
CSE 215, Foundations of Computer Science

Stony Brook University

http://www.cs.stonybrook.edu/~cse215

Functional Programming

http://www.cs.stonybrook.edu/~cse215

(c) Paul Fodor (CS Stony Brook)

Functional Programming

 Function evaluation is the basic concept for a

programming paradigm that has been implemented in

functional programming languages.

 The language ML (“Meta Language”) was originally

introduced in the 1970’s as part of a theorem proving

system, and was intended for describing and

implementing proof strategies.
 Standard ML of New Jersey (SML) is an implementation of ML.

 The basic mode of computation in SML is the use of the

definition and application of functions.

2

(c) Paul Fodor (CS Stony Brook)

Install Standard ML

Download from:

http://www.smlnj.org

 Start Standard ML:

Type ''sml'' from the shell (run command line

in Windows)

Exit Standard ML:

Ctrl-Z under Windows

Ctrl-D under Unix/Mac

3

http://www.smlnj.org/

(c) Paul Fodor (CS Stony Brook)

Standard ML

 The basic cycle of SML activity has three parts:

read input from the user,

evaluate it,

print the computed value (or an error message).

4

(c) Paul Fodor (CS Stony Brook)

First SML example

 SML prompt:

-

 Simple example:

- 3;

val it = 3 : int

 The first line contains the SML prompt, followed by an

expression typed in by the user and ended by a semicolon.

 The second line is SML’s response, indicating the value

of the input expression and its type.

5

(c) Paul Fodor (CS Stony Brook)

Interacting with SML

 SML has a number of built-in operators and data types.

 it provides the standard arithmetic operators

- 3+2;

val it = 5 : int

 The Boolean values true and false are available, as are

logical operators such as not (negation), andalso

(conjunction), and orelse (disjunction).

- not(true);

val it = false : bool

- true andalso false;

val it = false : bool

6

(c) Paul Fodor (CS Stony Brook)

Types in SML
 SML is a strongly typed language in that all (well-formed)

expressions have a type that can be determined by examining

the expression.

 As part of the evaluation process, SML determines the type of

the output value using suitable methods of type inference.

 Simple types include int, real, bool, and string.

 One can also associate identifiers with values,

- val five = 3+2;

val five = 5 : int

and thereby establish a new value binding,

- five;

val it = 5 : int
7

(c) Paul Fodor (CS Stony Brook)

Function Definitions in SML
 The general form of a function definition in SML is:

fun <identifier> (<parameters>) =

<expression>;

 For example,

- fun double(x) = 2*x;

val double = fn : int -> int

declares double as a function from integers to integers, i.e., of

type int → int

 Apply a function to an argument of the wrong type results in

an error message:

- double(2.0);

Error: operator and operand don’t agree ...
8

(c) Paul Fodor (CS Stony Brook)

Function Definitions in SML

 The user may also explicitly indicate types:

- fun max(x:int,y:int,z:int) =

= if ((x>y) andalso (x>z)) then x

= else (if (y>z) then y else z);

val max = fn : int * int * int -> int

- max(3,2,2);

val it = 3 : int

9

(c) Paul Fodor (CS Stony Brook)

Recursive Definitions

 The use of recursive definitions is a main characteristic of functional

programming languages, and these languages encourage the use of

recursion over iterative constructs such as while loops:

- fun factorial(x) = if x=0 then 1

= else x*factorial(x-1);

val factorial = fn : int -> int

 The definition is used by SML to evaluate applications of the function to

specific arguments.

- factorial(5);

val it = 120 : int

- factorial(10);

val it = 3628800 : int

10

(c) Paul Fodor (CS Stony Brook)

Greatest Common Divisor

 The greatest common divisor (gcd) of two positive integers can

defined recursively based on the following observations:

1. gcd(n, n) = n,

2. gcd(m, n) = gcd(n,m), and

3. gcd(m, n) = gcd(m − n, n), if m > n.

 These identities suggest the following recursive definition:

- fun gcd(m,n):int = if m=n then n

= else if m>n then gcd(m-n,n)

= else gcd(m,n-m);

val gcd = fn : int * int -> int

- gcd(12,30); - gcd(1,20); - gcd(125,56345);

val it = 6 : int val it = 1 : int val it = 5 : int

11

(c) Paul Fodor (CS Stony Brook)

Tuples in SML

 In SML tuples are finite sequences of arbitrary but fixed length,

where different components need not be of the same type.

- val t1 = (1,2,3);

val t1 = (1,2,3) : int * int * int

- val t2 = (4,(5.0,6));

val t2 = (4,(5.0,6)) : int * (real * int)

 The components of a tuple can be accessed by applying the built-

in functions #i, where i is a positive number.

- #1(t1);

val it = 1 : int

- #2(t2);

val it = (5.0,6) : real * int

12

If a function #i is applied to a tuple

with fewer than i components, an

error results.

(c) Paul Fodor (CS Stony Brook)

Lists in SML

 A list in SML is a finite sequence of objects, all of the same type:

- [1,2,3];

val it = [1,2,3] : int list

- [true,false,true];

val it = [true,false,true] : bool list

- [[1,2,3],[4,5],[6]];

val it = [[1,2,3],[4,5],[6]] : int list list

 The last example is a list of lists of integers.

13

(c) Paul Fodor (CS Stony Brook)

Lists in SML

 All objects in a list must be of the same type:

- [1,[2]];

Error: operator and operand don’t agree

 An empty list is denoted by one of the following expressions:

- [];

val it = [] : ’a list

- nil;

val it = [] : ’a list

 Note that the type is described in terms of a type variable ’a.

Instantiating the type variable, by types such as int, results in

(different) empty lists of corresponding types.
14

(c) Paul Fodor (CS Stony Brook)

Operations on Lists
 SML provides various functions for manipulating lists.

 The function hd returns the first element of its argument list.

- hd[1,2,3];

val it = 1 : int

- hd[[1,2],[3]];

val it = [1,2] : int list

Applying this function to the empty list will result in an error.

 The function tl removes the first element of its argument lists, and

returns the remaining list.

- tl[1,2,3];

val it = [2,3] : int list

- tl[[1,2],[3]];

val it = [[3]] : int list list

 The application of this function to the empty list will also result in an

error.
15

(c) Paul Fodor (CS Stony Brook)

Operations on Lists
 Lists can be constructed by the (binary) function :: (read cons) that adds its first

argument to the front of the second argument.

- 5::[];

val it = [5] : int list

- 1::[2,3];

val it = [1,2,3] : int list

- [1,2]::[[3],[4,5,6,7]];

val it = [[1,2],[3],[4,5,6,7]] : int list list

The the arguments must be of the right type:

- [1]::[2,3];

Error: operator and operand don’t agree

 Lists can also be compared for equality:

- [1,2,3]=[1,2,3];

val it = true : bool

- [1,2]=[2,1];

val it = false : bool

- tl[1] = [];

val it = true : bool
16

(c) Paul Fodor (CS Stony Brook)

Defining List Functions

 Recursion is particularly useful for defining functions

that process lists.

For example, consider the problem of defining an SML

function that takes as arguments two lists of the same type

and returns the concatenated list.

 In defining such list functions, it is helpful to keep in

mind that a list is either

– an empty list or

– of the form x::y.

17

(c) Paul Fodor (CS Stony Brook)

Concatenation

 In designing a function for concatenating two lists x

and y we thus distinguish two cases, depending on the

form of x:

 If x is an empty list, then concatenating x with y

yields just y.

 If x is of the form x1::x2, then concatenating x with

y is a list of the form x1::z, where z is the results of

concatenating x2 with y.

 We can be more specific by observing that

x = hd(x)::tl(x).
18

(c) Paul Fodor (CS Stony Brook)

Concatenation

- fun concat(x,y) = if x=[] then y

= else hd(x)::concat(tl(x),y);

val concat = fn : ’’a list * ’’a list -> ’’a list

 Applying the function yields the expected results:

- concat([1,2],[3,4,5]);

val it = [1,2,3,4,5] : int list

- concat([],[1,2]);

val it = [1,2] : int list

- concat([1,2],[]);

val it = [1,2] : int list

19

(c) Paul Fodor (CS Stony Brook)

More List Functions

 The following function computes the length of its argument list:

- fun length(L) =

= if (L=nil) then 0

= else 1+length(tl(L));

val length = fn : ’’a list -> int

- length[1,2,3];

val it = 3 : int

- length[[5],[4],[3],[2,1]];

val it = 4 : int

- length[];

val it = 0 : int

20

(c) Paul Fodor (CS Stony Brook)

More List Functions

 The following function doubles all the elements in its argument

list (of integers):

- fun doubleall(L) =

= if L=[] then []

= else (2*hd(L))::doubleall(tl(L));

val doubleall = fn : int list -> int list

- doubleall[1,3,5,7];

val it = [2,6,10,14] : int list

21

(c) Paul Fodor (CS Stony Brook)

Reversing a List

 Concatenation of lists, for which we gave a recursive

definition, is actually a built-in operator in SML, denoted by

the symbol @.

 We use this operator in the following recursive definition of a

function that reverses a list.

- fun reverse(L) =

= if L = nil then nil

= else reverse(tl(L)) @ [hd(L)];

val reverse = fn : ’’a list -> ’’a list

- reverse [1,2,3];

val it = [3,2,1] : int list

22

(c) Paul Fodor (CS Stony Brook)

Definition by Patterns
 In SML functions can also be defined via patterns.

 The general form of such definitions is:

fun <identifier>(<pattern1>) = <expression1>

| <identifier>(<pattern2>) = <expression2>

| ...

| <identifier>(<patternK>) = <expressionK>;

where the identifiers, which name the function, are all the

same, all patterns are of the same type, and all expressions

are of the same type.

 Example:

- fun reverse(nil) = nil

= | reverse(x::xs) = reverse(xs) @ [x];

val reverse = fn : ’a list -> ’a list
23

the patterns are inspected in order and the first

match determines the value of the function.

(c) Paul Fodor (CS Stony Brook)

Removing List Elements

 The following function removes all occurrences of its first

argument from its second argument list.

- fun remove(x,L) =

= if (L=[]) then []

= else (if (x=hd(L))

= then remove(x,tl(L))

= else hd(L)::remove(x,tl(L)));

val remove = fn : ’’a * ’’a list -> ’’a list

- remove(1,[5,3,1]);

val it = [5,3] : int list

- remove(2,[4,2,4,2,4,2,2]);

val it = [4,4,4] : int list

24

(c) Paul Fodor (CS Stony Brook)

Removing List Elements

 The remove function can be used in the definition of another

function that removes all duplicate occurrences of elements

from its argument list:

- fun removedupl(L) =

= if (L=[]) then []

= else hd(L)::remove(hd(L),removedupl(tl(L)));

val removedupl = fn : ’’a list -> ’’a list

25

(c) Paul Fodor (CS Stony Brook)

Higher-Order Functions

 In functional programming languages functions can be used

in definitions of other, so-called higher-order, functions.

 The following function, apply, applies its first argument (a

function) to all elements in its second argument (a list of

suitable type):

- fun apply(f,L) =

= if (L=[]) then []

= else f(hd(L))::(apply(f,tl(L)));

val apply = fn : (’’a -> ’b) * ’’a list -> ’b list

 We may apply apply with any function as argument:

- fun square(x) = (x:int)*x;

val square = fn : int -> int

- apply(square,[2,3,4]);

val it = [4,9,16] : int list
26

(c) Paul Fodor (CS Stony Brook)

Sorting

 We next design a function for sorting a list of integers:

 The function is recursive and based on a method known as

Merge-Sort.

 To sort a list L:

 first split L into two disjoint sublists (of about equal size),

 then (recursively) sort the sublists, and

 finally merge the (now sorted) sublists.

 This recursive method is known as Merge-Sort

 It requires suitable functions for

 splitting a list into two sublists AND

 merging two sorted lists into one sorted list

27

(c) Paul Fodor (CS Stony Brook)

Splitting
 We split a list by applying two functions, take and skip, which extract

alternate elements; respectively, the elements at odd-numbered positions

and the elements at even-numbered positions (if any).

 The definitions of the two functions mutually depend on each other, and

hence provide an example of mutual recursion, as indicated by the SML-

keyword and:
- fun take(L) =

= if L = nil then nil

= else hd(L)::skip(tl(L))

= and

= skip(L) =

= if L=nil then nil

= else take(tl(L));

val take = fn : ’’a list -> ’’a list

val skip = fn : ’’a list -> ’’a list

- take[1,2,3];

val it = [1,3] : int list

- skip[1,2,3];

val it = [2] : int list

28

(c) Paul Fodor (CS Stony Brook)

Merging
 Merge pattern definition:

- fun merge([],M) = M

= | merge(L,[]) = L

= | merge(x::xl,y::yl) =

= if (x:int)<y then x::merge(xl,y::yl)

= else y::merge(x::xl,yl);

val merge = fn : int list * int list -> int

list

- merge([1,5,7,9],[2,3,5,5,10]);

val it = [1,2,3,5,5,5,7,9,10] : int list

- merge([],[1,2]);

val it = [1,2] : int list

- merge([1,2],[]);

val it = [1,2] : int listfactor

29

(c) Paul Fodor (CS Stony Brook)

Merge Sort

- fun sort(L) =

= if L=[] then []

= else if tl(L)=[] then L

= else merge(sort(take(L)),sort(skip(L)));

val sort = fn : int list -> int list

30

