Relations

CSE 215, Foundations of Computer Science
Stony Brook University
http: / / www.cs.stonybrook.edu/ $\sim_{\text {cse }} 215$

Relations on Sets

- A relation is a collection ordered pairs.
- The Less-than Relation for Real Numbers: a relation L from \mathbf{R} to \mathbf{R} : for all real numbers x and y ,

$$
\begin{gathered}
\mathrm{x} \boldsymbol{L} \mathrm{y} \Leftrightarrow \mathrm{x}<\mathrm{y} \\
(-17) L(-14), \quad(-17) L(-10), \quad(-35) L 1, \ldots
\end{gathered}
$$

- The graph of L as a subset of the Cartesian plane $\mathbf{R} \times \mathbf{R}$:
- All the points (x, y) with $\mathrm{y}>\mathrm{x}$ are on the graph. I.e., all the points above the line $\mathrm{x}=\mathrm{y}$.

Relations on Sets

- The Congruence Modulo 2 Relation: a relation E from \mathbf{Z} to \mathbf{Z} :
- for all $(\mathrm{m}, \mathrm{n}) \in \mathbf{Z} \times \mathbf{Z}$ $\mathrm{m} \mathrm{En} \Leftrightarrow \mathrm{m}-\mathrm{n}$ is even.

4 E 0 because $4-0=4$ and 4 is even.
2 E 6 because $2-6=-4$ and -4 is even.
$3 \mathrm{E}(-3)$ because $3-(-3)=6$ and 6 is even.

- If n is any odd integer, then n E 1.

Proof: Suppose n is any odd integer.
Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k .
By definition of E , n E 1 if , and only if, $\mathrm{n}-1$ is even.
By substitution, $\mathrm{n}-1=(2 \mathrm{k}+1)-1=2 \mathrm{k}$, and since k is an

Relations on Sets

- A Relation on a Power Set:
$\mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})=\{\emptyset,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ relation S from $\mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})$: for all sets A and B in $\mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})$

A $S B \Leftrightarrow$ A has at least as many elements as B.
$\{a, b\} S\{b, c\}$
$\{\mathrm{a}\} \mathrm{S} \emptyset$ because $\{\mathrm{a}\}$ has one element and \emptyset has zero elements, and $1 \geq 0$.
c $\}$ S $\{a\}$

Relations on Sets

- The Inverse of a Relation: let R be a relation from A to B .

The inverse relation R^{-1} from B to A :

$$
\mathrm{R}^{-1}=\{(\mathrm{y}, \mathrm{x}) \in \mathrm{B} \times \mathrm{A} \mid(\mathrm{x}, \mathrm{y}) \in \mathrm{R}\} .
$$

For all $x \in A$ and $y \in B,(y, x) \in R^{-1} \Leftrightarrow(x, y) \in R$.
Example: Let $A=\{2,3,4\}$ and $B=\{2,6,8\}$ and let R be the "divides" relation from A to B : for all $(x, y) \in A \times B$, $x \operatorname{Ry} \Leftrightarrow \mathrm{x} \mid \mathrm{y} \quad(\mathrm{x}$ divides y$)$.

For all $(y, x) \in B \times A, y R^{-1} x \Leftrightarrow y$ is a multiple of x.

Relations on Sets

- The Inverse of an Infinite Relation: a relation R from \mathbf{R} to \mathbf{R} as follows: for all ($\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R}$,

$$
\mathrm{x} R \mathrm{y} \Leftrightarrow \mathrm{y}=2 *|\mathrm{x}| .
$$

R and R^{-1} in the Cartesian plane:

Relations on Sets

- A relation on a set A is a relation from A to A :
- the arrow diagram of the relation becomes a directed graph
- For all points x and y in A , there is an arrow from x to $\mathrm{y} \Leftrightarrow \mathrm{xRy} \Leftrightarrow(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ Example: let $\mathrm{A}=\{3,4,5,6,7,8\}$ and define a relation R on A :

$$
\text { for all } x, y \in A, x R y \Leftrightarrow 2 \mid(x-y)
$$

N -ary Relations and Relational Databases

- Given sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$, an n-ary relation R on $\mathrm{A}_{1} \times \mathrm{A}_{2} \times \cdots \mathrm{A}_{\mathrm{n}}$ is a subset of $A_{1} \times A_{2} \times \cdots A_{n}$.
- The special cases of 2-ary, 3-ary, and 4-ary relations are called binary, ternary, and quaternary relations, respectively.
- A Simple Database: $\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in R \Leftrightarrow$ a patient with patient ID number a_{1}, named a_{2}, was admitted on date a_{3}, with primary diagnosis a_{4}
(011985, John Schmidt, 120111, asthma)
(244388, Sarah Wu, 010310, broken leg)
(574329, Tak Kurosawa, 120111, pneumonia)
- In the database language SQL:

SELECT Patient-ID\#, Name FROM S WHERE
Admission - Date $=120111$
011985 John Schmidt, 574329 Tak Kurosawa

Reflexivity, Symmetry, and Transitivity

- Let $\mathrm{A}=\{2,3,4,6,7,9\}$ and define a relation R on A as follows: for all $x, y \in A, x R y \Leftrightarrow 3 \mid(x-y)$.

R is reflexive, symmetric and transitive.

Reflexivity, Symmetry, and Transitivity

- Let R be a relation on a set A .

1. R is reflexive if, and only if, for all $x \in A, x R x((x, x) \in R)$.
2. R is symmetric if, and only if, for all $x, y \in A$, if $x R y$ then $y R x$
3. R is transitive if, and only if, for all $x, y, z \in A$, if $x R y$ and $y R z$ then $x R z$.

- Direct graph properties:

1. Reflexive: each point of the graph has an arrow looping around from it back to itself.
2. Symmetric: in each case where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.
3. Transitive: in each case where there is an arrow going from one point to a second and from the second point to a third, there is an arrow going from the first point to the third.

Reflexivity, Symmetry, and Transitivity

- R is not reflexive \Leftrightarrow there is an element x in A such that $\mathrm{x} \not \subset \mathrm{x}$ [that is, such that $(x, x) \notin R]$.
- R is not symmetric \Leftrightarrow there are elements x and y in A such that $\mathrm{x} R \mathrm{y}$ but $\mathrm{y} R \mathrm{x}$ [that is, such that $(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ but $(\mathrm{y}, \mathrm{x}) \notin \mathrm{R}]$.
- R is not transitive \Leftrightarrow there are elements x, y and z in A such that $x R y$ and $y R z$ but $x \not \subset z[$ that is, such that $(x, y) \in R$ and $(y, z) \in R$ but $(x, z) \notin R]$

Relations on Sets

- Let $\mathrm{A}=\{0,1,2,3\}$.
$\mathrm{R}=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$

R is reflexive: There is a loop at each point of the directed graph.
R is symmetric: In each case where there is an arrow going from one point of the graph to a second, there is an arrow going from the second point back to the first.
R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to 3 , but there is no arrow going from 1 to 3 .
(c) Paul Fodor (CS Stony Brook)

Relations on Sets

- Let $A=\{0,1,2,3\}$.
$S=\{(0,0),(0,2),(0,3),(2,3)\}$

S is not reflexive: There is no loop at 1 .
S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0 .
S is transitive!

Relations on Sets

- Let $\mathrm{A}=\{0,1,2,3\}$.
$\mathrm{T}=\{(0,1),(2,3)\}$

T is not reflexive: There is no loop at 0 .
T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0 .
T is transitive: The transitivity condition is vacuously true for T.

Relations on Sets

- Properties of Relations on Infinite Sets:
- Suppose a relation R is defined on an infinite set A :
- Reflexivity: $\forall \mathrm{x} \in \mathrm{A}, \mathrm{x}$ R x.
- Symmetry: $\forall x, y \in A$, if $x \operatorname{l} y$ then $y R x$.
- Transitivity: $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, if $\mathrm{x} R \mathrm{y}$ and y R z then x R z .
- Example: property of equality
- R is a relation on \mathbf{R}, for all real numbers x and y :

$$
x R y \Leftrightarrow x=y
$$

R is reflexive: For all $x \in R, x R(x=x)$.
R is symmetric: For all $x, y \in R, \quad$ if $x R y$ then $y R x$.

$$
\text { if } x=y \text { then } y=x .
$$

R is transitive: For all $x, y, z \in R$, if $x R y$ and $y R z$ then $x R z$

$$
\text { if } \mathrm{x}=\mathrm{y} \text { and } \mathrm{y}=\mathrm{z} \text { then } \mathrm{x}=\mathrm{z} \text {. }
$$

Relations on Sets

- Example: properties of "Less Than"

$$
\text { For all } x, y \in R, x R y \Leftrightarrow x<y
$$

R is not reflexive: R is reflexive if, and only if, $\forall x \in R, x R x$. By definition of R, this means that $\forall x \in R, x<x$.

This is false: $\exists \mathrm{x}=0 \in \mathrm{R}$ such that $\mathrm{x} \nless \mathrm{x}$.
R is not symmetric: R is symmetric if, and only if, $\forall x, y \in R$, if $x R y$ then y R x .

By definition of R, this means that $\forall x, y \in R$, if $x<y$ then $y<x$ This is false: $\exists \mathrm{x}=0, \mathrm{y}=1 \in \mathrm{R}$ such that $\mathrm{x}<\mathrm{y}$ and $\mathrm{y} \nless \mathrm{x}$.
R is transitive: R is transitive if, and only if, for all $x, y, z \in R$, if $x R y$ and $y R z$, then $x R z$.
By definition of R, this means that for all $x, y, z \in R$, if $x<y$ and $\mathrm{y}<\mathrm{z}$, then $\mathrm{x}<\mathrm{z}$.

Relations on Sets

- Example: congruence modulo 3

For all $\mathrm{m}, \mathrm{n} \in \mathrm{Z}, \mathrm{mTn} \mathrm{n} \Leftrightarrow 3 \mid(\mathrm{m}-\mathrm{n})$.
T is reflexive: Suppose m is a particular but arbitrarily chosen integer. [We must show that m Tm.] Now $m-m=0$. But $3 \mid 0$ since $0=3 \cdot 0$. Hence $3 \mid(\mathrm{m}-\mathrm{m})$. Thus, by definition of T, mTm

T is symmetric: Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition mTn . [We must show that $n T m$.] By definition of T, since $m T n$ then $3 \mid(m-n)$. By definition of "divides," this means that $\mathrm{m}-\mathrm{n}=3 \mathrm{k}$, for some integer k . Multiplying both sides by -1 gives $\mathrm{n}-\mathrm{m}=3(-\mathrm{k})$. Since $-k$ is an integer, this equation shows that $3 \mid(n-m)$. Hence, by definition of T, nT m.

Relations on Sets

- Example: congruence modulo 3

$$
\text { For all } \mathrm{x}, \mathrm{y} \in \mathrm{Z}, \mathrm{mTn} \Leftrightarrow 3 \mid(\mathrm{m}-\mathrm{n}) \text {. }
$$

T is transitive: Suppose m, n, and p are particular but arbitrarily chosen integers that satisfy the condition mTn and nTp . [We must show that $m T p$.] By definition of T , since mTn and nT p , then $3 \mid(\mathrm{m}-\mathrm{n})$ and $3 \mid(\mathrm{n}-\mathrm{p})$. By definition of "divides," this means that $\mathrm{m}-\mathrm{n}=3 \mathrm{r}$ and $\mathrm{n}-\mathrm{p}=3 \mathrm{~s}$, for some integers r and s . Adding the two equations gives $(\mathrm{m}-\mathrm{n})+(\mathrm{n}-\mathrm{p})=3 \mathrm{r}+3 \mathrm{~s}$, and simplifying gives that $m-p=3(r+s)$. Since $r+s$ is an integer, this equation shows that $3 \mid(m-p)$. Hence, by definition of T, mTp.

The Transitive Closure of a Relation

- Let A be a set and R a relation on A . The transitive closure of R is the relation R^{t} on A that satisfies the following three properties:

1. R^{t} is transitive
2. $\mathrm{R} \subseteq \mathrm{R}^{\mathrm{t}}$
3. If S is any other transitive relation that contains R, then $R^{t} \subseteq S$

Example: Let $\mathrm{A}=\{0,1,2,3\}$
$\mathrm{R}=\{(0,1),(1,2),(2,3)\} \quad \mathrm{R}^{\mathrm{t}}=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$

Equivalence Relation

- Let A be a set and R a relation on A .
R is an equivalence relation $\Leftrightarrow \mathrm{R}$ is reflexive, symmetric, and transitive
- Example: $\mathrm{X}=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

A relation R on $X: \quad A R B \Leftrightarrow$ the least element of A equals the least element of B
R is an equivalence relation on X :
\mathbf{R} is reflexive: Suppose A is a nonempty subset of $\{1,2,3\}$ [We must show that $A R A$]
By definition of R, A R A : the least element of A equals the least element of A.
\mathbf{R} is symmetric: Suppose A and B are nonempty subsets of $\{1,2,3\}$ and A R B.
[We must show that B RA] By A R B, the least element of A equals the least element of B. Thus, by symmetry of equality, B R A.
\mathbf{R} is transitive: Suppose A, B, and C are nonempty subsets of $\{1,2,3\}$, A R B, and B R C.
[We must show that A R C.] By A R B, the least element of A equals the least element of B
By B R C, the least element of B equals the least element of C.
By transitivity of equality, the least element of A equals the least element of C: A R C.

The Relation Induced by a Partition

- Example:The Relation Induced by a Partition: given a partition of a set A, the relation induced by the partition, R, is defined on A as follows: for all $x, y \in A, x R y \Leftrightarrow$ there is a subset A_{i} of the partition such that both x and y are in A_{i}.
- Example: Let $\mathrm{A}=\{0,1,2,3,4\}$ and consider the following partition of A: $\{0,3,4\},\{1\},\{2\}$.

0 R 3 because both 0 and 3 are in $\{0,3,4\}$
3 R 0 because both 3 and 0 are in $\{0,3,4\}$
0 R 4 because both 0 and 4 are in $\{0,3,4\}$
4 R 0 because both 4 and 0 are in $\{0,3,4\}$
3 R 4 because both 3 and 4 are in $\{0,3,4\}$
4 R 3 because both 4 and 3 are in $\{0,3,4\}$
0 R 0 because both 0 and 0 are in $\{0,3,4\}$
3 R 3 because both 3 and 3 are in $\{0,3,4\}$
4 R 4 because both 4 and 4 are in $\{0,3,4\}$

1 R 1 because both 1 and 1 are in $\{1\}$
2 R 2 because both 2 and 2 are in $\{2\}$
$\mathrm{R}=\{(0,0),(0,3),(0,4),(1,1),(2,2)$,
$(3,0),(3,3),(3,4),(4,0)$, $(4,3),(4,4)\}$.

The Relation Induced by a Partition

- Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.
Proof: Suppose A is a set with a partition (finite): $A_{1}, A_{2}, \ldots, A_{n}$ $A_{i} \cap A_{j} \neq \emptyset$ whenever $\mathrm{i} \neq \mathrm{j}$ and $\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \cdots \cup \mathrm{~A}_{\mathrm{n}}=\mathrm{A}$ 。
For all $x, y \in A, x R y \Leftrightarrow$ there is a set A_{i} of the partition such that $x \in A_{i}$ and $y \in A_{i}$.

Proof that R is reflexive: Suppose $x \in A$. Since $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of $A, A_{1} \cup A_{2} \cup \cdots \cup A_{n}=A$, it follows that $x \in A_{i}$ for some i.

There is a set A_{i} of the partition such that $x \in A_{i}$. By definition of $\mathrm{R}, \mathrm{x} \mathrm{R} \mathrm{x}$.

The Relation Induced by a Partition

Proof that R is symmetric: Suppose x and y are elements of A such that $x R y$. Then there is a subset A_{i} of the partition such that $x \in A_{i}$ and $y \in A_{i}$ by definition of R. It follows that the statement there is a subset A_{i} of the partition such that $y \in A_{i}$ and $x \in A_{i}$ is also true. By definition of $\mathrm{R}, \mathrm{y} \mathrm{R} \mathrm{x}$.

The Relation Induced by a Partition

Proof that R is transitive: Suppose x, y, and z are in A and $x R y$ and $y R z$. By definition of R, there are subsets A_{i} and A_{j} of the partition such that x and y are in A_{i} and y and z are in A_{j}.
Suppose $A_{i} \neq A_{j}$. [We will deduce a contradiction.] Then $A_{i} \cap A_{j}=\emptyset$ since $\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right\}$ is a partition of A. But y is in A_{i} and y is in A_{j} also. Hence $A_{i} \cap A_{j} \neq \emptyset$. [This contradicts the fact that $A_{i} \cap A_{j}=\emptyset$.] Thus $A_{i}=A_{j}$. It follows that x, y, and z are all in A_{i}, and so in particular, x and z are in A_{i}.
Thus, by definition of $\mathrm{R}, \mathrm{x} \mathrm{Rz}$.

Equivalence Classes

- Let A be a set and R an equivalence relation on A . For each element a in A , the equivalence class of a (the class of a) is the set of all elements x in A such that x is related to a by R .

$$
[\mathrm{a}]=\{\mathrm{x} \in \mathrm{~A} \mid \mathrm{xR} \mathrm{a}\}
$$

- Example: Let $\mathrm{A}=\{0,1,2,3,4\}$ and R be a relation on A :
$R=\{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0),(4,4)\}$
R is an equivalence relation
$[0]=\{x \in A \mid x R 0\}=\{0,4\}=[4]$
$[1]=\{x \in A \mid x R 1\}=\{1,3\}=[3]$
$[2]=\{x \in A \mid x R 2\}=\{2\}$
$\{0,4\},\{1,3\}$ and $\{2\}$ are distinct equivalence classes

Equivalence Classes of a Relation on a Set of Subsets

- $\mathrm{X}=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

AR B \Leftrightarrow the least element of A equals the least element of B
$[\{1\}]=\{\{1\},\{1,2\},\{1,3\},\{1,2,3\}\}=[\{1,2\}]=[\{1,3\}]=$
$=[\{1,2,3\}]$
$[\{2\}]=\{\{2\},\{2,3\}\}=[\{2,3\}]$
$[\{3\}]=\{\{3\}\}$

Equivalence Classes of the Identity Relation

- Let A be any set and R a relation on A : For all x and y in A ,

$$
x R y \Leftrightarrow x=y
$$

Given any a in A, the class of a is:

$$
[a]=\{x \in A \mid x R a\}=\{a\}
$$

since the only element of A that equals a is a.

Equivalence Classes

- Let A be a set and R an equivalence relation on A .

For any a and b elements of A , if a R b , then $[\mathrm{a}]=[\mathrm{b}]$.
Proof: $[\mathrm{a}]=[\mathrm{b}] \stackrel{\mathrm{a}}{ } \mathrm{a}] \subseteq[\mathrm{b}]$ and $[\mathrm{b}] \subseteq[\mathrm{a}]$.

1. $[\mathrm{a}] \subseteq[\mathrm{b}]$

Let $x \in[a]$ iff then $x R$ a.
a Rb by hypothesis \rightarrow by transitivity of $\mathrm{R}, \mathrm{xRb} \rightarrow \mathrm{x} \in[\mathrm{b}]$
2. $[\mathrm{b}] \subseteq[\mathrm{a}]$

Let $x \in[b]$ iff then $x R b$.
b R a by hypothesis and symmetry $\boldsymbol{\rightarrow}$ by transitivity of R , xRa
$\rightarrow \mathrm{x} \in[\mathrm{a}]$

Equivalence Classes

- If A is a set, R is an equivalence relation on A , and a and b are elements of A, then either $[\mathrm{a}] \cap[\mathrm{b}]=\varnothing$ or $[\mathrm{a}]=[\mathrm{b}]$.

Proof:

Suppose A is a set, R is an equivalence relation on A , a and b are elements of A:

Case 1: a R b: by the previous theorem, $[\mathrm{a}]=[\mathrm{b}]$.
Therefore, $[\mathrm{a}] \cap[\mathrm{b}]=\emptyset$ or $[\mathrm{a}]=[\mathrm{b}]$ is true.
Case 2: a | P b (we will prove the $[\mathrm{a}] \cap[\mathrm{b}]=\varnothing$).
By element method, by contradiction, there exists an element x in A s.t. $\mathrm{x} \in[\mathrm{a}] \cap[\mathrm{b}] \rightarrow \mathrm{x} \in[\mathrm{a}]$ and $\mathrm{x} \in[\mathrm{b}] \rightarrow$ so x R a and xRb
By symmetry and transitivity, a R b (contradiction).

Congruence Modulo 3

- Let R be the relation of congruence modulo 3 on the set Z of all integers: for all integers m and n,

$$
\mathrm{mRn} \Leftrightarrow 3 \mid(\mathrm{m}-\mathrm{n}) \Leftrightarrow \mathrm{m} \equiv \mathrm{n}(\bmod 3) .
$$

Solution For each integer a,

$$
\begin{aligned}
& {[\mathrm{a}]=\{\mathrm{x} \in \mathrm{Z}|3|(\mathrm{x}-\mathrm{a})\}=\{\mathrm{x} \in \mathrm{Z} \mid \mathrm{x}-\mathrm{a}=3 \mathrm{k}, \text { for some integer } \mathrm{k}\}} \\
& =\{\mathrm{x} \in \mathrm{Z} \mid \mathrm{x}=3 \mathrm{k}+\mathrm{a}, \text { for some integer } \mathrm{k}\} . \\
& {[0]=\{\mathrm{x} \in \mathrm{Z} \mid \mathrm{x}=3 \mathrm{k}+0 \text {, for some int } \mathrm{k}\}=\{\mathrm{x} \in \mathrm{Z} \mid \mathrm{x}=3 \mathrm{k}, \text { for some integer } \mathrm{k}\}} \\
& =\{\ldots-9,-6,-3,0,3,6,9, \ldots\}=[3]=[-3]=[6]=[-6]=\ldots \\
& {[1]=\{\mathrm{x} \in \mathrm{Z} \mid \mathrm{x}=3 \mathrm{k}+1, \text { for some integer } \mathrm{k}\}} \\
& =\{\ldots-8,-5,-2,1,4,7,10, \ldots\}=[4]=[-2]=[7]=[-5]=\ldots \\
& {[2]=\{\mathrm{x} \in \mathrm{Z} \mid \mathrm{x}=3 \mathrm{k}+2, \text { for some integer } \mathrm{k}\}} \\
& =\{\ldots-4,-1,2, \ldots\}=[5]=[-1]=[8]=[-4]=\ldots
\end{aligned}
$$

Congruence Modulo

- Let m and n be integers and let d be a positive integer. m is congruent to n modulo d :

$$
\mathrm{m} \equiv \mathrm{n}(\bmod \mathrm{~d}) \Leftrightarrow \mathrm{d} \mid(\mathrm{m}-\mathrm{n})
$$

Example:
$12 \equiv 7(\bmod 5)$ because $12-7=5=5 \cdot 1$
\rightarrow
$5 \mid(12-7)$.

Rational Numbers Are Equivalence Classes

- Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero: $\mathrm{A}=\mathrm{Z} \times(\mathrm{Z}-\{0\})$
R is a relation on A : for all $(a, b),(c, d) \in A$,

$$
(\mathrm{a}, \mathrm{~b}) \mathrm{R}(\mathrm{c}, \mathrm{~d}) \Leftrightarrow \mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}
$$

R is an equivalence relation
Example equivalence class:

$$
\begin{gathered}
{[(1,2)]=\{(1,2),(-1,-2),(2,4),(-2,-4),(3,6),(-3,-6), \ldots\}} \\
\frac{1}{2}=\frac{-1}{-2}=\frac{2}{4}=\frac{-2}{-4}=\frac{3}{6}=\frac{-3}{-6} \text { and so forth. }
\end{gathered}
$$

Antisymmetry

- Let R be a relation on a set A .

R is antisymmetric \Leftrightarrow for all $\mathrm{a}, \mathrm{b} \in \mathrm{A}$, if aRb and bRa then $\mathrm{a}=\mathrm{b}$

R is not antisymmetric \Leftrightarrow there exist $\mathrm{a}, \mathrm{b} \in \mathrm{A}$ s.t. $\mathrm{aRb}, \mathrm{bRa}, \mathrm{but} \mathrm{a} \neq \mathrm{b}$

0 R 2 and 2 R 0 but $0 \neq 2$

Antisymmetry of "Divides" Relations

- For all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+}, \mathrm{a} \mathrm{R}_{1} \mathrm{~b} \Leftrightarrow \mathrm{a} \mid \mathrm{b}$.
R_{1} is antisymmetric: Suppose $a, b \in Z^{+}$such that $a R_{1} b$ and $b R_{1} a$. [We must show that $\mathrm{a}=\mathrm{b}$]
By definition of $\mathrm{R}_{1}, \mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a} \rightarrow \mathrm{b}=\mathrm{k}_{1} \mathrm{a}$ and $\mathrm{a}=\mathrm{k}_{2} \mathrm{~b}, \mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{Z}$ (and both are positive since a and b are positive) $\rightarrow \mathrm{b}=\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{~b} \rightarrow$
Dividing both sides by b gives $\mathrm{k}_{1} \mathrm{k}_{2}=1$ (and both $\left.>0\right) \rightarrow \mathrm{k}_{1}=\mathrm{k}_{2}=1 \rightarrow$ $\mathrm{a}=\mathrm{b}$
- For all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}, \mathrm{a} \mathrm{R}_{2} \mathrm{~b} \Leftrightarrow \mathrm{a} \mid \mathrm{b}$.
R_{2} is not antisymmetric:
Counterexample: $\mathrm{a}=2$ and $\mathrm{b}=-2 \rightarrow \mathrm{a} \neq \mathrm{b}$
$\mathrm{a} \mid \mathrm{b}$ since $-2=(-1) \cdot 2 \rightarrow \mathrm{aR}_{2} \mathrm{~b}$
$\mathrm{b} \mid \mathrm{a}$ since $2=(-1)(-2) \rightarrow \mathrm{bR}_{2} \mathrm{a}$

Partial Order Relations

- Let R be a relation defined on a set A .
R is a partial order relation $\Leftrightarrow R$ is reflexive, antisymmetric and transitive.
- Example:The "Subset" Relation

Let A be any collection of sets and \subseteq (the "subset") relation on A:
For all $U, V \in A, U \subseteq V \Leftrightarrow$ for all x, if $x \in U$ then $x \in V$.
\subseteq is a partial order (reflexive, transitive and antisymmetric)

Proof that \subseteq is antisymmetric: for all sets U and V in A
if $\mathrm{U} \subseteq \mathrm{V}$ and $\mathrm{V} \subseteq \mathrm{U}$ then $\mathrm{U}=\mathrm{V}$ (by definition of equality of sets)

The "Less Than or Equal to" Relation

- The "less than or equal to" relation \leq on \mathbf{R} (reals): for all $\mathrm{x}, \mathrm{y} \in \mathbf{R}$

$$
\mathrm{x} \leq \mathrm{y} \Leftrightarrow \mathrm{x}<\mathrm{y} \text { or } \mathrm{x}=\mathrm{y} .
$$

\leq is a partial order relation:
\leq is reflexive: $\mathrm{x} \leq \mathrm{x}$ for all real numbers. $\mathrm{x} \leq \mathrm{x}$ means that $\mathrm{x}<\mathrm{x}$ or $\mathrm{x}=$ x , and $\mathrm{x}=\mathrm{x}$ is always true.
\leq is antisymmetric: for all $\mathrm{x}, \mathrm{y} \in \mathbf{R}$, if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$ then $\mathrm{x}=\mathrm{y}$.
\leq is transitive: for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathbf{R}$, if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$ then $\mathrm{x} \leq \mathrm{z}$.

Lexicographic Order

- Order in an English dictionary: compare letters one by one from left to right in words.
- Let A be a set with a partial order relation R , and let S be a set of strings over $\mathrm{A} . \preccurlyeq$ is a relation on S:for any 2 strings in $\mathrm{S}, \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{m}}$ and $b_{1} b_{2} \ldots b_{n}, m, n \in Z^{+}$:

1. If $m \leq n$ and $a_{i}=b_{i}$ for all $i=1,2, \ldots, m$, then $a_{1} a_{2} \ldots a_{m} \leqslant b_{1} b_{2} \ldots b_{n}$
2. If for some integer k with $k \leq m, k \leq n$, and $k \geq 1, a_{i}=b_{i}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{k}-1$, and $\mathrm{a}_{\mathrm{k}} \neq \mathrm{b}_{\mathrm{k}}$, but $\mathrm{a}_{\mathrm{k}} R \mathrm{~b}_{\mathrm{k}}$ then $\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{m}} \leqslant \mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{n}}$.
3. If ε is the null string and s is any string in S, then $\varepsilon \preccurlyeq s$.

If no strings are related other than by these three conditions, then \preccurlyeq is a partial order relation (lexicographic order for S).

Lexicographic Order

- Let $\mathrm{A}=\{\mathrm{x}, \mathrm{y}\}$ and R the partial order relation on A :
$R=\{(x, x),(x, y),(y, y)\}$.
Let S be the set of all strings over A, and \preccurlyeq the lexicographic order for S that corresponds to R.
$\mathrm{x} \preccurlyeq \mathrm{xx}$
$y x y \preccurlyeq y x y x x x$
$\mathrm{xx} \preccurlyeq \mathrm{xyx}$
$\varepsilon \preccurlyeq \mathrm{x}$
$\mathrm{x} \preccurlyeq \mathrm{xy}$
$\mathrm{x} \preccurlyeq \mathrm{y}$
$\mathrm{xxxy} \leqslant \mathrm{xy}$
$\varepsilon \preccurlyeq$ xухуух

Hasse Diagrams

- A Hasse Diagram is a simpler graph with a partial order relation defined on a finite set
- Example: let $\mathrm{A}=\{1,2,3,9,18\}$ and the "divides" relation | on A: for all $a, b \in A, \quad a \mid b \Leftrightarrow b=k a$ for some integer k.

- Start with a directed graph of the relation, placing vertices on the page so that all arrows point upward. Eliminate:

1. the loops at all the vertices
2. all arrows whose existence is implied by the transitive property
3. the direction indicators on the arrows

Hasse Diagrams

- The "subset" relation \subseteq on the $\operatorname{set} \mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})$: for all sets U and V in $\mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})$ $\mathrm{U} \subseteq \mathrm{V} \Leftrightarrow \forall \mathrm{x}$, if $\mathrm{x} \in \mathrm{U}$ then $\mathrm{x} \in \mathrm{V}$

Draw the directed graph of the relation in such a way that all arrows except loops point upward.
Strip away all loops, unnecessary arrows, and direction indicators to obtain the Hasse diagram.

(c) Paul Fodor (CS Stony Brook)

Hasse Diagrams

- Obtain the original directed graph from the Hasse diagram:

1. Reinsert the direction markers on the arrows making all arrows point upward.
2. Add loops at each vertex.
3. For each sequence of arrows from one point to a second and from that second point to a third, add an arrow from the first point to the third.

Partially and Totally Ordered Sets

- Let \leqslant be a partial order relation on a set A. Elements a and b of A are comparable \Leftrightarrow either $\mathrm{a} \leqslant \mathrm{b}$ or $\mathrm{b} \preccurlyeq \mathrm{a}$. Otherwise, a and b are noncomparable.
- If R is a partial order relation on a set A , and any two elements a and b in A are comparable, then R is a total order relation on A .
- The Hasse diagram for a total order relation can be drawn as a single vertical "chain."
- A set A is called a partially ordered set (or poset) with respect to a relation $\preccurlyeq \Leftrightarrow \leqslant$ is a partial order relation on A.
- A set A is called a totally ordered set with respect to a relation \preccurlyeq \Leftrightarrow A is partially ordered with respect to \preccurlyeq and \preccurlyeq is a total order.

Partially and Totally Ordered Sets

- Let A be a set that is partially ordered with respect to a relation \preccurlyeq. A subset B of A is called a chain \Leftrightarrow the elements in each pair of elements in B is comparable.
- The length of a chain is one less than the number of elements in the chain.
- Example: Chain of Subsets

The set $P(\{a, b, c\})$ is partially ordered with respect to \subseteq.

Chain of length 3: $\emptyset \subseteq\{a\} \subseteq\{a, b\} \subseteq\{a, b, c\}$

Partially and Totally Ordered Sets

- An element a in A is called a maximal element \Leftrightarrow for all b in A , either $\mathrm{b} \preccurlyeq a$ or b and a are not comparable.
- An element a in A is called a greatest element of $\mathrm{A} \Leftrightarrow$ for all b in $\mathrm{A}, \mathrm{b} \preccurlyeq \mathrm{a}$.
- An element a in A is called a minimal element \Leftrightarrow for all b in A , either $\mathrm{a} \preccurlyeq b$ or b and a are not comparable.
- An element a in A is called a least element of $\mathrm{A} \Leftrightarrow$ for all b in $\mathrm{A}, \mathrm{a} \preccurlyeq \mathrm{b}$.
- Example:

- one maximal element $=g=$ also the greatest element
- minimal elements: c, d and i
- there is no least element

Topological Sorting

- Given partial order relations \preccurlyeq and \preccurlyeq ' on a set A, \preccurlyeq, is compatible with $\preccurlyeq \Leftrightarrow$ for all a and b in A , if $\mathrm{a} \preccurlyeq \mathrm{b}$ then aß'b
- Given partial order relations \preccurlyeq and $\preccurlyeq '$ on a set $\mathrm{A}, \preccurlyeq^{\prime}$ is a topological sorting for $\preccurlyeq \Leftrightarrow \leqslant$ ' is a total order that is compatible with \preccurlyeq.
- Example: $\mathrm{P}(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})$ with partial order \subseteq (any element in $\mathrm{P}(\{a, b, c\})$ we can either compare them or not, e.g., $\{\mathrm{a}, \mathrm{b}\}$ with $\{\mathrm{a}, \mathrm{c}\}$

Total order:

$$
\varnothing \preccurlyeq^{\prime}\{a\} \preccurlyeq \preccurlyeq^{\prime}\{b\} \preccurlyeq \preccurlyeq^{\prime}\{c\} \preccurlyeq \preccurlyeq^{\prime}\{a, b\} \preccurlyeq \preccurlyeq^{\prime}\{a, c\} \preccurlyeq \preccurlyeq^{\prime}\{b, c\} \preccurlyeq \preccurlyeq^{\prime}\{a, b, c\}
$$

Topological Sorting

- Constructing a Topological Sorting:

1. Pick any minimal element x in A with respect to \preccurlyeq. [Such an element exists since A is nonempty.]
2. $\operatorname{Set} A^{\prime}=A-\{x\}$
3. Repeat steps a-c while $A^{\prime} \neq \emptyset$:
a. Pick any minimal element y in A'.
b. Define $\mathrm{x} \preccurlyeq \prime \mathrm{y}$.
c. Set $A^{\prime}=A^{\prime}-\{y\}$ and $x=y$.
