a by hypothesis and symmetry ➔ by transitivity of R, xRa

➔ x ∈ [a]

28
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 If A is a set, R is an equivalence relation on A, and a and b are 

elements of A, then either [a] ∩ [b] = ∅ or [a] = [b].

Proof: 

Suppose A is a set, R is an equivalence relation on A, a and b are 

elements of A:

Case1: a R b: by the previous theorem, [a] = [b].

Therefore, [a] ∩ [b] = ∅ or [a] = [b] is true.

Case 2: a R b (we will prove the [a] ∩ [b] = ∅).

By element method, by contradiction,there exists an element x in A s.t.

x∈[a] ∩ [b] ➔ x ∈ [a] and x ∈ [b] ➔ so x R a and x R b

By symmetry and transitivity, a R b (contradiction).
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Congruence Modulo 3
 Let R be the relation of congruence modulo 3 on the set Z of all 

integers: for all integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Solution For each integer a,

[a] ={x∈Z| 3|(x−a)} ={x∈Z|x−a=3k, for some integer k}

= {x ∈ Z | x = 3k + a, for some integer k}.

[0] = {x ∈ Z| x = 3k + 0, for some int k}= {x ∈ Z| x=3k, for some integer k}

={...− 9,−6,−3, 0, 3, 6, 9,...}=[3]=[−3]=[6]=[−6]=...

[1] = {x ∈ Z| x = 3k + 1, for some integer k}

={...− 8,−5,−2, 1, 4, 7, 10,...}=[4] = [−2] = [7] =[−5]=...

[2] = {x ∈ Z| x = 3k + 2, for some integer k}

={...−4,−1, 2,...}= [5] = [−1] = [8] = [−4] = ...
30
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Congruence Modulo
 Let m and n be integers and let d be a positive integer.

m is congruent to n modulo d:

m ≡ n (mod d) ⇔ d | (m − n)

Example:

12 ≡ 7 (mod 5)  because 12 − 7 = 5 = 5 · 1

➔

5 | (12 − 7).
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Rational Numbers Are Equivalence Classes

 Let A be the set of all ordered pairs of integers for which the 

second element of the pair is nonzero: A = Z × (Z − {0})

R is a relation on A: for all (a, b), (c, d) ∈A,

(a, b) R (c, d) ⇔ a/b=c/d

R is an equivalence relation 

Example equivalence class:
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Antisymmetry
 Let R be a relation on a set A.

R is antisymmetricfor all a,b∈A, if aRb and  bRa then a=b

R is not antisymmetricthere exist a,b∈A s.t. aRb, bRa,but a=b

0 R 2 and 2 R 0 but 0=2
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Antisymmetry of “Divides” Relations

 For all a, b ∈ Z+, a R1 b ⇔ a | b.

R1 is antisymmetric: Suppose a, b ∈ Z+ such that aR1b and bR1a. [We 

must show that a = b] 

By definition of R1, a|b and b|a➔b=k1a and a=k2b,  k1,k2∈ Z  (and 

both are positive since a and b are positive)➔ b=k1k2b➔

Dividing both sides by b gives k1k2=1 (and both >0) ➔ k1=k2=1➔

a=b

 For all a, b ∈ Z, a R2 b ⇔ a | b.
R2 is not antisymmetric: 

Counterexample: a = 2 and b = −2 ➔ a ≠ b

a | b since−2 = (−1) · 2 ➔ a R2 b 

b | a since 2 = (−1)(−2) ➔ b R2 a 
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Partial Order Relations
 Let R be a relation defined on a set A. 

R is a partial order relationR is reflexive, antisymmetric and 

transitive.

 Example: The “Subset” Relation

Let A be any collection of sets and ⊆ (the “subset”) relation on A: 

For all U, V ∈A,   U ⊆V ⇔ for all x, if x ∈ U then x ∈V.

⊆ is a partial order (reflexive, transitive and 

antisymmetric)

Proof that ⊆ is antisymmetric: for all sets U and V in A 

if U ⊆V and V ⊆ U then U = V (by definition of equality of sets)
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The “Less Than or Equal to” Relation
 The “less than or equal to” relation ≤ on R (reals): for all x,y∈R

x ≤ y ⇔ x < y or x = y.

≤ is a partial order relation:

≤ is reflexive: x ≤ x for all real numbers. x ≤ x means that x < x or x = 

x, and x = x is always true.

≤ is antisymmetric: for all x,y∈R, if x ≤ y and y ≤ x then x = y. 

≤ is transitive: for all x,y,z∈R, if x ≤ y and y ≤ z then x ≤ z. 
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Lexicographic Order
 Order in an English dictionary: compare letters one by one from left 

to right in words.

 Let A be a set with a partial order relation R, and let S be a set of 

strings over A. ≼ is a relation on S:for any 2 strings in S,a1a2...am

and b1b2...bn, m,n∈ Z+:

1. If m ≤ n and ai=bi for all i=1,2,...,m, then a1a2...am≼b1b2...bn

2. If for some integer k with k≤m, k≤n, and k≥1,ai=bi for all 

i=1,2,...,k−1, and ak≠bk, but akRbk then a1a2...am≼b1b2...bn.

3. If ε is the null string and s is any string in S, then ε ≼ s.

If no strings are related other than by these three conditions, then ≼ is 

a partial order relation (lexicographic order for S).
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 Let A = {x, y} and R the partial order relation on A:

R = {(x, x), (x, y), (y, y)}.

Let S be the set of all strings over A, and ≼ the 

lexicographic order for S that corresponds to R.

x ≼ xx x ≼ xy

yxy ≼ yxyxxx x ≼ y

xx ≼ xyx xxxy ≼ xy

ε ≼ x ε ≼ xyxyyx

38
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 A Hasse Diagram is a simpler graph with a partial order relation defined 

on a finite set

 Example: let A = {1, 2, 3, 9, 18} and the “divides” relation | on A: 

for all a, b ∈A,     a | b ⇔ b = ka for some integer k.

 Start with a directed graph of the relation, placing vertices on the page so 

that all arrows point upward. Eliminate:

1. the loops at all the vertices

2. all arrows whose existence is implied by the transitive property

3. the direction indicators on the arrows

Hasse Diagrams
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 The “subset” relation ⊆ on the set P({a, b, c}): for all sets U and V in P({a, b, c})

U ⊆V ⇔∀x, if x ∈ U then x ∈V

Draw the directed graph of the relation in such a way that all arrows except loops point 

upward.

Strip away all loops, unnecessary arrows, and direction indicators to obtain the Hasse

diagram.

40
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 Obtain the original directed graph from the Hasse diagram:

1. Reinsert the direction markers on the arrows making all arrows point 

upward.

2. Add loops at each vertex.

3. For each sequence of arrows from one point to a second and from that 

second point to a third, add an arrow from the first point to the third.
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Partially and Totally Ordered Sets
 Let ≼ be a partial order relation on a set A. Elements a and b of 

A are comparable either a ≼ b or b ≼ a. Otherwise, a and b 

are noncomparable.

 If R is a partial order relation on a set A, and any two elements a 

and b in A are comparable, then R is a total order relation on A.

 The Hasse diagram for a total order relation can be drawn as a 

single vertical “chain.”

 A set A is called a partially ordered set (or poset) with respect to a 

relation ≼ ≼ is a partial order relation on A.

 A set A is called a totally ordered set with respect to a relation ≼
A is partially ordered with respect to ≼ and ≼ is a total 

order.
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(c) Paul Fodor (CS Stony Brook)

 Let A be a set that is partially ordered with respect 

to a relation ≼. A subset B of A is called a chain

the elements in each pair of elements in B is 

comparable. 

The length of a chain is one less than the number of 

elements in the chain.

 Example: Chain of Subsets

The set P({a, b, c}) is partially ordered with respect 

to ⊆.

Chain of length 3: ∅ ⊆ {a} ⊆ {a, b} ⊆ {a, b, c}
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 An element a in A is called a maximal element for all b in A, either b≼a

or b and a are not comparable.

 An element a in A is called a greatest element of A  for all b in A, b≼a.

 An element a in A is called a minimal element for all b in A, either a≼b

or b and a are not comparable.

 An element a in A is called a least element of A  for all b in A, a≼b.

 Example:

 one maximal element = g = also the greatest element

 minimal elements: c, d and i

 there is no least element
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Topological Sorting
 Given partial order relations ≼ and ≼’ on a set A, ≼’ is 

compatible with ≼ for all a and b in A, if a ≼ b then 

a≼’b

 Given partial order relations ≼ and ≼’ on a set A, ≼’ is 

a topological sorting for ≼ ≼’ is a total order that is 

compatible with ≼.

 Example: P({a, b, c}) with partial order ⊆ (any 

element in P({a,b,c}) we can either compare them or 

not, e.g., {a,b} with {a,c}

Total order: 

∅≼’{a}≼’{b}≼’{c}≼’{a, b}≼’{a, c}≼’ {b, c}≼’{a, b, c}
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 Constructing a Topological Sorting:

1. Pick any minimal element x in A with respect to ≼. 

[Such an element exists since A is nonempty.]

2. Set A’ = A − {x}

3. Repeat steps a–c while A’ ≠ ∅:

a. Pick any minimal element y in A’.

b. Define x ≼’ y.

c. Set A’ = A’−{y} and x = y.
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