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 A function f from a set X to a set Y 

f : X →Y

X is the domain

Y is the co-domain

1. every element in X is related to some element in Y 

2. no element in X is related to more than one element in Y

For any element x ∈ X, there is a unique element y ∈Y such 

that f(x)=y

 Range of f (image of X under f)={y∈Y | y = f(x), x ∈ X}

The inverse image of y = {x ∈ X | f (x) = y}
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Arrow diagrams
An arrow diagram defines a function iff

Every element of X has an arrow coming out of it

No element of X has two arrows coming out of it 

that point to two different elements of  Y
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Example 1:

X = {a, b, c},     Y = {1, 2, 3, 4}
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 Example 2:

X = {a, b, c},     Y = {1, 2, 3, 4}

 domain of f = {a, b, c},            co-domain of f = {1, 2, 3, 4}

 range of f = {2, 4}

 inverse image of 2 = {a, c}

 inverse image of 4 = {b}

 inverse image of 1 = ∅

 function representation as a set of pairs={(a,2),(b,4),(c,2)}5

f (a) = 2

f (b) = 4

f (c) = 2

Arrow diagrams
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Function Equality
Def.: the set notation for a function: F(x) = y  (x,y) ∈ F

 If F: X →Y and G: X →Y are functions, then F = G if, and only 

if, F(x) = G(x) for all x ∈ X.

Proof:

F ⊆ X ×Y G ⊆ X ×Y

F(x) = y ⇔ (x, y) ∈ F G(x) = y ⇔ (x, y) ∈ G

F = G ➔ F(x) = G(x) for all x ∈ X.Then for all x ∈ X,

F(x) = y ⇔ (x, y) ∈ F ⇔ (x, y) ∈ G ⇔ G(x) = y

F(x) = y = G(x)

F(x) = G(x) for all x ∈ X ➔ F = GThen for any element x of X:

(x, y) ∈ F ⇔ y = F(x) ⇔ y = G(x) ⇔ (x, y) ∈ G

F and G consist of exactly the same elements and hence F = G.
6
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 Example:  J3 = {0, 1, 2}

f : J3→ J3 and     g : J3→ J3

f(x) = (x2 + x + 1) mod 3 

g(x) = (x + 2)2 mod 3

f(0) = g(0) =1,    f(1) = g(1) = 0,    f(2) = g(2) = 1

f = g = {(0,1), (1,0), (2,1)}
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 Example:    F: R → R and G: R → R

F+G: R → R and   G+F: R → R

(F + G)(x) = F(x) + G(x) 

(G + F)(x) = G(x) + F(x),    for all x ∈ R

For all real numbers x:

(F + G)(x) = F(x) + G(x) by definition of F + G

= G(x) + F(x) by the commutative law for 

addition of real numbers

= (G + F)(x) by definition of G + F

Hence F + G = G + F. ■
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 The Identity Function on a Set:

Given a set X,    IX: X → X is an identity function iff

IX(x) = x, for all x ∈ X

 The function for a sequence:

1, −1/2, 1/3, −1/4, 1/5,..., (−1)n/(n + 1),...

0 → 1,   1 →−1/2,   2 → 1/3 ,   3 →−1/4,   4 → 1/5

n → (−1)n/(n + 1)

f : N → R, for each integer n ≥ 0, f(n) = (−1)n/(n + 1)

where (N = Znonneg)   OR

g : Z+ → R, for each integer n ≥ 1, g(n) = (−1)n+1/n

where (Z+ = Znonneg-{0})
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 Power set example:

F : P({a, b, c}) → Znonneg

For each X ∈ P({a, b, c}), F(X) = the number of elements 

in X (i.e., the cardinality of X)

10
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 Cartesian product example:

M : R × R → R and R : R × R → R × R

The multiplication function: M(a, b) = a*b

We omit parenthesis for tuples: M((a, b))=M(a,b) 

M(1, 1) = 1,     M(2, 2) = 4

The reflection function: R(a, b) = (-a, b)

R sends each point in the plane that corresponds to a pair of real 

numbers to the mirror image of the point across the vertical axis

R(1, 1) = (-1, 1),     R(2, 5) = (-2, 5),      R(-2, 5) = (2, 5)

11
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 Logarithms and Logarithmic Functions:

 The base of a logarithm b is a positive real number with b ≠ 1

 The logarithm with base b of x:     log b x = y ⇔ by = x

 The logarithmic function with base b: 

log b x : R+ → R

Examples:

log 3 9 = 2    because 32 = 9

log 10(1) = 0 because 100 = 1

log 2 ½ = -1  because 2-1 = ½

log 2 (2m) = m

12

Functions



(c) Paul Fodor (CS Stony Brook)

 Example: Encoding and Decoding Functions

For each string s ∈A,

E(s) = the string obtained from s by replacing each bit 

of s by the same bit written three times

For each string t ∈T,

D(t) = the string obtained from t by replacing each 

consecutive triple of three identical bits of t by a single 

copy of that bit

E(s) = t, for all t ∈T       and D(t) = s

13
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 The Hamming Distance Function

Let Sn be the set of all strings of 0’s and 1’s of length n.

H: Sn × Sn → Znonneg

For each pair of strings (s, t) ∈ Sn × Sn

H(s, t)=the number of positions in which s and t differ

For n = 5, H(11111, 00000) = 5

H(10101, 00000) = 3

H(01010, 00000) = 2

14
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 Boolean functions:

f : {0, 1}n → {0, 1}

(n-place) Boolean function

the domain = the set of all ordered n-tuples of 0’s and 1’s

the co-domain = the set {0, 1}

15
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 Boolean functions example:

f : {0, 1}3 → {0, 1}

f (x1, x2, x3) = (x1 + x2 + x3) mod 2

f (0, 0, 0) = (0 + 0 + 0) mod 2 = 0 mod 2 = 0

f (0, 0, 1) = (0 + 0 + 1) mod 2 = 1 mod 2 = 1

f (0, 1, 0) = (0 + 1 + 0) mod 2 = 1 mod 2 = 1

f (0, 1, 1) = (0 + 1 + 1) mod 2 = 2 mod 2 = 0

f (1, 0, 0) = (1 + 0 + 0) mod 2 = 1 mod 2 = 1

f (1, 0, 1) = (1 + 0 + 1) mod 2 = 2 mod 2 = 0

f (1, 1, 0) = (1 + 1 + 0) mod 2 = 2 mod 2 = 0

f (1, 1, 1) = (1 + 1 + 1) mod 2 = 3 mod 2 = 1
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 Checking Whether a Function Is Well Defined:

A function f is “not well defined” if:

(1) there is no element in the co-domain y that satisfies f(x)=y for some 

element x in the domain                OR

(2) there are two different values of y that satisfy f(x)=y 

 Example 1:

f : R → R, f (x) is the real number y such that x2 + y2 = 1

f is “not well defined”:

(1) x = 2, there is no real number y such that 22 + y2 = 1

OR

(2) x = 0, there are 2 real numbers y=1 and y=-1 such that 

02 + y2 = 1
17
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 Example 2 (Not Well Defined):

f : Q → Z

f(m/n) = m, for all integers m and n with n ≠ 0

1/2 = 2/4  → f(1/2) = f(2/4) !

BUT

f(1/2) = 1       ≠       2 = f(2/4) 

Condition (2): “there are two different values of y that 

satisfy f(x)=y”  is True.

18
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Functions Acting on Sets
 If f : X →Y is a function and A ⊆ X and C ⊆Y, then

f (A) = {y ∈Y | y = f (x) for some x in A}

f (A) is the image of A

f−1(C) = {x ∈ X | f (x) ∈ C}

f−1 (C) is the inverse image of C

Example: X = {1, 2, 3, 4},  Y = {a, b, c, d, e}, f : X →Y

f({1,4}) = {b}      f−1({a,b}) = {1, 2, 4} 

f(X) = {a, b, d}     f−1({c,e}) = ∅
19
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Functions Acting on Sets

20

 Let X and Y be sets, let F : X →Y be a function and 

A⊆X and B⊆X, then    F(A ∪ B) ⊆ F(A) ∪ F(B)

Proof:

Suppose y ∈ F(A ∪ B).

By definition of function, y = F(x) for some x ∈A ∪ B. 

By definition of union,    x ∈A or x ∈ B.

Case 1, x ∈A: F(x) = y, so y ∈ F(A).

By definition of union: y ∈ F(A) ∪ F(B)

Case 2, x ∈ B: F(x) = y, so y ∈ F(B).

By definition of union: y ∈ F(A) ∪ F(B) ■
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 One-to-One Functions (injective): 

 A function F : X → Y is one-to-one (injective)

for all elements x1 ∈ X and x2 ∈ X, F(x1) = F(x2) ➔ x1 = x2

or, equivalently (by contraposition), x1 ≠ x2➔ F(x1) ≠ F(x2)

 A function F : X → Y is NOT one-to-one (injective)

∃ elements x1 ∈ X and x2 ∈ X, such that x1 ≠ x2 and F(x1) = F(x2).

21
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One-to-One Functions Defined on Finite Sets

 Example 1: F: {a,b,c,d} →{u,v,w,x,y} defined by the 

following arrow diagram is one-to-one:

∀ x1 ∈ X and x2 ∈ X,    x1 ≠ x2➔ F(x1) ≠ F(x2)

22
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One-to-One Functions Defined on Finite Sets

 Example 2: G: {a,b,c,d} →{u,v,w,x,y} defined by the 

following arrow diagram is NOT one-to-one:

G(a) = G(c) = w

∃ elements x1 ∈ X and x2 ∈ X, such that x1 ≠ x2 and 

G(x1) = G(x2)

I.e., a ∈ X and c ∈ X, such that a ≠ c and G(a) = G(c)

23
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One-to-One Functions Defined on Finite Sets

 Example 3: H:{1, 2, 3} →{a, b, c, d}

H(1) = c,            H(2) = a, and          H(3) = d

H is one-to-one:

∀ x1 ∈ X and x2 ∈ X,    x1 ≠ x2➔ H(x1) ≠ H(x2)

 Example 4: K:{1, 2, 3} →{a, b, c, d}

K(1) = d,           K(2) = b, and            K(3) = d

K is NOT one-to-one:

K(1) = K(3) = d

∃ elements x1 ∈ X and x2 ∈ X, such that x1 ≠ x2 and 

K(x1)= K(x2)24
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One-to-One Functions on Infinite Sets

 f is one-to-one  ∀x1,x2∈X, if f(x1)=f(x2) then x1=x2

 To show f is one-to-one, we will generally use the 

method of direct proof:

suppose x1 and x2 are elements of X such that 

f(x1)=f(x2)

show that x1 = x2.

 To show f is not one-to-one, we will try to use the 

method of direct proof and detect that we cannot (similar 

to counterexample method):

find elements x1 and x2 in X so that f(x1)=f(x2) but 

x1≠ x2.25
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 Example:    f : R → R ,

f (x) = 4x − 1 for all x ∈ R is f one-to-one?

f is one-to-one  ∀x1,x2∈X, if f(x1)=f(x2) then x1=x2

suppose x1and x2 are any real numbers such that 4x1−1=4x2−1

Adding 1 to both sides and and dividing by 4 both sides gives

x1=x2 Yes! → f is one-to-one ■

 Example:    g : Z → Z ,          

g(n) = n2 for all n ∈ Z is g one-to-one?

Start by try to show that g is one-to-one:

suppose n1and n2 are integers such that n1
2=n2

2 and try to show that 

n1=n2 No! 12=(-1)2=1 → g is not one-to-one ■
26
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Hash Functions
 Hash Functions are functions defined from larger to smaller sets 

of integers used in signing documents.

 Example: Hash:SSN →{0, 1, 2, 3, 4, 5, 6}

SSN = the set of all social security numbers (ignoring hyphens)

Hash(n) = n mod 7    for all social security numbers n.

Hash(328343419) = 328343419 − (7·46906202) = 5

 Hash is not one-to one: called a collision for hash functions.

Hash(328343412) = 328343412 − (7· 46906201) = 5

 Collision resolution methods: if position Hash(n) in the hash 

array is already occupied, then start from that position and 

search downward to place the record in the first empty 

position.27
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Onto Functions
 F: X →Y is onto (surjective) ⇔

∀y ∈Y,   ∃x ∈ X such that F(x) = y.

For arrow diagrams, a function is onto if each element of the co-

domain has an arrow pointing to it from some element of the 

domain.

 F: X →Y is NOT onto (surjective) ⇔

∃y ∈Y such that ∀x ∈ X, F(x) ≠ y.

There is some element in Y that is not the image of any element in X.

For arrow diagrams, a function is not onto if at least one element in 

its co-domain does not have an arrow pointing to it.

28
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Onto Functions with Arrow Diagrams

F is onto:
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 Example: G: {1,2,3,4,5} → {a,b,c,d}

G is onto 

∀y ∈Y,   ∃x ∈ X such that G(x) = y

30
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Onto Functions with Arrow Diagrams

 F is not onto

31
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Example: F: {1,2,3,4,5} → {a,b,c,d}

F is not onto because b ≠ F(x) for any x in X

∃y ∈Y such that ∀x ∈ X, F(x) ≠ y

32
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Onto Functions
 Example:     H: {1,2,3,4} → {a,b,c}

H(1) = c,      H(2) = a,       H(3) = c, and        H(4) = b

H is onto because ∀y ∈Y,   ∃x ∈ X such that H(x) = y:

a = H(2)

b = H(4) 

c = H(1) = H(3)

 Example:     K: {1,2,3,4} → {a,b,c}

K(1) = c,      K(2) = b,      K(3) = b, and       K(4) = c

H is not onto because a≠K(x) for any x∈{1, 2, 3, 4}.
33
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Onto Functions on Infinite Sets

F is onto  ∀y ∈Y, ∃x ∈ X such that F(x) = y.

We prove F is onto using the method of 

generalizing from the generic particular:

suppose that y is any element of  Y, 

show that there is an element x of X with F(x)=y.

Prove F is not onto:

find an element y of  Y such that y ≠ F(x) for any 

x in X.

34
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 Example: f : R → R        Prove f is onto or give counterexample.

f(x) = 4x − 1 for all x ∈ R

suppose y ∈ R

show that there exists a real number x such that y = 4x − 1.

4x − 1 = y  x = (y + 1)/4 ∈ R by adding 1 and dividing by 4 

→ f is onto ■

 Example: h : Z → Z        Prove h is onto or give counterexample.

h(n) = 4n − 1 for all n ∈ Z

0 ∈ Z, if  h(n) = 0, then 4n − 1 = 0  n = 1/4 ∉ Z

h(n) ≠ 0 for any integer n → h is not onto ■

35
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Exponential Functions
 The exponential function with base b: expb : R → R+

expb(x) = bx

expb(0) = b0 = 1 

expb(-x) = b-x = 1/bx

 The exponential function is one-to-one and onto

For any positive real number b≠1,  bv = bu 
→ u = v, ∀u,v∈R

 Laws of Exponents: ∀ b, c ∈ R+ and u,v ∈ R

bubv = bu+v

(bu)v = buv

bu/bv = bu-v

(bc)u = bucu
36
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Logarithmic Functions
 The logarithmic function with base b: logb : R+ → R

logb(x) = y ⇔ by = x

 The logarithmic function is one-to-one and onto.

For any positive real number b≠1, 

logbu = logbv → u = v, ∀u,v∈R+

 Properties of Logarithms: ∀ b, c, x ∈ R+, with b≠1 and c≠1

logb(xy) = logbx + logby

logb(x/y) = logbx − logby

logb(x
a) = a logbx

logcx = logbx / logbc
37



(c) Paul Fodor (CS Stony Brook)

Exponential and Logarithmic Functions

 ∀ b, c, x ∈ R+, with b≠1 and c≠1:  logcx = logbx / logbc

Proof: Suppose positive real numbers b, c, and x are given, 

s.t. (1) logbc = u (2) logc x = v (3) logb x = w

By definition of logarithm: c = bu, x = cv and x = bw

x = cv = (bu)v = buv ,   by laws of exponents

But x = bw = buv , so uv = w (by one-one exponent) ➔

By (1), (2) and (3):  (logbc)(logc x) = logb x

By dividing both sides by logbc:     logcx = logbx / logbc ■
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Notations: 

Logarithms with base 10 are called 

common logarithms and are denoted by 

simply log.

Logarithms with base e are called natural 

logarithms and are denoted by ln.

Example: log 25 = log 5 / log 2 = ln 5 / ln 2

39
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One-to-One Correspondences
A one-to-one correspondence (or bijection) 

from a set X to a set Y is a function F: X →Y that 

is both one-to-one and onto.

Example: 

40
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 Example: A Function from a Power Set to a Set of Strings

h : P({a, b}) → {00, 01, 10, 11}

If a is in A, write a 1 in the 1st position of the string h(A). 

If a is not in A, write a 0 in the 1st position of the string h(A). 

If b is in A, write a 1 in the 2nd position of the string h(A). 

If b is not in A, write a 0 in the 2nd position of the string h(A). 

41
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 Example: F: R × R → R × R 

F(x, y) = (x + y, x − y), for all (x, y) ∈ R × R

Part 1: Proof that F is one-to-one:

Suppose that (x1,y1) and (x2,y2) are any ordered pairs in R × R 

such that F(x1,y1) = F(x2,y2).

 (x1 + y1, x1 − y1) = (x2 + y 2, x 2 − y 2)

 (1)x1 + y1 = x2 + y 2 and (2) x1 − y1 = x 2 − y 2

(1)+(2) → 2x1 = 2x2→ (3) x1 = x2

Substituting (3) in (2) → x2 + y1 = x2 + y2 → y1 = y2

➔ (x1, y1) = (x2, y2)

Yes, F is one-to-one.
42
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 Example: F: R × R → R × R 

F(x, y) = (x + y, x − y), for all (x, y) ∈ R × R

Part2: Proof that F is onto:

Let (u,v) be any ordered pair in R × R 

Suppose that we found (r,s)∈R × R such that F(r,s) = (u, v).

 (r + s, r − s) = (u, v) r + s = u   and   r − s = v 

 2r = u + v (by sum of 2 eqs) and    2s = u − v (by diff eqs)

 r = (u + v)/2     and    s = (u − v)/2

We found (r, s) ∈ R × R 

Yes, F is onto.

So,  F is a One-to-One correspondence. ■
43
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Inverse Functions
 If F: X →Y is a one-to-one correspondence, then there is 

an inverse function for F, F−1: Y → X , s.t.for any 

element y ∈Y

F−1(y)=that unique element x ∈ X such that F(x)=y

F−1(y) = x ⇔ F(x) = y

44
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Example: 

the inverse function for h is  h−1:

45
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Example: f : R → R, f(x) = 4x − 1 for all real 

numbers x.

The inverse function for f is  f−1 : R → R, 

For any [particular but arbitrarily chosen] y in R

f −1(y) = that unique real number x such that f(x)=y.

f (x) = y ⇔ 4x − 1 = y ⇔ x = (y + 1)/4

Hence f −1(y) = (y + 1)/4.

46
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 If X and Y are sets and F: X →Y is one-to-one and 

onto, then F −1 : Y → X is also one-to-one and onto.

Proof:

F −1 is one-to-one: Suppose y1 and y2 are elements of  

Y, s.t. F−1(y1)= F−1(y2)

Let x = F−1(y1)= F−1(y2), x ∈ X.

By definition of F−1, F(x) = y1 and F(x) = y2 , so y1 = y2

F −1 is onto: Suppose x ∈ X.

Let y = F(x), y ∈Y

By definition of F−1, F −1(y) = x.
47
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One-to-One and Onto for Finite Sets
 Let X and Y be finite sets with the same number of 

elements and suppose f is a function from X to Y . 

f is one-to-one  f is onto

Proof: Let X = {x1, x2,..., xm} and Y = {y1, y2,..., ym}

(1) f is one-to-one → f is onto

f (x1), f (x2),..., f (xm) are all distinct, and S = {y∈Y|∀x∈X, f(x) ≠ y}

{f (x1)}, {f (x2)},..., {f (xm)} and S are mutually disjoint

m = N(Y) = N({f (x1)})+N({f (x2)})+... +N(f (xm)})+N(S) = m + N(S)

 N(S) = 0, there is no element of Y that is not the image of some element of X

f is onto

(2) f is onto → f is one-to-one

N(f−1(yi)) ≥ 1 for all i = 1,...,m →

m=N(X) = N(f−1(y1)) +...+ N(f−1(ym)) , m terms → N(f−1(yi)) = 1, 

f is one-to-one
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Composition of Functions
 Let f : X →Y’ and g: Y → Z be functions with the 

property that the range of f is a subset of the domain of 

g:  Y’⊆Y

The composition of f and g is a function  g ◦ f : X → Z :

(g ◦ f )(x) = g( f (x)) for all x ∈ X
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 Example composition of functions:

Let f : Z → Z and g: Z → Z

f (n)=n + 1, for all n ∈ Z

g(n) = n2 , for all n ∈ Z

(g ◦ f )(n) = g(f (n)) = g(n+1) = (n + 1) 2 , for all n ∈ Z

(f ◦ g)(n) = f (g(n)) = f (n2) = n2 + 1, for all n ∈ Z

(g ◦ f )(1) = (1 + 1) 2 = 4

( f ◦g)(1) = 12 + 1 = 2

f ◦ g ≠ g ◦ f 

50

Composition of Functions



(c) Paul Fodor (CS Stony Brook)

 Example composition of functions:

Let f : {1,2,3} → {a,b,c,d} and g: {a,b,c,d,e} → {x,y,z}
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 Example composition of functions:

Let X = {a, b, c, d} and Y = {u, v, w}, f : X →Y

IX: X → X is an identity function IY: Y →Y is an identity function

IX(x) = x, for all x ∈ X IY(y) = y, for all y ∈Y

( f ◦ IX )(x) = f (IX(x)) = f (x) , for all x ∈ X (IY◦f )(x)=IY(f (x))=f(x) ,for all x ∈ X
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 Composing a Function with Its Inverse:

Let f : {a, b, c} → {x, y, z} be a one-to-one and onto function

f is one-to-one correspondence ➔ f−1 : {x, y, z} → {a, b, c}

( f −1 ◦ f )(a) = f −1( f (a)) = f −1(z) = a

( f −1 ◦ f )(b) = f −1( f (b)) = f −1(x) = b ➔ f −1 ◦ f = IX

( f −1 ◦ f )(c) = f −1( f (c)) = f −1(y) = c also   f ◦ f −1 = IY
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 Composing a Function with Its Inverse:

If f:X→Y is a one-to-one and onto function with inverse 

function f −1:Y→X, then (a) f −1◦ f = IX and (b) f ◦ f −1 = IY

Proof (a):

Let x be any element in X:   (f −1◦ f )(x)=f −1(f (x))=x’∈X(*)

Definition of inverse function: 

f −1(b) = a ⇔ f (a) = b for all a ∈ X and b ∈Y

➔f −1(f (x)) = x’ ⇔ f(x’) = f(x)

Since f is one-to-one, this implies that x’ = x.

(*) → (f −1◦ f )(x) = x
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 Composition of One-to-One Functions: 

If f : X →Y and g: Y → Z are both one-to-one functions, then 

g◦f is also one-to-one.

Proof (by the method of direct proof):

Suppose f : X →Y and g: Y → Z are both one-to-one 

functions.

Suppose x1, x2 ∈ X such that: (g ◦ f )(x1) = (g ◦ f )(x2)

By definition of composition of functions, g(f (x1)) = g(f (x2)).

Since g is one-to-one, f (x1) = f(x2).

Since f is one-to-one, x1 = x2.
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 Composition of One-to-One Functions Example: 
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 Composition of Onto Functions:

If f:X→Y and g:Y→Z are both onto functions, then g ◦ f is 

onto.

Proof:

Suppose f : X →Y and g: Y → Z are both onto functions.

Let z be a [particular but arbitrarily chosen] element of Z.

Since g is onto, there is an element y in Y such that g(y) = z.

Since f is onto, there is an element x in X such that f (x) = y.

z =g(y) = g(f(x)) = (g ◦ f ) (x) ➔ g ◦ f is onto

57

Composition of Functions



(c) Paul Fodor (CS Stony Brook)

Composition of Onto Functions Example:
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