
CSE 215, Foundations of Computer Science

Stony Brook University

http://www.cs.stonybrook.edu/~cse215

Functional Programming

http://www.cs.stonybrook.edu/~cse215

(c) Paul Fodor (CS Stony Brook)

Functional Programming

 Function evaluation is the basic concept for a

programming paradigm that has been implemented in

functional programming languages.

 The language ML (“Meta Language”) was originally

introduced in the 1970’s as part of a theorem proving

system, and was intended for describing and

implementing proof strategies.
 Standard ML of New Jersey (SML) is an implementation of ML.

 The basic mode of computation in SML is the use of the

definition and application of functions.

2

(c) Paul Fodor (CS Stony Brook)

Install Standard ML

Download from:

http://www.smlnj.org

 Start Standard ML:

Type ''sml'' from the shell (run command line

in Windows)

Exit Standard ML:

Ctrl-Z under Windows

Ctrl-D under Unix/Mac

3

http://www.smlnj.org/

(c) Paul Fodor (CS Stony Brook)

Standard ML

 The basic cycle of SML activity has three parts:

read input from the user,

evaluate it,

print the computed value (or an error message).

4

(c) Paul Fodor (CS Stony Brook)

First SML example

 SML prompt:

-

 Simple example:

- 3;

val it = 3 : int

 The first line contains the SML prompt, followed by an

expression typed in by the user and ended by a semicolon.

 The second line is SML’s response, indicating the value

of the input expression and its type.

5

(c) Paul Fodor (CS Stony Brook)

Interacting with SML

 SML has a number of built-in operators and data types.

 it provides the standard arithmetic operators

- 3+2;

val it = 5 : int

 The Boolean values true and false are available, as are

logical operators such as not (negation), andalso

(conjunction), and orelse (disjunction).

- not(true);

val it = false : bool

- true andalso false;

val it = false : bool

6

(c) Paul Fodor (CS Stony Brook)

Types in SML
 SML is a strongly typed language in that all (well-formed)

expressions have a type that can be determined by examining

the expression.

 As part of the evaluation process, SML determines the type of

the output value using suitable methods of type inference.

 Simple types include int, real, bool, and string.

 One can also associate identifiers with values,

- val five = 3+2;

val five = 5 : int

and thereby establish a new value binding,

- five;

val it = 5 : int
7

(c) Paul Fodor (CS Stony Brook)

Function Definitions in SML
 The general form of a function definition in SML is:

fun <identifier> (<parameters>) =

<expression>;

 For example,

- fun double(x) = 2*x;

val double = fn : int -> int

declares double as a function from integers to integers, i.e., of

type int → int

 Apply a function to an argument of the wrong type results in

an error message:

- double(2.0);

Error: operator and operand don’t agree ...
8

(c) Paul Fodor (CS Stony Brook)

Function Definitions in SML

 The user may also explicitly indicate types:

- fun max(x:int,y:int,z:int) =

= if ((x>y) andalso (x>z)) then x

= else (if (y>z) then y else z);

val max = fn : int * int * int -> int

- max(3,2,2);

val it = 3 : int

9

(c) Paul Fodor (CS Stony Brook)

Recursive Definitions

 The use of recursive definitions is a main characteristic of functional

programming languages, and these languages encourage the use of

recursion over iterative constructs such as while loops:

- fun factorial(x) = if x=0 then 1

= else x*factorial(x-1);

val factorial = fn : int -> int

 The definition is used by SML to evaluate applications of the function to

specific arguments.

- factorial(5);

val it = 120 : int

- factorial(10);

val it = 3628800 : int

10

(c) Paul Fodor (CS Stony Brook)

Greatest Common Divisor

 The greatest common divisor (gcd) of two positive integers can

defined recursively based on the following observations:

1. gcd(n, n) = n,

2. gcd(m, n) = gcd(n,m), and

3. gcd(m, n) = gcd(m − n, n), if m > n.

 These identities suggest the following recursive definition:

- fun gcd(m,n):int = if m=n then n

= else if m>n then gcd(m-n,n)

= else gcd(m,n-m);

val gcd = fn : int * int -> int

- gcd(12,30); - gcd(1,20); - gcd(125,56345);

val it = 6 : int val it = 1 : int val it = 5 : int

11

(c) Paul Fodor (CS Stony Brook)

Tuples in SML

 In SML tuples are finite sequences of arbitrary but fixed length,

where different components need not be of the same type.

- val t1 = (1,2,3);

val t1 = (1,2,3) : int * int * int

- val t2 = (4,(5.0,6));

val t2 = (4,(5.0,6)) : int * (real * int)

 The components of a tuple can be accessed by applying the built-

in functions #i, where i is a positive number.

- #1(t1);

val it = 1 : int

- #2(t2);

val it = (5.0,6) : real * int

12

If a function #i is applied to a tuple

with fewer than i components, an

error results.

(c) Paul Fodor (CS Stony Brook)

Lists in SML

 A list in SML is a finite sequence of objects, all of the same type:

- [1,2,3];

val it = [1,2,3] : int list

- [true,false,true];

val it = [true,false,true] : bool list

- [[1,2,3],[4,5],[6]];

val it = [[1,2,3],[4,5],[6]] : int list list

 The last example is a list of lists of integers.

13

(c) Paul Fodor (CS Stony Brook)

Lists in SML

 All objects in a list must be of the same type:

- [1,[2]];

Error: operator and operand don’t agree

 An empty list is denoted by one of the following expressions:

- [];

val it = [] : ’a list

- nil;

val it = [] : ’a list

 Note that the type is described in terms of a type variable ’a.

Instantiating the type variable, by types such as int, results in

(different) empty lists of corresponding types.
14

(c) Paul Fodor (CS Stony Brook)

Operations on Lists
 SML provides various functions for manipulating lists.

 The function hd returns the first element of its argument list.

- hd[1,2,3];

val it = 1 : int

- hd[[1,2],[3]];

val it = [1,2] : int list

Applying this function to the empty list will result in an error.

 The function tl removes the first element of its argument lists, and

returns the remaining list.

- tl[1,2,3];

val it = [2,3] : int list

- tl[[1,2],[3]];

val it = [[3]] : int list list

 The application of this function to the empty list will also result in an

error.
15

(c) Paul Fodor (CS Stony Brook)

Operations on Lists
 Lists can be constructed by the (binary) function :: (read cons) that adds its first

argument to the front of the second argument.

- 5::[];

val it = [5] : int list

- 1::[2,3];

val it = [1,2,3] : int list

- [1,2]::[[3],[4,5,6,7]];

val it = [[1,2],[3],[4,5,6,7]] : int list list

The the arguments must be of the right type:

- [1]::[2,3];

Error: operator and operand don’t agree

 Lists can also be compared for equality:

- [1,2,3]=[1,2,3];

val it = true : bool

- [1,2]=[2,1];

val it = false : bool

- tl[1] = [];

val it = true : bool
16

(c) Paul Fodor (CS Stony Brook)

Defining List Functions

 Recursion is particularly useful for defining functions

that process lists.

For example, consider the problem of defining an SML

function that takes as arguments two lists of the same type

and returns the concatenated list.

 In defining such list functions, it is helpful to keep in

mind that a list is either

– an empty list or

– of the form x::y.

17

(c) Paul Fodor (CS Stony Brook)

Concatenation

 In designing a function for concatenating two lists x

and y we thus distinguish two cases, depending on the

form of x:

 If x is an empty list, then concatenating x with y

yields just y.

 If x is of the form x1::x2, then concatenating x with

y is a list of the form x1::z, where z is the results of

concatenating x2 with y.

 We can be more specific by observing that

x = hd(x)::tl(x).
18

(c) Paul Fodor (CS Stony Brook)

Concatenation

- fun concat(x,y) = if x=[] then y

= else hd(x)::concat(tl(x),y);

val concat = fn : ’’a list * ’’a list -> ’’a list

 Applying the function yields the expected results:

- concat([1,2],[3,4,5]);

val it = [1,2,3,4,5] : int list

- concat([],[1,2]);

val it = [1,2] : int list

- concat([1,2],[]);

val it = [1,2] : int list

19

(c) Paul Fodor (CS Stony Brook)

More List Functions

 The following function computes the length of its argument list:

- fun length(L) =

= if (L=nil) then 0

= else 1+length(tl(L));

val length = fn : ’’a list -> int

- length[1,2,3];

val it = 3 : int

- length[[5],[4],[3],[2,1]];

val it = 4 : int

- length[];

val it = 0 : int

20

(c) Paul Fodor (CS Stony Brook)

More List Functions

 The following function doubles all the elements in its argument

list (of integers):

- fun doubleall(L) =

= if L=[] then []

= else (2*hd(L))::doubleall(tl(L));

val doubleall = fn : int list -> int list

- doubleall[1,3,5,7];

val it = [2,6,10,14] : int list

21

(c) Paul Fodor (CS Stony Brook)

Reversing a List

 Concatenation of lists, for which we gave a recursive

definition, is actually a built-in operator in SML, denoted by

the symbol @.

 We use this operator in the following recursive definition of a

function that reverses a list.

- fun reverse(L) =

= if L = nil then nil

= else reverse(tl(L)) @ [hd(L)];

val reverse = fn : ’’a list -> ’’a list

- reverse [1,2,3];

val it = [3,2,1] : int list

22

(c) Paul Fodor (CS Stony Brook)

Definition by Patterns
 In SML functions can also be defined via patterns.

 The general form of such definitions is:

fun <identifier>(<pattern1>) = <expression1>

| <identifier>(<pattern2>) = <expression2>

| ...

| <identifier>(<patternK>) = <expressionK>;

where the identifiers, which name the function, are all the

same, all patterns are of the same type, and all expressions

are of the same type.

 Example:

- fun reverse(nil) = nil

= | reverse(x::xs) = reverse(xs) @ [x];

val reverse = fn : ’a list -> ’a list
23

the patterns are inspected in order and the first

match determines the value of the function.

(c) Paul Fodor (CS Stony Brook)

Removing List Elements

 The following function removes all occurrences of its first

argument from its second argument list.

- fun remove(x,L) =

= if (L=[]) then []

= else (if (x=hd(L))

= then remove(x,tl(L))

= else hd(L)::remove(x,tl(L)));

val remove = fn : ’’a * ’’a list -> ’’a list

- remove(1,[5,3,1]);

val it = [5,3] : int list

- remove(2,[4,2,4,2,4,2,2]);

val it = [4,4,4] : int list

24

(c) Paul Fodor (CS Stony Brook)

Removing List Elements

 The remove function can be used in the definition of another

function that removes all duplicate occurrences of elements

from its argument list:

- fun removedupl(L) =

= if (L=[]) then []

= else hd(L)::remove(hd(L),removedupl(tl(L)));

val removedupl = fn : ’’a list -> ’’a list

25

(c) Paul Fodor (CS Stony Brook)

Higher-Order Functions

 In functional programming languages functions can be used

in definitions of other, so-called higher-order, functions.

 The following function, apply, applies its first argument (a

function) to all elements in its second argument (a list of

suitable type):

- fun apply(f,L) =

= if (L=[]) then []

= else f(hd(L))::(apply(f,tl(L)));

val apply = fn : (’’a -> ’b) * ’’a list -> ’b list

 We may apply apply with any function as argument:

- fun square(x) = (x:int)*x;

val square = fn : int -> int

- apply(square,[2,3,4]);

val it = [4,9,16] : int list
26

(c) Paul Fodor (CS Stony Brook)

Sorting

 We next design a function for sorting a list of integers:

 The function is recursive and based on a method known as

Merge-Sort.

 To sort a list L:

 first split L into two disjoint sublists (of about equal size),

 then (recursively) sort the sublists, and

 finally merge the (now sorted) sublists.

 This recursive method is known as Merge-Sort

 It requires suitable functions for

 splitting a list into two sublists AND

 merging two sorted lists into one sorted list

27

(c) Paul Fodor (CS Stony Brook)

Splitting
 We split a list by applying two functions, take and skip, which extract

alternate elements; respectively, the elements at odd-numbered positions

and the elements at even-numbered positions (if any).

 The definitions of the two functions mutually depend on each other, and

hence provide an example of mutual recursion, as indicated by the SML-

keyword and:
- fun take(L) =

= if L = nil then nil

= else hd(L)::skip(tl(L))

= and

= skip(L) =

= if L=nil then nil

= else take(tl(L));

val take = fn : ’’a list -> ’’a list

val skip = fn : ’’a list -> ’’a list

- take[1,2,3];

val it = [1,3] : int list

- skip[1,2,3];

val it = [2] : int list

28

(c) Paul Fodor (CS Stony Brook)

Merging
 Merge pattern definition:

- fun merge([],M) = M

= | merge(L,[]) = L

= | merge(x::xl,y::yl) =

= if (x:int)<y then x::merge(xl,y::yl)

= else y::merge(x::xl,yl);

val merge = fn : int list * int list -> int

list

- merge([1,5,7,9],[2,3,5,5,10]);

val it = [1,2,3,5,5,5,7,9,10] : int list

- merge([],[1,2]);

val it = [1,2] : int list

- merge([1,2],[]);

val it = [1,2] : int listfactor

29

(c) Paul Fodor (CS Stony Brook)

Merge Sort

- fun sort(L) =

= if L=[] then []

= else if tl(L)=[] then L

= else merge(sort(take(L)),sort(skip(L)));

val sort = fn : int list -> int list

30

