Functional Programming

CSE 215, Foundations of Computer Science
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse215


http://www.cs.stonybrook.edu/~cse215

4 N
Functional Programming

® Function evaluation is the basic concept for a
programming paradigm that has been implemented in

functional programming languages.

® The language ML (“Meta Language™) was originally
introduced in the 1970’ as part of a theorem proving
system, and was intended for describing and
implementing proof strategies.
e Standard ML of New Jersey (SML) is an implementation of ML.

® The basic mode of computation in SML is the use of the

definition and application of functions.

@ (c) Paul Fodor (CS Stony Brook) /




e
Install Standard ML

® Download from:

'http: //www.smlnj .Org

e Start Standard ML.:

*Type "sml" from the shell (run command line

in Windows)

¢ Exit Standard ML.:
o Ctrl-Z under Windows
e Ctrl-D under Unix/Mac

@ (c) Paul Fodor (CS Stony Brook)



http://www.smlnj.org/

4 ™
Standard ML

® The basic Cycle of SML activity has three parts:
°read input from the user,
® evaluate it,

*print the computed value (or an error message).

(c) Paul Fodor (CS Stony Brook) /




e

First SML example

® SML prompt:

© Simple example:

- 3

val it = 3 : int

® The first line contains the SML prompt, followed by an

expression typed in by the user and ended by a semicolon.

® The second line is SML’s response, indicating the value

of the input expression and its type.

(c) Paul Fodor (CS Stony Brook) /




™~
Interacting with SML

® SML has a number of built-in operators and data types.

® it provides the standard arithmetic operators

- 342;

val it = 5 : 1int

® The Boolean values true and false are available, as are
logical operators such as not (negation), andalso
(conjunction), and orelse (disjunction).

- not (true) ;

val 1t = false : bool
- true andalso false;
val 1t = false : bool

(c) Paul Fodor (CS Stony Brook) /




4 ™
Types in SML

® SML is a strongly typed language in that all (well-formed)
expressions have a type that can be determined by examining

the expression.

* As part of the evaluation process, SML determines the type of
the output value using suitable methods of type inference.

* Simple types include int, real, bool, and string.
® One can also associate identifiers with values,
- val five = 3+2;
val five = 5 : int

and thereby establish a new value binding,

- five;

val it = 5 : int
\ (c) Paul Fodor (CS Stony Brook) /




e

Function Definitions in SML

® The general form of a function definition in SML is:

fun <identifier> (<parameters>) =
<expression>;

* For example,
— fun double(x) = 2*x;
val double fn : int -> int

declares double as a function from integers to integers, i.e., of

type int =2 int
o Apply a function to an argument of the wrong type results in
an error message:

- double(2.0);
Error: operator and operand don’t agree

(c) Paul Fodor (CS Stony Brook) /




e
Function Definitions in SML

® The user may also explicitly indicate types:
- fun max(x:int,y:int,z:int) =
= 1f ((x>y) andalso (x>z)) then x
= else (if (y>z) then y else z);

val max = fn : int * int * int -> int

- max(3,2,2);
val i1t = 3 : int

@ (c) Paul Fodor (CS Stony Brook)




/ " " n " \
Recursive Definitions

® The use of recursive definitions is a main characteristic of functional
programming languages, and these languages encourage the use of

recursion over iterative constructs such as while loops:
- fun factorial(x) = if x=0 then 1
= else x*factorial (x-1) ;
val factorial = fn : int -> int
® The definition is used by SML to evaluate applications of the function to

specific arguments.
- factorial (5);
val it = 120 : int
- factorial (10) ;
val it = 3628800 : int

(c) Paul Fodor (CS Stony Brook) /




e

Greatest Common Divisor

® The greatest common divisor (gcd) of two positive integers can

defined recursively based on the following observations:
. gcd(n, n) = n,
gcd(m n) = gcd(n m), and

UJI\JP—*

. gcd(m, n) = gcd(m — n, n), if m > n.
® These identities suggest the following recursive definition:
- fun gecd(m,n) :int = if m=n then n
= else if m>n then gcd(m-n,n)
= else gcd(m,n-m) ;
val gcd = fn : int * int -> int
- ged (12, 30) ; - ged(1,20); - ged (125,56345) ;

val it = 6 : int val it =1 : int val it =5 : int

(c) Paul Fodor (CS Stony Brook)




e

Tuples in SML

® In SML tuples are finite sequences of arbitrary but fixed length,
where different components need not be of the same type.

- val t1 = (1,2,3);

val t1 = (1,2,3) : int * int * int

- val t2 = (4,(5.0,6));

val t2 = (4,(5.0,6)) : int * (real * int)

® The components of a tuple can be accessed by applying the built-

in functions #i, where i is a positive number.

- #1(t1); If a function #i Is applied to a tuple
val it = 1 : int with fewer than i components, an
- #2(t2); error results.

val it = (5.0,6) : real * int

(c) Paul Fodor (CS Stony Brook) /




4 N
Lists in SML

* A list in SML is a finite sequence of objects, all of the same type:

- [1,2,3];

val it = [1,2,3] : int list

- [true,false, true];

val 1t = [true,false,true] : bool 1list

- [[1,2,3],[4,5],[6]1];

val it = [[1,2,3],[4,5],[6]] : int list list

® The last example is a list of lists of integers.

@ (c) Paul Fodor (CS Stony Brook) /




e

Lists in SML

* All objects in a list must be of the same type:

- [1,[2]];
Error: operator and operand don’t agree

® An empty list is denoted by one of the following expressions:

- [1;

val it

[] : "a list

- nil;

val it = [] : "a list

* Note that the type is described in terms of a type variable "a.
Instantiating the type variable, by types such as int, results in
(different) empty lists of corresponding types.

(c) Paul Fodor (CS Stony Brook)

/




4 ™
Operations on Lists

e SML provides various functions for manipulating lists.

® The function hd returns the first element of its argument list.
- hd[1,2,3];

val it =1 : int

- hd[[1,2],[31];

val it = [1,2] : int 1list

Applying this function to the empty list will result in an error.

® The function tl removes the first element of its argument lists, and

returns the remaining list.
- t1[1,2,3];
val it = [2,3] : int 1list
- €1[[1,2],1[311;
val it = [[3]] : int list list
® The application of this function to the empty list will also result in an

€rror.

@ (c) Paul Fodor (CS Stony Brook) /




e

Operations on Lists

® Lists can be constructed by the (binary) function :: (read cons) that adds its first
argument to the front of the second argument.
- 5::[17
val it = [5] : int 1list
- 1::[2,3];
val it = [1,2,3] : int list
- [1,2]::[[31,[4,5,6,711;
val it = [[1,2],1[3]1,[4,5,6,7]] : int list list
The the arguments must be of the right type:
- [1]1::[2,3];
Error: operator and operand don’t agree
® Lists can also be compared for equality:
- [1,2,3]1=[1,2,3];
val it = true : bool
- [1,2]=[2,1];
val it = false : bool
- t1[1] = [1;
val it = true : bool
(c) Paul Fodor (CS Stony Brook)




4 ™
Defining List Functions

® Recursion is particularly useful for defining functions

that process lists.

® For example, consider the problem of defining an SML
function that takes as arguments two lists of the same type

and returns the concatenated list.

® In defining such list functions, it is helptul to keep in

mind that a list is either
— an empty list or

— of the form x: Y.

@ (c) Paul Fodor (CS Stony Brook) /




4 | ™
Concatenation

® In designing a function for concatenating two lists x
and y we thus distinguish two cases, depending on the
form of x:
®If x is an empty list, then concatenating x with y

yields just y.
®If x is of the form x1::x2, then concatenating x with
y is a list of the form x1::z, where z is the results of
concatenating x2 with y.
We can be more specific by observing that
x = hd(x)::tl(x).
o )




e

Concatenation

- fun concat(x,y) = if x=[] then y

= else hd(x)::concat(tl(x),y);

val concat = £fn : '’a l1list * ""a list -> ’'"’"a list

* Applying the function yields the expected results:
- concat([1l,2],[3,4,5]):;

val it = [1,2,3,4,5] : int 1list

- concat([],I[1,2]);

val it = [1,2] : int list

- concat([1,2],1[1)

val it = [1,2] : int list

(c) Paul Fodor (CS Stony Brook)




e
More List Functions

® The following function computes the length of its argument list:
- fun length (L) =

= if (L=nil) then 0

= else l+length(tl (L))

fn : ’'’a list -> int

val length

- length[1l,2,3];

val it = 3 : int

- length[[5],[4],([3]1,[2,1]1];
val it = 4 : int

- length[];

val it = 0 : int

(c) Paul Fodor (CS Stony Brook)




e

More List Functions

® The following function doubles all the elements in its argument
list (of integers):

- fun doubleall (L) =

= 1f L=[] then []

= else (2*hd (L)) : :doubleall (tl (L))

val doubleall = fn : int list -> int 1list

- doubleall[l,3,5,7];
val it = [2,6,10,14] : int list

(c) Paul Fodor (CS Stony Brook)




Reversing a List

* Concatenation of lists, for which we gave a recursive

definition, is actually a built-in operator in SML, denoted by
the symbol @.

e We use this operator in the following recursive definition of a
function that reverses a list.

- fun reverse (L) =

= if L = nil then nil

= else reverse(tl(L)) @ [hd(L)];

val reverse = fn : ’'’'a list -> '’a 1list

- reverse [1,2,3];
val it = [3,2,1] : int 1list

(c) Paul Fodor (CS Stony Brook)




Definition by Patterns

° h1SAAthncﬁonscmnakolxadeﬁnedvﬁapaﬂﬁrn&

e The general form of such definitions is:

<expressionl>

fun <identifier> (<patternl>)

| <identifier> (<pattern2>) = <expression2>

|

| <identifier> (<patternK>) = <expressionK>;

where the identifiers, which name the function, are all the
same, all patterns are of the same type, and all expressions

are of the same type.

the patterns are inspected in order and the first

o Exanqﬂe: , .
match determines the value of the function.

— fun reverse(nil) = nil
= | reverse(x::Xs) = reverse(xs) @ [x];
val reverse = fn : 'a list -> "a list

(c) Paul Fodor (CS Stony Brook)




Removing List Elements

® The following function removes all occurrences of its first
argument from its second argument list.

— fun remove(x,L) =

= if (L=[]) then []

= else (if (x=hd (L))

= then remove (x,tl (L))

= else hd(L) : :remove(x,tl(L)));

val remove = fn : '’a * '’a list -> ''a list

- remove(l,[5,3,1]);

val it = [5,3] : int list

- remove(2,[4,2,4,2,4,2,2]);
val it = [4,4,4] : int list

@ (c) Paul Fodor (CS Stony Brook)




Removing List Elements

® The remove function can be used in the definition of another
function that removes all duplicate occurrences of elements
from its argument list:

- fun removedupl (L) =

= if (L=[]) then []

= else hd(L) : :remove (hd (L) ,removedupl (t1(L))) ;

val removedupl = fn : "'a list -> ’"'a list

(c) Paul Fodor (CS Stony Brook)




e

Higher-Order Functions

® |n functional programming languages functions can be used

in definitions of other, so-called higher-order, functions.

® The following function, apply, applies its first argument (a
function) to all elements in its second argument (a list of
suitable type):

- fun apply(f,L) =

= if (L=[]) then []

= else £(hd(L)):: (apply(£f,tl1(L)))

val apply = fn : (''a -> 'b) * '7a list -> ’'b list
® We may apply apply with any function as argument:

- fun square(x) = (x:int) *x;

val square = fn : int -> int
- apply (square, [2,3,4]);
val it = [4,9,16] : int list

(c) Paul Fodor (CS Stony Brook)




Sorting

® We next design a function for sorting a list of integers:

e The function is recursive and based on a method known as

Merge-Sort.
® To sort a list L:

first split L into two disjoint sublists (of about equal size),
then (recursively) sort the sublists, and

finally merge the (now sorted) sublists.
® This recursive method is known as Merge-Sort

® [t requires suitable functions for
splitting a list into two sublists AND

merging two sorted lists into one sorted list

(c) Paul Fodor (CS Stony Brook)




e

Splitting

® We split a list by applying two functions, take and skip, which extract

alternate elements; respectively, the elements at odd-numbered positions

and the elements at even-numbered positions (if any).

® The definitions of the two functions mutually depend on each other, and

hence provide an example of mutual recursion, as indicated by the SML-

keyword and:

fun take (L) =
if L = nil then nil
else hd (L) : :skip(tl (L))

and

= skip (L) =
= if L=nil then nil

else take(tl(L));

val take = fn : "’a list -> ’'’"a list

val skip = fn : ’'’a list -> '’a list

take[l,2,3];

val it = [1,3] : int list

skip[1,2,3];

val it = [2] : int 1list

(c) Paul Fodor (CS Stony Brook)




Merging

® Merge pattern definition:
- fun merge([] /M) =M
= | merge(L,[]) = L
= | merge(x::x1,y::yl) =
= if (x:int)<y then x::merge(xl,y::yl)
= else y::merge(x::x1,yl);
val merge = fn : int list * int list -> int
list
- merge([1,5,7,91,12,3,5,5,10]);
val it = [1,2,3,5,5,5,7,9,10] : int list
- merge ([],[1,2]);
val it = [1,2] : int list
- merge([1,2],[])’
val it = [1,2] : int listfactor

(c) Paul Fodor (CS Stony Brook)




Merge Sort

— fun sort (L) =

= if L=[] then []

= else if tl(L)=[] then L

= else merge (sort(take (L)), sort(skip(L)));
val sort = fn : int list -> int list

(c) Paul Fodor (CS Stony Brook)




