CSE 215, Foundations of Computer Science Stony Brook University <u>http://www.cs.stonybrook.edu/~cse215</u>

Functions Defined on General Sets

• A function f from a set X to a set Y

 $f: X \rightarrow Y$

- X is the domain
- Y is the co-domain
- 1. every element in X is related to some element in Y
- 2. no element in X is related to more than one element in Y
 - For any element $x \in X$, there is a unique element $y \in Y$ such that f(x)=y
- Range of f (image of X under f)= $\{y \in Y \mid y = f(x), x \in X\}$
 - The inverse image of $y = \{x \in X \mid f(x) = y\}$

Arrow diagrams

- An arrow diagram defines a function *iff*
 - Every element of X has an arrow coming out of it
 - •No element of X has two arrows coming out of it that point to two different elements of Y

Arrow diagrams

Example 2:
X = {a, b, c}, Y = {1, 2, 3, 4}

$$f(a) = 2$$

 $f(b) = 4$
 $f(c) = 2$

co-domain of $f = \{1, 2, 3, 4\}$

• domain of $f = \{a, b, c\},\$

- range of $f = \{2, 4\}$
- inverse image of $2 = \{a, c\}$
- inverse image of 4 = {b}
- inverse image of $1 = \emptyset$

⁵ function representation as a set of pairs = {(a,2),(b,4),(c,2)}

Function Equality Def.: the set notation for a function: $F(x) = y \Leftrightarrow (x,y) \in F$ • If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G **if, and only** if, F(x) = G(x) for all $x \in X$. Proof: $F \subseteq X \times Y$ $G \subseteq X \times Y$ $G(x) \equiv y \Leftrightarrow (x, y) \in G$ $F(x) = y \Leftrightarrow (x, y) \in F$ $F = G \rightarrow F(x) = G(x)$ for all $x \in X$. Then for all $x \in X$, $F(x) = y \Leftrightarrow (x, y) \in F \Leftrightarrow (x, y) \in G \Leftrightarrow G(x) = y$ $F(x) \equiv y \equiv G(x)$ F(x) = G(x) for all $x \in X \rightarrow F = G$ Then for any element x of X: $(x, y) \in F \Leftrightarrow y = F(x) \Leftrightarrow y = G(x) \Leftrightarrow (x, y) \in G$ F and G consist of exactly the same elements and hence F = G.

• Example:
$$J_3 = \{0, 1, 2\}$$

 $f: J_3 \rightarrow J_3$ and $g: J_3 \rightarrow J_3$
 $f(x) = (x^2 + x + 1) \mod 3$
 $g(x) = (x + 2)^2 \mod 3$

x	$x^2 + x + 1$	$f(x) = (x^2 + x + 1) \mod 3$	$(x+2)^2$	$g(x) = (x+2)^2 \mod 3$
0	1	$1 \mod 3 = 1$	4	$4 \mod 3 = 1$
1	3	$3 \mod 3 = 0$	9	$9 \bmod 3 = 0$
2	7	$7 \mod 3 = 1$	16	$16 \mod 3 = 1$

 $f(0) = g(0) = 1, \quad f(1) = g(1) = 0, \quad f(2) = g(2) = 1$ $f = g = \{(0,1), (1,0), (2,1)\}$

Function Equality • Example: $F: \mathbf{R} \to \mathbf{R}$ and $G: \mathbf{R} \to \mathbf{R}$ $F+G: \mathbf{R} \to \mathbf{R}$ and $G+F: \mathbf{R} \to \mathbf{R}$ (F + G)(x) = F(x) + G(x)(G + F)(x) = G(x) + F(x), for all $x \in \mathbf{R}$ For all real numbers x: by definition of F + G(F + G)(x) = F(x) + G(x)= G(x) + F(x)by the commutative law for addition of real numbers by definition of G + F= (G + F)(x)Hence F + G = G + F.

• The Identity Function on a Set: Given a set X, $I_X: X \to X$ is an identity function *iff* $I_X(x) = x$, for all $x \in X$

• The function for a sequence: $1, -1/2, 1/3, -1/4, 1/5, ..., (-1)^n/(n + 1), ...$ $0 \rightarrow 1, 1 \rightarrow -1/2, 2 \rightarrow 1/3, 3 \rightarrow -1/4, 4 \rightarrow 1/5$ $n \rightarrow (-1)^n/(n + 1)$ $f: \mathbf{N} \rightarrow \mathbf{R}$, for each integer $n \ge 0$, $f(n) = (-1)^n/(n + 1)$ where $(\mathbf{N} = \mathbf{Z}^{nonneg})$ OR

g : Z⁺ → R, for each integer n ≥ 1, g(n) = (-1)ⁿ⁺¹/n where (Z⁺ = Z^{nonneg}-{0}) (c) Paul Fodor (CS Stony Brook)

Functions • Power set example: $F: P(\{a, b, c\}) \rightarrow \mathbb{Z}^{nonneg}$ For each $X \in P(\{a, b, c\}), F(X) =$ the number of elements in X (i.e., the cardinality of X) Ø • () $\{a\}\bullet$ *{b}* • • 2 $\{c\}\bullet$ • 3 $\{a, b\}$ • 4 • 5 $\{a, c\}$ $\{b, c\}$ $\{a, b, c\}$ 10 (c) Paul Fodor (CS Stony Brook)

• Cartesian product example: $M : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ and $R : \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ *The multiplication function*: M(a, b) = a*b We omit parenthesis for tuples: M((a, b))=M(a,b)M(1, 1) = 1, M(2, 2) = 4The reflection function: R(a, b) = (-a, b)R sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis

$$R(1, 1) = (-1, 1), \quad R(2, 5) = (-2, 5), \quad R(-2, 5) = (2, 5)$$

• Logarithms and Logarithmic Functions:

- The base of a logarithm b is a positive real number with $b \neq 1$
- The logarithm with base b of x: $\log_b x = y \Leftrightarrow b^y = x$
- The logarithmic function with base b:

 $\log_{b} x : \mathbf{R}^{+} \to \mathbf{R}$

Examples:

 $\log_3 9 = 2$ because $3^2 = 9$ $\log_{10}(1) = 0$ because $10^0 = 1$ $\log_2 \frac{1}{2} = -1$ because $2^{-1} = \frac{1}{2}$ $\log_2 (2^m) = m$ $2^{-1} = \frac{1}{2}$

• Example: Encoding and Decoding Functions For each string s ∈ A,

E(s) = the string obtained from s by replacing each bit of s by the same bit written three times

For each string $t \in T$,

D(t) = the string obtained from t by replacing each consecutive triple of three identical bits of t by a single copy of that bit

E(s) = t, for all $t \in T$ and D(t) = s

 The Hamming Distance Function Let S_n be the set of all strings of 0's and 1's of length n. $H: S_n \times S_n \to Z^{nonneg}$ For each pair of strings (s, t) $\in S_n \times S_n$ H(s, t)=the number of positions in which s and t differ For n = 5, H(11111, 00000) = 5 H(10101, 00000) = 3H(01010, 00000) = 2

Boolean functions:

 $f: \{0, 1\}^n \to \{0, 1\}$

(n-place) Boolean function

the domain = the set of all ordered n-tuples of 0's and 1's

the co-domain = the set $\{0, 1\}$

	Input	Output	
Р	Q	R	S
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

 $(P \land Q \land R) \lor (P \land Q \land R)$

Boolean functions example:

 $f: \{0, 1\}^3 \to \{0, 1\}$ $f(x_1, x_2, x_3) \equiv (x_1 + x_2 + x_3) \mod 2$ $f(0, 0, 0) = (0 + 0 + 0) \mod 2 \equiv 0 \mod 2 \equiv 0$ $f(0, 0, 1) = (0 + 0 + 1) \mod 2 \equiv 1 \mod 2 \equiv 1$ $f(0, 1, 0) = (0 + 1 + 0) \mod 2 \equiv 1 \mod 2 \equiv 1$ $f(0, 1, 1) = (0 + 1 + 1) \mod 2 = 2 \mod 2 = 0$ $f(1, 0, 0) = (1 + 0 + 0) \mod 2 = 1 \mod 2 = 1$ $f(1, 0, 1) = (1 + 0 + 1) \mod 2 \equiv 2 \mod 2 \equiv 0$ $f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0$ $f(1, 1, 1) = (1 + 1 + 1) \mod 2 \equiv 3 \mod 2 \equiv 1$

- Checking Whether a Function Is Well Defined: A function f is "not well defined" if:
- (1) there is no element in the co-domain y that satisfies f(x)=y for some element x in the domain **OR**

(2) there are two different values of y that satisfy f(x)=y

- Example 1:
 - $f: \mathbf{R} \rightarrow \mathbf{R}$, f(x) is the real number y such that $x^2 + y^2 = 1$ f is "not well defined":
- (1) x = 2, there is no real number y such that $2^2 + y^2 = 1$ OR

(2) x = 0, there are 2 real numbers y=1 and y=-1 such that $0^2 + y^2 = 1$

• Example 2 (Not Well Defined): $f: \mathbf{Q} \rightarrow \mathbf{Z}$

f(m/n) = m, for all integers m and n with $n \neq 0$

$$1/2 = 2/4 \rightarrow f(1/2) = f(2/4) !$$

BUT
$$f(1/2) = 1 \neq 2 = f(2/4)$$

Condition (2): "there are two different values of y that
satisfy f(x)=y" is True.

Functions Acting on Sets • If $f: X \rightarrow Y$ is a function and $A \subseteq X$ and $C \subseteq Y$, then $f(A) = \{y \in Y \mid y = f(x) \text{ for some } x \text{ in } A\}$ f (A) is the image of A $f^{-1}(C) = \{x \in X \mid f(x) \in C\}$ f⁻¹(C) is the **inverse** image of C Example: $X = \{1, 2, 3, 4\}, Y = \{a, b, c, d, e\}, f : X \rightarrow Y$ ►• d • e $f({1,4}) = {b}$ $f^{-1}({a,b}) = {1, 2, 4}$ $f(X) = \{a, b, d\}$ $f^{-1}(\{c, e\}) = \emptyset$ 19 (c) Paul Fodor (CS Stony Brook)

• Let X and Y be sets, let $F : X \rightarrow Y$ be a function and $A \subseteq X$ and $B \subseteq X$, then $F(A \cup B) \subseteq F(A) \cup F(B)$ **Proof:**

Suppose $y \in F(A \cup B)$. By definition of function, y = F(x) for some $x \in A \cup B$. By definition of union, $x \in A$ or $x \in B$. **Case 1, x \in A:** F(x) = y, so $y \in F(A)$. By definition of union: $y \in F(A) \cup F(B)$ Case 2, $\mathbf{x} \in \mathbf{B}$: $F(\mathbf{x}) = \mathbf{y}$, so $\mathbf{y} \in F(\mathbf{B})$. By definition of union: $y \in F(A) \cup F(B)$

One-to-One Functions (injective):

 $x_1 \bullet$

 $x_2 \bullet$

- A function $F : X \rightarrow Y$ is *one-to-one* (*injective*) \Leftrightarrow
- for all elements $x_1 \in X$ and $x_2 \in X$, $F(x_1) = F(x_2) \Rightarrow x_1 = x_2$
 - or, equivalently (by contraposition), $x_1 \neq x_2 \rightarrow F(x_1) \neq F(x_2)$

 $\rightarrow \bullet F(x_1)$

 $\rightarrow \bullet F(x_2)$

- Any two distinct elements of *X* are sent to two distinct elements of *Y*.
- A function $F: X \rightarrow Y$ is **NOT** one-to-one (injective) \Leftrightarrow
- \exists elements $x_1 \in X$ and $x_2 \in X$, such that $x_1 \neq x_2$ and $F(x_1) = F(x_2)$.

X = domain of F $x_1 \bullet$ $x_2 \bullet$ F F F F Y = co-domain of F F F F F $F(x_1) = F(x_2)$ $F(x_2)$ F $F(x_1) = F(x_2)$ $F(x_1) = F(x_1)$ $F(x_1) = F(x_1)$ F(x

Two distinct elements of *X* are sent to the same element of *Y*.

One-to-One Functions Defined on Finite Sets

Example 1: F: {a,b,c,d} → {u,v,w,x,y} defined by the following arrow diagram is **one-to-one**:

 $\forall x_1 \in X \text{ and } x_2 \in X, \quad x_1 \neq x_2 \Rightarrow F(x_1) \neq F(x_2)$

One-to-One Functions Defined on Finite Sets

Example 2: G: {a,b,c,d} → {u,v,w,x,y} defined by the following arrow diagram is NOT one-to-one:

Domain of G Co-domain of G

 \exists elements $x_1 \in X$ and $x_2 \in X$, such that $x_1 \neq x_2$ and $G(x_1) = G(x_2)$

I.e., $a \in X$ and $c \in X$, such that $a \neq c$ and G(a) = G(c)

One-to-One Functions Defined on Finite Sets

• Example 3: H: $\{1, 2, 3\} \rightarrow \{a, b, c, d\}$ H(1) = c, H(2) = a, and H(3) = dH is one-to-one: $\forall x_1 \in X \text{ and } x_2 \in X, x_1 \neq x_2 \Rightarrow H(x_1) \neq H(x_2)$ • Example 4: K: $\{1, 2, 3\} \rightarrow \{a, b, c, d\}$ K(1) = d, K(2) = b, and K(3) = dK is NOT one-to-one: K(1) = K(3) = d \exists elements $x_1 \in X$ and $x_2 \in X$, such that $x_1 \neq x_2$ and

 $K(x_1) \equiv K(x_2)$

One-to-One Functions on Infinite Sets

- f is one-to-one $\Leftrightarrow \forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$
- To show f is one-to-one, we will generally use the method of direct proof:
 - **suppose** x_1 and x_2 are elements of X such that $f(x_1) \equiv f(x_2)$
 - **show** that $x_1 = x_2$.
- To show f is **not** one-to-one, we will try to use the method of direct proof and detect that we cannot (similar to counterexample method):
 - find elements x_1 and x_2 in X so that $f(x_1)=f(x_2)$ but $x_1 \neq x_2$.

One-to-One Functions on Infinite Sets • Example: $f: \mathbf{R} \to \mathbf{R}$, f(x) = 4x - 1 for all $x \in \mathbf{R}$ is f one-to-one? f is one-to-one $\Leftrightarrow \forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$ **suppose** x_1 and x_2 are any real numbers such that $4x_1 - 1 = 4x_2 - 1$ Adding 1 to both sides and and dividing by 4 both sides gives $\mathbf{x}_1 = \mathbf{x}_2$ Yes! \rightarrow f is one-to-one • Example: $g: \mathbb{Z} \to \mathbb{Z}$, $g(n) \equiv n^2$ for all $n \in \mathbb{Z}$ is g one-to-one? Start by try to show that g is one-to-one: **suppose** n_1 and n_2 are integers such that $n_1^2 = n_2^2$ and **try to show** that $n_1 = n_2$ No! $1^2 = (-1)^2 = 1 \rightarrow g$ is not one-to-one 26 (c) Paul Fodor (CS Stony Brook)

Hash Functions

- Hash Functions are functions defined from larger to smaller sets of integers used in *signing* documents.
- Example: Hash:SSN \rightarrow {0, 1, 2, 3, 4, 5, 6}

SSN = the set of all social security numbers (ignoring hyphens) Hash(n) = n mod 7 for all social security numbers n.

Hash(328343419) = 328343419 - (7.46906202) = 5

- Hash is not one-to one: called a collision for hash functions.
 Hash(328343412) = 328343412 − (7 · 46906201) = 5
- Collision resolution methods: if position Hash(n) in the hash array is already occupied, then start from that position and search downward to place the record in the first empty position.

Onto Functions

• $F: X \rightarrow Y$ is *onto* (*surjective*) \Leftrightarrow

 $\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$

For arrow diagrams, a function is onto if each element of the codomain has an arrow pointing to it from some element of the domain.

• F: X \rightarrow Y is **NOT** onto (surjective) \Leftrightarrow $\exists y \in Y$ such that $\forall x \in X, F(x) \neq y$.

There is some element in Y that is not the image of any element in X. For arrow diagrams, a function is not onto if at least one element in its co-domain does not have an arrow pointing to it.

• F is onto:

• Example: G: $\{1,2,3,4,5\} \rightarrow \{a,b,c,d\}$

G is onto $\forall y \in Y, \exists x \in X \text{ such that } G(x) = y$

• *F* is not onto

• Example: F: $\{1,2,3,4,5\} \rightarrow \{a,b,c,d\}$

F is **not onto** because $b \neq F(x)$ for any x in X $\exists y \in Y$ such that $\forall x \in X, F(x) \neq y$

Onto Functions

• Example: H: $\{1,2,3,4\} \rightarrow \{a,b,c\}$ H(1) = c, H(2) = a, H(3) = c, and H(4) = bH is onto because $\forall y \in Y$, $\exists x \in X$ such that H(x) = y: a = H(2)b = H(4)c = H(1) = H(3)• Example: K: $\{1,2,3,4\} \rightarrow \{a,b,c\}$ K(1) = c, K(2) = b, K(3) = b, and K(4) = cH is not onto because $a \neq K(x)$ for any $x \in \{1, 2, 3, 4\}$.

Onto Functions on Infinite Sets

- F is onto $\Leftrightarrow \forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$
- We prove F is **onto** using the method of generalizing from the generic particular:
 - •suppose that y is any element of Y,
 - •**show** that there is an element x of X with F(x)=y.
- Prove F is **not onto:**
 - •find an element y of Y such that $y \neq F(x)$ for any x in X.

Onto Functions on Infinite Sets

• Example: $f : \mathbf{R} \to \mathbf{R}$ Prove f is onto or give counterexample. f(x) = 4x - 1 for all $x \in \mathbf{R}$ suppose $y \in \mathbf{R}$ **show** that there exists a real number x such that y = 4x - 1. $4x - 1 = y \Leftrightarrow x = (y + 1)/4 \in \mathbf{R}$ by adding 1 and dividing by 4 \rightarrow f is onto • Example: $h : \mathbb{Z} \to \mathbb{Z}$ Prove h is onto or give counterexample. h(n) = 4n - 1 for all $n \in \mathbb{Z}$ $0 \in \mathbb{Z}$, if h(n) = 0, then $4n - 1 = 0 \Leftrightarrow n = 1/4 \notin \mathbb{Z}$ $h(n) \neq 0$ for any integer $n \rightarrow h$ is not onto

Exponential Functions

- \bullet The exponential function with base $b\colon exp_b: \mathbf{R} \to \mathbf{R}^+$ $exp_b(x) \equiv b^x$
- $\exp_{b}(0) = b^{0} = 1$ $\exp_{b}(-x) = b^{-x} = 1/b^{x}$
- The exponential function is one-to-one and onto For any positive real number b≠1, b^v = b^u → u = v, ∀u,v∈R
 Laws of Exponents: ∀ b, c ∈ R⁺ and u,v ∈ R

$$b^{u}b^{v} = b^{u+v}$$
$$(b^{u})^{v} = b^{uv}$$
$$b^{u}/b^{v} = b^{u-v}$$
$$(bc)^{u} = b^{u}c^{u}$$

Logarithmic Functions

- The logarithmic function with base b: $log_b : \mathbf{R}^+ \to \mathbf{R}$ $log_b(\mathbf{x}) = \mathbf{y} \Leftrightarrow \mathbf{b}^{\mathbf{y}} = \mathbf{x}$
- The logarithmic function is one-to-one and onto.
 For any positive real number b≠1,

 $\log_{b} u = \log_{b} v \rightarrow u = v, \forall u, v \in \mathbb{R}^{+}$

• Properties of Logarithms: \forall b, c, x $\in \mathbb{R}^+$, with b $\neq 1$ and c $\neq 1$

$$log_{b}(xy) = log_{b}x + log_{b}y$$
$$log_{b}(x/y) = log_{b}x - log_{b}y$$
$$log_{b}(x^{a}) = a log_{b}x$$
$$log_{c}x = log_{b}x / log_{b}c$$

Exponential and Logarithmic Functions • \forall b, c, x $\in \mathbb{R}^+$, with b $\neq 1$ and c $\neq 1$: $\log_c x = \log_b x / \log_b c$ **Proof:** Suppose positive real numbers b, c, and x are given, s.t. (1) $\log_{b} c = u$ (2) $\log_{c} x = v$ (3) $\log_{b} x = w$ By definition of logarithm: $c = b^u$, $x = c^v$ and $x = b^w$ $x = c^{v} = (b^{u})^{v} = b^{uv}$, by laws of exponents But $x = b^w = b^{uv}$, so uv = w (by one-one exponent) By (1), (2) and (3): $(\log_{b} c)(\log_{c} x) = \log_{b} x$ By dividing both sides by $\log_{b}c$: $\log_{c}x = \log_{b}x / \log_{b}c$

Exponential and Logarithmic Functions

• Notations:

•Logarithms with base 10 are called **common logarithms** and are denoted by simply log.

Logarithms with base *e* are called natural logarithms and are denoted by ln.
Example: log ₂5 = log 5 / log 2 = ln 5 / ln 2

• A *one-to-one correspondence* (or *bijection*) from a set X to a set Y is a function $F: X \rightarrow Y$ that is **both one-to-one** and **onto**.

Example: A Function from a Power Set to a Set of Strings
 h : P({a, b}) → {00, 01, 10, 11}

If a is in A, write a 1 in the 1st position of the string h(A). If a is not in A, write a 0 in the 1st position of the string h(A). If b is in A, write a 1 in the 2nd position of the string h(A). If b is not in A, write a 0 in the 2nd position of the string h(A).

	11						
		×					
Subset of { <i>a</i> , <i>b</i> }	Status of a	Status of b	String in S				
Ø	not in	not in	00				
$\{a\}$	in	not in	10				
$\{b\}$	not in	in	01				
$\{a, b\}$	in	in	11				

h

• Example: F:
$$\mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$$

F(x, y) = (x + y, x - y), for all (x, y) $\in \mathbf{R} \times \mathbf{R}$

Part 1: Proof that F is one-to-one:

Suppose that (x_1, y_1) and (x_2, y_2) are any ordered pairs in $\mathbf{R} \times \mathbf{R}$ such that $\mathbf{F}(\mathbf{x}_1, \mathbf{y}_1) = \mathbf{F}(\mathbf{x}_2, \mathbf{y}_2)$.

$$\Leftrightarrow (\mathbf{x}_{1} + \mathbf{y}_{1}, \mathbf{x}_{1} - \mathbf{y}_{1}) = (\mathbf{x}_{2} + \mathbf{y}_{2}, \mathbf{x}_{2} - \mathbf{y}_{2})$$

$$\Leftrightarrow (1)\mathbf{x}_{1} + \mathbf{y}_{1} = \mathbf{x}_{2} + \mathbf{y}_{2} \text{ and } (2) \mathbf{x}_{1} - \mathbf{y}_{1} = \mathbf{x}_{2} - \mathbf{y}_{2}$$

$$(1)+(2) \rightarrow 2\mathbf{x}_{1} = 2\mathbf{x}_{2} \rightarrow (3) \mathbf{x}_{1} = \mathbf{x}_{2}$$

Substituting (3) in (2) $\rightarrow \mathbf{x}_{2} + \mathbf{y}_{1} = \mathbf{x}_{2} + \mathbf{y}_{2} \rightarrow \mathbf{y}_{1} = \mathbf{y}_{2}$
$$\Rightarrow (\mathbf{x}_{1}, \mathbf{y}_{1}) = (\mathbf{x}_{2}, \mathbf{y}_{2})$$

Yes, F is one-to-one.

• Example: F: $\mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ F(x, y) = (x + y, x - y), for all $(x, y) \in \mathbf{R} \times \mathbf{R}$ Part2: Proof that F is onto: Let (u, v) be any ordered pair in $\mathbf{R} \times \mathbf{R}$ Suppose that we found $(r,s) \in \mathbf{R} \times \mathbf{R}$ such that F(r,s) = (u, v). \Leftrightarrow (r + s, r - s) = (u, v) \Leftrightarrow r + s = u and r - s = v \Rightarrow 2r = u + v (by sum of 2 eqs) and 2s = u - v (by diff eqs) \Leftrightarrow r = (u + v)/2 and s = (u - v)/2 We found $(\mathbf{r}, \mathbf{s}) \in \mathbf{R} \times \mathbf{R}$ Yes, F is onto. So, F is a One-to-One correspondence.

- If $F: X \to Y$ is a one-to-one correspondence, then there is an *inverse function for* F, $F^{-1}: Y \to X$, s.t.for any element $y \in Y$
 - $F^{-1}(y)$ =that unique element $x \in X$ such that F(x)=y $F^{-1}(y) = x \Leftrightarrow F(x) = y$

• Example:

the inverse function for h is h^{-1} :

$$\begin{split} h^{-1}(00) &= \emptyset \quad h^{-1}(10) = \{a\} \\ h^{-1}(01) &= \{b\} \quad h^{-1}(11) = \{a, b\} \end{split}$$

• Example: $f : \mathbf{R} \to \mathbf{R}$, f(x) = 4x - 1 for all real numbers x.

The inverse function for f is $f^{-1} : \mathbf{R} \to \mathbf{R}$, For any [particular but arbitrarily chosen] y in **R** $f^{-1}(y) =$ that unique real number x such that f(x)=y. $f(x) = y \Leftrightarrow 4x - 1 = y \Leftrightarrow x = (y + 1)/4$ Hence $f^{-1}(y) = (y + 1)/4$.

- If X and Y are sets and F: X → Y is one-to-one and onto, then F⁻¹:Y → X is also one-to-one and onto.
 Proof:
- \mathbf{F}^{-1} is one-to-one: Suppose y_1 and y_2 are elements of Y, s.t. $F^{-1}(y_1) \equiv F^{-1}(y_2)$ Let $x = F^{-1}(y_1) = F^{-1}(y_2), x \in X$. By definition of F^{-1} , $F(x) = y_1$ and $F(x) = y_2$, so $y_1 = y_2$ \mathbf{F}^{-1} is onto: Suppose $\mathbf{x} \in \mathbf{X}$. Let $y = F(x), y \in Y$ By definition of F^{-1} , $F^{-1}(y) = x$.

One-to-One and Onto for Finite Sets

 Let X and Y be finite sets with the same number of elements and suppose f is a function from X to Y .

f is one-to-one 🗇 f is onto

Proof: Let $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_m\}$

(1) f is one-to-one \rightarrow f is onto

f (x₁), f (x₂),..., f (x_m) are all distinct, and S = {y \in Y | $\forall x \in$ X, f(x) \neq y} {f (x₁)}, {f (x₂)},..., {f (x_m)} and S are mutually disjoint m = N(Y) = N({f (x₁)})+N({f (x₂)})+...+N(f (x_m)})+N(S) = m + N(S) \Leftrightarrow N(S) = 0, there is no element of Y that is not the image of some element of X f is onto

(2) f is onto \rightarrow f is one-to-one $N(f^{-1}(y_i)) \ge 1$ for all $i = 1, ..., m \rightarrow$ $m = N(X) = N(f^{-1}(y_1)) + ... + N(f^{-1}(y_m))$, m terms $\rightarrow N(f^{-1}(y_i)) = 1$, f is one-to-one

- Let f : X → Y' and g: Y → Z be functions with the property that the range of f is a subset of the domain of g: Y'⊆Y
- The composition of f and g is a function $g \circ f : X \to Z :$ $(g \circ f)(x) = g(f(x))$ for all $x \in X$

Composition of Functions • Example composition of functions: Let $f : \mathbb{Z} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{Z}$ f(n) = n + 1, for all $n \in \mathbb{Z}$ $g(n) \equiv n^2$, for all $n \in \mathbb{Z}$ $(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1)^2$, for all $n \in \mathbb{Z}$ $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$, for all $n \in \mathbb{Z}$ $(g \circ f)(1) \equiv (1 + 1)^2 \equiv 4$ $(f \circ g)(1) = 1^2 + 1 = 2$ $f \circ g \neq g \circ f$

• Example composition of functions:

Let $f:\{1,2,3\} \rightarrow \{a,b,c,d\}$ and g: $\{a,b,c,d,e\} \rightarrow \{x,y,z\}$

• Example composition of functions:

Let $X = \{a, b, c, d\}$ and $Y = \{u, v, w\}, f : X \rightarrow Y$

• Composing a Function with Its Inverse:

X

 $a \bullet$

Let $f : \{a, b, c\} \rightarrow \{x, y, z\}$ be a one-to-one and onto function

f is one-to-one correspondence $\rightarrow f^{-1}: \{x, y, z\} \rightarrow \{a, b, c\}$

$$\begin{array}{cccc} I & f^{-1} & X \\ \hline & & & \\ x \bullet & & \\ y \bullet & & \\ z \bullet & & \\ \end{array} \begin{array}{c} \bullet & a \\ \bullet & b \\ \bullet & c \end{array}$$

 $(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(z) = a$ $(f^{-1} \circ f)(b) = f^{-1}(f(b)) = f^{-1}(x) = b \quad \Rightarrow f^{-1} \circ f = I_X$ $f^{-1} \circ f)(c) = f^{-1}(f(c)) = f^{-1}(y) = c \qquad \text{also} \quad f \circ f^{-1} = I_Y$

• Composing a Function with Its Inverse:

If f:X→Y is a one-to-one and onto function with inverse
function f⁻¹:Y→X, then (a) f⁻¹° f = I_X and (b) f ° f⁻¹ = I_Y
Proof (a):

Let x be any element in X: $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x' \in X(*)$ Definition of inverse function:

 $f^{-1}(b) = a \Leftrightarrow f(a) = b \text{ for all } a \in X \text{ and } b \in Y$ $\Rightarrow f^{-1}(f(x)) = x' \Leftrightarrow f(x') = f(x)$ Since f is one-to-one, this implies that x' = x. (*) $\Rightarrow (f^{-1} \circ f)(x) = x$

Composition of One-to-One Functions:

If $f: X \to Y$ and $g: Y \to Z$ are both one-to-one functions, then $g^{\circ}f$ is also one-to-one.

Proof (by the method of direct proof):

Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both one-to-one functions.

Suppose $x_1, x_2 \in X$ such that: $(g \circ f)(x_1) = (g \circ f)(x_2)$ By definition of composition of functions, $g(f(x_1)) = g(f(x_2))$. Since g is one-to-one, $f(x_1) = f(x_2)$.

• Composition of One-to-One Functions Example: $f = \int_{x}^{y} \int_{y}^{g} \int_$

• Composition of Onto Functions:

If $f:X \rightarrow Y$ and $g:Y \rightarrow Z$ are both onto functions, then $g \circ f$ is onto.

Proof:

Suppose $f : X \to Y$ and $g: Y \to Z$ are both onto functions. Let z be a [particular but arbitrarily chosen] element of Z. Since g is onto, there is an element y in Y such that g(y) = z. Since f is onto, there is an element x in X such that f(x) = y. $z = g(y) = g(f(x)) = (g \circ f)(x) \Rightarrow g \circ f$ is onto

 $g \circ f$

Composition of Functions • Composition of Onto Functions Example:

