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4 ™
Functions Defined on General Sets

® A function f from a set X to a setY
f: X—>oY
X is the domain
Y is the co-domain
I. every element in X is related to some element inY

7. no element in X is related to more than one element inY

® For any element x € X, there is a unique element y €Y such

that f(x)=y
* Range of f (image of X under f)={y€Y | y = f(x), x € X}

® The inverse image ofy = {xEX | f(x)= y}
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" Arrow diagrams

® An arrow diagram defines a function ﬁ
*Every element of X has an arrow coming out of it

e No element of X has two arrows coming out of it

that point to two different elements of Y
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" Arrow diagrams

*Example 1

X:{ab.c} :{1 2, 3,4}
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" Arrow diagrams

o Example 2

X={a,b,c}, Y={1,2,3,4}

[ be- B "3"’ f(b)=4
| / £(c) =2
® domain of f = {a, b, c}, co—(_iomain oft = {1,2,3,4}
® range of f = {2, 4}

® inverse image of 2 = {a, c}

ﬂ:_.\ s m f(a) = 2

® inverse image of 4 = {b}
® inverse image of1=0

@0 function representation as a set of pairs=1{(a,2),(b,4),(c,2)}
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Function Equality

Def.: the set notation for a function: F(x) =y < (x,y) € F

°* If F: X =Y and G: X —Y are functions, then F = G if, and only
if, F(x) = G(x) for all x € X.
Proof:

FC X XY GCX XY

Fx)=ye (x,y) EF Gx)=ye(x,y) €EG

F=G=> F(x) = G(x) for all x € X. Then for all x € X,
Fx) =y (x,7) EF S (x,y) € G & G(x) =
F(x) =y = G(x)
F(x) = G(x) forallx €X =» F = G Then for any element x of X:
(x,y) EF & y=F(x) ©y=G(x) & (x,y) €EG
F and G consist of exactly the same elements and hence F = G.
-,
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" Function Equality

® Example: J; = {0, 1,2}
t:J3—J; and g:J3—];
f(x) = (x> + x+ 1) mod 3
g(x) = (x + 2)’ mod 3

X x24+x+1 f(x):{x3+x+l}mnd3 (x +2)° g{x):{x+2}2mﬂd3
0 | I mod 3 =1 4 4dmod3 =1
| 3 3mod3 =0 9 Omod3 =0
2 7 Tmod3 =1 16 16 mod 3 =1

£((0) = g(0) =1, £(1)=g(1)=0, £2)=g2)=1
t=g=1{(0,1),(1,0), (2,1)}

@ (c) Paul Fodor (CS Stony Brook) /




" Function Equality

®* Example: F:R—Rand G:R—R
F+G:R— R and G+F:R —R
(F + G)(x) = F(x) + G(x)
(G + F)(x) = G(x) + F(x), forallx €R
For all real numbers x:
(F+ G)(x) = F(x)t G(x) bydefinition of F + G
= G(x) T F(x) by the commutative law for

addition of real numbers
= (G + F)(x) by definition of G + F
@HenceF-l-G:G-l-F. |
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" Functions

* The Identity Function on a Set:
Given aset X, I : X — X is an identity function iff
I (x) = x, forall x € X
* The function for a sequence:
1,—=1/2,1/3,—=1/4,1/5,...,(—1D)*/(n + 1),...
0—1, 1—>—-1/2, 2—1/3, 3—>—1/4, 4—1/5
n— (—1)"/(n+t1)
f : N — R, for each integer n 20, {(n) = (—1)"/(n + 1)
where (N = Zro"neg)  OR
g: 7" — R, for cach integern 2 1, g(n) = (=1)""'/n
@ where (Z* = Z"°o"8-{0})

(c) Paul Fodor (CS Stony Brook)




" Functions

* Power set example:
F: P({a, b, c}) — Znonneg
For each X € P({a, b, c}), F(X) = the number of elements
in X (i.e., the cardinality of X)
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" Functions

* Cartesian product example:
M:RXR—R and R:RXR—=RXR
The multiplication function: M(a, b) = a*b
We omit parenthesis for tuples: M((a, b))=M(a,b)
M, H)=1, M(2,2)=4
The reflection function: R(a, b) = (-a, b)
R sends each point in the plane that corresponds to a pair of real

numbers to the mirror image of the point across the vertical axis

R(1,1)=(-1,1), R(2,5 =(2,5), R(-2,5 =(2,5)

@ (c) Paul Fodor (CS Stony Brook) /




" Functions

* Logarithms and Logarithmic Functions:
® The base of a logarithm b is a positive real number with b # 1
® The logarithm with base b of x:  log | x =y & b’ =x
® The logarithmic function with base b:

long:R+—>R

Examples:
log,9 =2 because 32=9
log (1) =0 because 10°=1
log, 2 = -1 because -l =1,
log, (2™) =m

@ (c) Paul Fodor (CS Stony Brook) /




" Functions

o Example: Encoding and Decoding Functions

For each string s € A,
E(s) = the string obtained from s by replacing each bit

of s by the same bit written three times

For each string t €T,
D(t) = the string obtained from t by replacing each

consecutive triple of three identical bits of t by a single

copy of that bit
E(s) =t,torallt ET  and D(t) = s

@ (c) Paul Fodor (CS Stony Brook)




" Functions

®* The Hamming Distance Function
Let S, be the set of all strings of 0’s and 1°’s of length n.
H:S X S —» Znonncg

For each pair of strings (s, t) € S X S

H(s, t)=the number of positions in which s and t difter
Forn =5, H(11111, 00000) = 5

H(10101, 00000) = 3

H(01010, 00000) = 2

(c) Paul Fodor (CS Stony Brook)




" Functions

e Boolean functions:
f:{0,1}»— {0, 1}
(n—place) Boolean function

the domain = the set of all ordered n-tuples of O’s and 1’s

the co-domain = the set {0, 1} (PAQAR) V (PAQA~R) V

Input Output (PA~Q/\~R) V (~P/\Q/\~R)
P Q R 5
1 I 1 l
1 I 0 I
1 0 1 0
I 0 0 l |
0o 1 1 0 |
0 I 0 I
0 0 | 0
0 0 0 0

(c) Paul Fodor (CS Stony Brook)




" Functions

* Boolean functions example:
f:{0,1}°— {0, 1}
f(x;, x5, x3) = (x; T x, T x3) mod 2
£(0,0,0) =0+ 0+0)mod2=0mod 2 =0
0,0, H)=0+0+1)mod2=1mod2 =1
£0,1,0)= 0+ 1+0)mod2=1mod 2 =1
f0,1,1H)=O0+1+1)mod2=2mod2 =0
t(1,0,0)=(1+0+0)mod2=1mod 2 =1
f(1,0,1)=(1+0+1)mod2=2mod2 =0
t(1,1,0)=(1+1+0)mod2=2mod2 =0
f(1,1,H)=1+1+1)mod2=3mod2 =1

(c) Paul Fodor (CS Stony Brook)
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" Functions

° Checking Whether a Function Is Well Defined:
A function f is “not well defined” if:

(1) there is no element in the co-domain y that satisfies f(x)=y for some

element x in the domain OR

(2) there are two different values of y that satisfy f(x)=y

* Example 1:
f: R — R, f (x) is the real number y such that x* + y* = 1

fis “not well defined”:

(1) x = 2, there is no real number y such that 2* + y* = 1
OR

(2) x = 0, there are 2 real numbers y=1 and y=-1 such that

0°+y2=1

(c) Paul Fodor (CS Stony Brook)




" Functions

* Example 2 (Not Well Defined):
f:Q—Z

f(m/n) = m, for all integers m and n withn # 0

1/2=2/4 2> £(1/2) =1(2/4) !
BUT
t(1/2) =1 =  2=12/4)
Condition (2):“there are two different values of y that
satisfy f(x)=y” is True.

@ (c) Paul Fodor (CS Stony Brook)




" Functions Acting on Sets

o [ff: X =Y isafunction and A © X and C €Y, then
f(A)={y €Y | y =1 (x) for some xin A}
f (A) is the image of A
f1(C)= {x €EX | f(x) E C}
{71 (C) is the inverse image of C
Example: X = {1,2,3,4},Y = {a,b,c,d,e},f: X oY

f({1,4}) = {b}  £'({a,b}) = {1,2,4}
f(X) = {a,b,d f~1({c,el) =
@ (X) = {a, b,d} ({c,e}) =0

(c) Paul Fodor (CS Stony Brook)
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" Functions Acting on Sets

® Let X andY be sets, let F : X —Y be a function and
ACX and BEX, then F(A U B) € F(A) U F(B)

Prootf:
Suppose y € F(A U B).

By definition of function, y = F(x) for some x €A U B|

By definition of union, x €A or x € B.
Case 1,x EA: F(x) = y,soy € F(A).

By definition of union: y € F(A) U F(B)
Case 2, x € B: F(x) = y, so y € F(B).

By definition of union: y € F(A) UF(B) =

(c) Paul Fodor (CS Stony Brook)
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" Functions

® One-to-One Functions (injective):
* A function F : X — Y is one-to-one (injective) <>
for all elements x, € X and x, € X, F(x,) = F(x,) =2 x, = x,
or, equivalently (by contraposition), x, # x, "2 F(x,) # F(x,)

X =domain of F F Y = co-domain of F

/ \ e / _\
> e F(x,) "-. Any two distinct elements

of X are sent to two
\ Xo e "

/ \ * FU‘?? distinct elements of Y.
e A function F : X — Y is NOT one-to-one (injective) &

J elements x, € X and x, € X such that x, # x, and F(x,) = F(x,).

X = domain of F F Y = co-domain of F
—a o
/ X0 —\—— ________Ff \  Two distinct elements
| | '*oFix]}:F(xz} | of X are sent to

L

\ T2 —/'— —\ / the same element of Y.
\\ /
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One-to-One Functions Defined on Finite Sets

® Example 1: F: {a,b,c,d} —{u,v,w,x,y} defined by the
following aArrow diagram is one-to-one:

Domain of F Co-domain of F

/\H [\

e
=5

V x, EXandx, EX, x,#x, P F(x,)#F(x,)

(c) Paul Fodor (CS Stony Brook) /
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One-to-One Functions Defined on Finite Sets

® Example 2: G: {a,b,c,d} —{u,v,w,x,y} defined by the
following arrow diagram is NOT one-to-one:

Domain of G Co-domain of G

X Y
— G
/ e
ae- j_ —-f";/' H\x
he —— — Iu’ oU ".I
| ce—] nl“g o U |
- | e X /
l‘x de ,.-"T _________ln_h“ oV /
N/ \_/

G(a) = G(c) = w
J elements x, € X and x, € X, such that x, # x, and
G(x) = G(x,)
l.e.,a € X and ¢ € X, such that a # c and G(a) = G(¢)

@ (c) Paul Fodor (CS Stony Brook)
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One-to-One Functions Defined on Finite Sets

™~

® Example 3: H: {1, 2, 3} —{a, b, ¢, d}

H(1) = c, H(2) = a, and H(3)=d

H is one-to-one:

V x, EXandx, EX, x,#x, 2 H(x,)# H(x,)
* Example 4: K:{1, 2, 3} —{a, b, ¢, d}

K(1) =d, K(2) = b, and K(3)=4d
K is NOT one-to-one:
K(1) =K(3)=d

J elements x, € X and x, € X, such that x, # x, and
K(x)= K(x,)

(c) Paul Fodor (CS Stony Brook) /




4 ™
One-to-One Functions on Infinite Sets

* fis one-to-one < Vx,,x,EX, if f(x,)=f(x,) then x,=x,
® To show f is one-to-one, we will generally use the
method of direct proof:
® suppose x, and x, are elements of X such that
f(x)=1(x,)

® show that x, = x,.

® To show t is not one-to-one, we will try to use the
method of direct proof and detect that we cannot (similar

to counterexample method):

* find elements x, and x, in X so that {(x,)=1(x,) but
@ )(1i X2 . (c) Paul Fodor (CS Stony Brook) /




4 ™
One-to-One Functions on Infinite Sets

® Example: t:R— R,

f(x) =4x — 1forallx ER  istfone-to-one?
f is one-to-one < Vx,,x,EX if f(x,)=f(x,) then x,=x,
suppose x,and x, are any real numbers such that 4x,—1=4x,—1
Adding 1 to both sides and and dividing by 4 both sides gives

x,;=x, Yes! = fis one-to-one m

® Example: ¢g:Z —Z,

g(n) =n’foralln €Z is g one-to-one?
Start by try to show that g is one-to-one:

suppose n,and n, are integers such that 1112:n22 and try to show that
@ n,=n, No! 1°=(-1)’=1 = g is not one-to-one m
N

(c) Paul Fodor (CS Stony Brook) /




" Hash Functions

of integers used in signing documents.
* Example: Hash:SSN —{0,1,2,3,4,5, 6}
SSN = the set of all social security numbers (ignoring hyphens)
Hash(n) = nmod 7 for all social security numbers n.

Hash(328343419) = 328343419 — (7-46906202) = 5

Hash(328343412) = 328343412 — (7- 46906201) =5

® Collision resolution methods: if position Hash(n) in the hash
array is already occupied, then start from that position and

search downward to place the record in the first empty

a position.
k (c) Paul Fodor (CS Stony Brook)
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e Hash Functions are functions defined from larger to smaller sets

® Hash is not one-to one: called a collision for hash functions.




"Onto Functions

* F: X —Y is onto (surjective) <
Vy €Y, dx € X such that F(x) = .

For arrow diagrams, a function is onto if each element of the co-
domain has an arrow pointing to it from some element of the

domain.
* F: X =Y is NOT onto (surjective) <
dy €Y such that Vx € X, F(x) #y.
There is some element inY that is not the image of any element in X|

For arrow diagrams, a function is not onto if at least one element in

its co-domain does not have an arrow pointing to it.

@ (c) Paul Fodor (CS Stony Brook) /
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Onto Functions with Arrow Diagrams

® [ 1s onto:

X = domain of F Y = co-domain of F

Each element y in
Y equals F(x) for
at least one x in X.

(c) Paul Fodor (CS Stony Brook) /
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Onto Functions with Arrow Diagrams

* Example: G: {1,2,3,4,5} — {a,b,c,d}

(3 is onto

Vy €Y, dx € X such that G(x) =y

(c) Paul Fodor (CS Stony Brook) /




4 ™
Onto Functions with Arrow Diagrams

® [ is not onto

X = domain of F F Y = co-domain of F
—a

- At least one element in ¥
- does not equal F(x)
for any x in X.

(c) Paul Fodor (CS Stony Brook) /
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Onto Functions with Arrow Diagrams

* Example: F: {1,2,3,4 5} — {a,b,c,d}

A
el "T‘*:fj |
\/——- )

F is not onto because b # F(x) for any x in X
dy €Y such that Vx € X, F(x) #y

(c) Paul Fodor (CS Stony Brook) /




" Onto Functions

° Example: H: {1,2,3,4} — {a,b,c}
H(1)=¢, H(@2)=a, H@Q3)=c,and H#4)=b
H is onto because Vy €Y, dx € X such that H(x) = y:
a = H(2)
b = H(4)
¢ = H(1) = H(3)
® Example: K: {1,2,3,4} — {a,b,c}
K(1)=¢, K(@2)=b, K@B)=b,and K#)=c
H is not onto because a#K(x) for any x€{1, 2, 3, 4}.

@ (c) Paul Fodor (CS Stony Brook)




4 . .
Onto Functions on Infinite Sets
* Fis onto <» Vy €Y, dx € X such that F(x) = y.

® We prove F is onto using the method of

generalizing from the generic particular:

esuppose that y is any element of Y,

*show that there is an element x of X with F(x)=y.
® Prove F is not onto:

*find an element y of Y such that y # F(x) for any

X in X.

@ (c) Paul Fodor (CS Stony Brook) /
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Onto Functions on Infinite Sets

® Example:f: R — R Prove f is onto or give counterexample.
f(x) =4x — 1 forallx ER
suppose y ER
show that there exists a real number x such that y = 4x — 1.
4x — 1 =y x=(y t1)/4 €R byadding 1 and dividing by 4
> fis onto |
®* Example:h: Z —Z Prove h is onto or give counterexample.
h(n) =4n — 1 foralln €Z
O0€EZ,if h(n)y=0,then4n—1=0~n=1/4&7Z
h(n) # 0 for any integer n — his not onto u

@ (c) Paul Fodor (CS Stony Brook) /




" Exponential Functions

® The exponential function with base b: exp, : R — R
exp,(x) = b*
exp,(0) =b’ =1
exp,(-x) = b* = 1/b*
® The exponential function is one-to-one and onto
For any positive real number b#1, b = b* 2 u =y, Yu,vER
* Laws of Exponents: V b,c € R"and u,v ER

bubv — bu+v
(bu)v — buv
bU/bY = b

(b C)u — bu cl
@ (c) Paul Fodor (CS Stony Brook) /




" Logarithmic Functions

* The logarithmic function with base b: log, : R* — R
logy(x) =y & b’ =x

® The logarithmic function is one-to-one and onto.

For any positive real number b#1,

logiu = log,v 2 u=y, Vu,vER?

® Properties of Logarithms: V b, ¢, x € R¥, with b#1 and ¢#1
log,(xy) = logx + log,y
log, (x/y) = log;x — log,y
log, (x*) = alog,x
log x = log,x / log,c

@ (c) Paul Fodor (CS Stony Brook) /




4 . . . .
Exponential and Logarithmic Functions

® Vb, c,x €R", with b#1 and ¢#1: log x = log,x / log,c

Proof: Suppose positive real numbers b, ¢, and x are given,
s.t. (1) logi.c =u (2)log. x =v (3) logy x =w

By definition of logarithm: ¢ = b", x = ¢" and x = b"

x = ¢’ = (b")" = b", by laws of exponents

But x = b" = b"", so uv = w (by one-one exponent) =2

By (1), (2) and (3): (log,c)(log_ x) = log, x

By dividing both sides by log,c:  log x = log,x / logic =

@ (c) Paul Fodor (CS Stony Brook)
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Exponential and Logarithmic Functions

® Notations:

OLogarithms with base 10 are called

common logarithms and are denoted by

Simply log.

OLogarithms with base e are cal]

logarithms and are denoted |

® Example: log )5 = log 5/ log p—

OY

ed natural

~
“n.

n5/In?2




4 N
One-to-One Correspondences

® A one-to-one correspondence (or bijection)
from a set X to a setY is a function F: X — Y that
is both one-to-one and onto.

o Example: X = domain of F P = co-domain of F
. — \
(e
/o £
| I
|

}
|II d ° | > ® _1_ ,.'I

\ee/ 3/

(c) Paul Fodor (CS Stony Brook) /




If ais not in A, write a O in the 1** position of the string h(A).
Ifbisin A, write a 1 in the 2" position of the string h(A).
If b is not in A, write a 0 in the 2" position of the string h(A).

- h

(-

4 N
One-to-One Correspondences

. Example: A Function from a Power Set to a Set of Strings
h: P({a, b}) —> {OO, 01,10, 11}
If aisin A, write a 1 in the 1* position of the string h(A).

Subset of {a, b}

Status

of a

Status of b

String in S

)

{a}
{b}
{a, b}

not in
in
not in
in

not in
not in
in
in

00
10
01
11

(c) Paul Fodor (CS Stony Brook)

7O\ Lo

| [(I}.—‘—|—}‘]O I'|
| [b}-ﬁ—l—:--o] |

Nesis/ 1

/




4 N
One-to-One Correspondences

® Example: R X R — R X R
F(x,y) = (xtyx—y),forall (x,y) ERXR
Part 1: Proof that F is one-to-one:
Suppose that (x,,y,) and (x,,y,) are any ordered pairsin R X R
such that F(x,,y,) = F(x,Y,)-
@ tyLx Ty) Tty x; Ty,
& (Hx, Ty, =x,Ty,and 2)x;, —y, =x, ~ ¥,
(H+(2) 2 2x, = 2x, 2 (3) x, = x,
Substituting (3)in 2) 2 x,*y, =x,+Ty,2 vy, =y,

2 (xp Y1) = (X Y>2)
Yes, F is one-to-one.
(-

(c) Paul Fodor (CS Stony Brook) /




4 N
One-to-One Correspondences

® Example: R X R — R X R
F(x,y) = (xtyx—y),forall (x,y) ERXR
Part2: Proof that F is onto:
Let (u,v) be any ordered pair in R X R
Suppose that we found (1,s)ER X R such that F(r,s) = (u, v).
P rts,r—s) =, vV)Pr+s=u and r—s=v
& 2r =u+ v (by sum of 2 eqs) and 2s = u — v (by diff eqs)
@Pr=@u+tv)/2 and s=(u—v)/2
We tound (1, s) €E R X R

Yes, F is onto.

@ So, Fis a One-to-One correspondence. u
A

(c) Paul Fodor (CS Stony Brook) /




" Inverse Functions :

° If F: X —Y is a one-to-one correspondence, then there is
an inverse function for F, F~':Y — X | s.t.for any

clementy EY
F~!(y)=that unique element x € X such that F(x)=y
FI(y) = x  Flx) =

X = domain of F Y = co-domain of F
C l(y)e ReFx)=y II

e 1/

(c) Paul Fodor (CS Stony Brook) /




" Inverse Functions

® Examplet Pdab) S

—
M
| fajet+———F>el0

'| |bl-—;|—'.—>--01 |
the inverse function for his h™!:

ZUabh

/ -10\| h'00)=9 h~'(10) = {a)
\ 01 | plon={b} h'(11)={a. b}

(c) Paul Fodor (CS Stony Brook)
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Inverse Functions
® Example: f: R — R, f(x) = 4x — 1 for all real

numbers x.
The inverse function for fis ! : R — R,
For any [particular but arbitrarily chosen] y in R
f ~!(y) = that unique real number x such that f(x)=y.
fx)=ye4dx—1=yex=(yt+t1)/4
Hence f~(y) = (y + 1)/4.

@ (c) Paul Fodor (CS Stony Brook) /




" Inverse Functions

o [f X andY are sets and F: X —Y is one-to-one and

onto, then F ! :Y — X is also one-to-one and onto.
Proof:

F ! is one-to-one: Suppose vy, and y, are elements of

Y, s.t. Fl(y)= F '(y,)
Letx = F_l(yl): F_l(yz), x € X.
By definition of F~ !, F(x) =, and F(x) = Yy,,80V; — Y,

F ! is onto: Suppose x € X.
Lety = F(x),y €Y

By definition of F~', F "!(y) = x.
@

(c) Paul Fodor (CS Stony Brook) /
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One-to-One and Onto for Finite Sets

® Let X andY be finite sets with the same number of
elements and suppose f is a function from X toY .

f is one-to-one < fis onto
Proof: Let X = {x,, x,,..., x,} andY = {y,, y,,..., V,.}
(1) fis one-to-one =2 fis onto
£ (x)), f(x,),...,  (x,)) are all distinct, and S = {yEY | VXEX, f(x) # y}
{f(x)}, {f(x)},..., {f(x,,)} and S are mutually disjoint
m = N(Y) = N({f (x)) )N (x,) ) ... TN (x,)$)TN(S) = m + N(S)
& N(S) = 0, there is no element of Y that is not the image of some element of X
f is onto
(2) fis onto =2 fis one-to-one
N (y))=1forali=1,....m =2
m=N(X) = N(f"'(y))) +...+ N(f"'(y,) , m terms > N(f"(y))) = 1,

f is one-to-one

(c) Paul Fodor (CS Stony Brook)
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" Composition of Functions

®letf: X —Y and gY =7 be functions with the
property that the range of fis a subset of the domain of

g: YCY
The composition of f and g is a function g°f: X — Z
(g°f)<x) = (f(X)) forall x € X

CO @

gl flx)) = |

\>K //Qf}

@ (c) Paul Fodor (CS Stony Brook) /




" Composition of Functions

® Example composition of tunctions:
Letf:Z—>Zandg: Z — Z

f (n)=n + 1,toralln € Z

g(n) =n’ ,foralln €Z
(gef)n)=gf () =gmht+tl)=mnm+1)° foralln€Z
(fog)(m) =f(g(n)) =f(n’)=n’+ 1,foralln EZ

@ f)(1)=(1+1)7=4

(Fog)(1)=12+1=2

feg#gof

(c) Paul Fodor (CS Stony Brook) /




" Composition of Functions

o Example composition of functions:

Lett:{1,2,3} — {a,b,c,d} and g: {a,b,c,d,e} — {x,y,z}




" Composition of Functions

° Example composition of functions:

Let X = {a,b,c,d} andY = {u, v, w},f: X —Y

Iy : X — Xis an identity function I[:Y —Y is an identity function

L (x) = x, forallx € X I,(y) =y, forally €Y

(tol)(x) =f(I«(x)) =f(x), forallx €X Iy f)(x) IY(f (x))= f(X) forall x € X
X X Y I, Y

& — a ”_‘* u — u
/b\ \l — ,./;\\ /\ \ /'\ /'\

k.
-
|
‘ :
-

T [
@\ﬁi/ W \/ ﬂ\/

(c) Paul Fodor (CS Stony Brook)
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" Composition of Functions

° Composing a Function with Its Inverse:

Letf: {a,b, c} — {x, y, z! be a one-to-one and onto function

()

f is one-to-one correspondence @ Fl {x,y, 2z} — {a, b, c}
Y -1
I

(f7hef)@=1"(f@)=1"(z)=a
(f71ef)yb)y=f"1(f(b)=f""(x)=b =>flof=1I4

@H o)) =17 (f(c)=fy)=c also fef =1,

(c) Paul Fodor (CS Stony Brook)
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" Composition of Functions

* Composing a Function with Its Inverse:
If £:X—Y is a one-to-one and onto function with inverse
function f ~':Y—X, then (@) f "' f=1I and (b) fef ' =1,
Proof (a):
Let x be any element in X: (f 7' £ )(x)=f ~'(f (x))=x" EX(*)
Definition of inverse function:
f7I(by=aef(@) =bforallaE Xandb EY
2> 1(f(x) =x & {(x") = {(x)
Since f is one-to-one, this implies that x” = x.
(#) > (o F)(x) = x
o )




" Composition of Functions

© Composition of One-to-One Functions:

Iff: X —Y and g:Y — Z are both one-to-one functions, then

gof is also one-to-one.
Proof (by the method of direct proof):
Suppose f : X —Y and g:Y — Zare both one-to-one

functions.
Suppose x,, x, € X such that: (g ot )(x,) = (g °t)(x,)
By definition of composition of functions, g(t (x,)) = g(t (x,)).
Since g is one-to-one,  (x,) = £(x,).

Since f is one-to-one, X, = X,.

@ (c) Paul Fodor (CS Stony Brook) /




" Composition of Functions

o Comp051t10n of One- to One Functlons Example

R
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" Composition of Functions

© Composition of Onto Functions:

If f:X—Y and g:Y—Z are both onto functions, then g ° fis

onto.
Proof:
Suppose f : X —Y and g:Y — Z are both onto functions.
Let z be a [particular but arbitrarily chosen] element of Z.
Since g is onto, there is an element y inY such that g(y) = z.

Since t is onto, there is an element x in X such that f (x) =y

z =g(y) = g(f(x)) = (g°f) (x) P g flS onto

\ (c) Paul Fodor (CS Stony Brook)




" Composition of Functions

o Composition of Onto Functions Example:




