Functions

CSE 215, Foundations of Computer Science
Stony Brook University
http: / /www.cs.stonybrook.edu/ $\sim_{\text {cse }} 215$

Functions Defined on General Sets

- A function f from a set X to a set Y

$$
f: X \rightarrow Y
$$

X is the domain
Y is the co-domain

1. every element in X is related to some element in Y
2. no element in X is related to more than one element in Y

- For any element $\mathrm{x} \in \mathrm{X}$, there is a unique element $\mathrm{y} \in \mathrm{Y}$ such that $f(x)=y$
- Range of f (image of X under $f)=\{y \in Y \mid y=f(x), x \in X\}$
- The inverse image of $y=\{x \in X \mid f(x)=y\}$

Arrow diagrams

- An arrow diagram defines a function iff
- Every element of X has an arrow coming out of it
- No element of X has two arrows coming out of it that point to two different elements of Y

Arrow diagrams

- Example 1:
$\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad \mathrm{Y}=\{1,2,3,4\}$

No

No

Yes

Arrow diagrams

- Example 2:

$$
\mathrm{X}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}, \quad \mathrm{Y}=\{1,2,3,4\}
$$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{a})=2 \\
& \mathrm{f}(\mathrm{~b})=4 \\
& \mathrm{f}(\mathrm{c})=2
\end{aligned}
$$

- domain of $f=\{a, b, c\}$,
co-domain of $f=\{1,2,3,4\}$
- range of $f=\{2,4\}$
- inverse image of $2=\{a, c\}$
- inverse image of $4=\{b\}$
- inverse image of $1=\varnothing$
function representation as a set of pairs $=\{(\mathrm{a}, 2),(\mathrm{b}, 4),(\mathrm{c}, 2)\}$

Function Equality

Def.: the set notation for a function: $\mathrm{F}(\mathrm{x})=\mathrm{y} \Leftrightarrow(\mathrm{x}, \mathrm{y}) \in \mathrm{F}$

- If $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{G}: \mathrm{X} \rightarrow \mathrm{Y}$ are functions, then $\mathrm{F}=\mathrm{G}$ if, and only if, $F(x)=G(x)$ for all $x \in X$.
Proof:

$$
\begin{array}{lc}
F \subseteq X \times Y & G \subseteq X \times Y \\
F(x)=y \Leftrightarrow(x, y) \in F & G(x)=y \Leftrightarrow(x, y) \in G \\
F=G \rightarrow F(x)=G(x) \text { for all } x \in X . \text { Then for all } x \in X, \\
F(x)=y \Leftrightarrow(x, y) \in F \Leftrightarrow(x, y) \in G \Leftrightarrow G(x)=y \\
& F(x)=y=G(x)
\end{array}
$$

$\mathbf{F}(\mathbf{x})=\mathbf{G}(\mathbf{x})$ for all $\mathbf{x} \in \mathbf{X} \boldsymbol{\nabla}=\mathbf{G}$ Then for any element x of X :

$$
(x, y) \in F \Leftrightarrow y=F(x) \Leftrightarrow y=G(x) \Leftrightarrow(x, y) \in G
$$

F and G consist of exactly the same elements and hence $F=G$.

Function Equality

- Example: $\mathrm{J}_{3}=\{0,1,2\}$

$$
\begin{aligned}
& f: J_{3} \rightarrow J_{3} \text { and } g: J_{3} \rightarrow J_{3} \\
& f(x)=\left(x^{2}+x+1\right) \bmod 3 \\
& g(x)=(x+2)^{2} \bmod 3
\end{aligned}
$$

\boldsymbol{x}	$x^{\mathbf{2}}+\boldsymbol{x + 1}$	$f(\boldsymbol{x})=\left(\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x + 1} \mathbf{1} \boldsymbol{\operatorname { m o d } \mathbf { 3 }}\right.$	$\left(\boldsymbol{x + 2) ^ { 2 }}\right.$	$\boldsymbol{g}(\boldsymbol{x})=(\boldsymbol{x}+\mathbf{2})^{\mathbf{2}} \bmod \mathbf{3}$
0	1	$1 \bmod 3=1$	4	$4 \bmod 3=1$
1	3	$3 \bmod 3=0$	9	$9 \bmod 3=0$
2	7	$7 \bmod 3=1$	16	$16 \bmod 3=1$

$$
\begin{gathered}
f(0)=g(0)=1, \quad f(1)=g(1)=0, \quad f(2)=g(2)=1 \\
f=g=\{(0,1),(1,0),(2,1)\}
\end{gathered}
$$

Function Equality

- Example: $\quad \mathrm{F}: \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{G}: \mathbf{R} \rightarrow \mathbf{R}$ $\mathrm{F}+\mathrm{G}: \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{G}+\mathrm{F}: \mathbf{R} \rightarrow \mathbf{R}$

$$
\begin{aligned}
& (F+G)(x)=F(x)+G(x) \\
& (G+F)(x)=G(x)+F(x), \quad \text { for all } x \in \mathbf{R}
\end{aligned}
$$

For all real numbers x :
$(\mathrm{F}+\mathrm{G})(\mathrm{x})=\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x}) \quad$ by definition of $\mathrm{F}+\mathrm{G}$ $=\mathrm{G}(\mathrm{x})+\mathrm{F}(\mathrm{x}) \quad$ by the commutative law for addition of real numbers
$=(G+F)(x) \quad$ by definition of $G+F$
${ }_{8}$ Hence F + G $=G+F$.

Functions

- The Identity Function on a Set:

Given a set $\mathrm{X}, \quad \mathrm{I}_{\mathrm{X}}: \mathrm{X} \rightarrow \mathrm{X}$ is an identity function iff

$$
\mathrm{I}_{\mathrm{X}}(\mathrm{x})=\mathrm{x}, \text { for all } \mathrm{x} \in \mathrm{X}
$$

- The function for a sequence:
$1,-1 / 2,1 / 3,-1 / 4,1 / 5, \ldots,(-1)^{\mathrm{n}} /(\mathrm{n}+1), \ldots$
$0 \rightarrow 1, \quad 1 \rightarrow-1 / 2,2 \rightarrow 1 / 3, \quad 3 \rightarrow-1 / 4, \quad 4 \rightarrow 1 / 5$

$$
\mathrm{n} \rightarrow(-1)^{\mathrm{n}} /(\mathrm{n}+1)
$$

$\mathrm{f}: \mathbf{N} \rightarrow \mathbf{R}$, for each integer $\mathrm{n} \geq 0, \mathrm{f}(\mathrm{n})=(-1)^{\mathrm{n}} /(\mathrm{n}+1)$ where ($\mathbf{N}=\mathbf{Z}^{\text {nonneg }}$) OR
$\mathrm{g}: \mathbf{Z}^{+} \rightarrow \mathbf{R}$, for each integer $\mathrm{n} \geq 1, \mathrm{~g}(\mathrm{n})=(-1)^{\mathrm{n}+1} / \mathrm{n}$ where $\left(\mathbf{Z}^{+}=\mathbf{Z}^{\text {nonneg }}\{\mathbf{0}\}\right)$

Functions

- Power set example:

$$
\mathrm{F}: \mathrm{P}(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}) \rightarrow \mathbf{Z}^{\text {nonneg }}
$$

For each $X \in P(\{a, b, c\}), F(X)=$ the number of elements in X (i.e., the cardinality of X)

Functions

- Cartesian product example:
$\mathrm{M}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{R}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$
The multiplication function: $\mathrm{M}(\mathrm{a}, \mathrm{b})=\mathrm{a} * \mathrm{~b}$
We omit parenthesis for tuples: $\mathrm{M}((\mathrm{a}, \mathrm{b}))=\mathrm{M}(\mathrm{a}, \mathrm{b})$
$\mathrm{M}(1,1)=1, \quad \mathrm{M}(2,2)=4$
The reflection function: $\mathrm{R}(\mathrm{a}, \mathrm{b})=(-\mathrm{a}, \mathrm{b})$
R sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis
$R(1,1)=(-1,1), \quad R(2,5)=(-2,5), \quad R(-2,5)=(2,5)$

Functions

- Logarithms and Logarithmic Functions:
- The base of a logarithm b is a positive real number with $b \neq 1$
- The logarithm with base bof $\mathrm{x}: \log _{b} \mathrm{x}=\mathrm{y} \Leftrightarrow \mathrm{b}^{y}=\mathrm{x}$
- The logarithmic function with base \mathbf{b} :

$$
\log _{\mathrm{b}} \mathrm{x}: \mathbf{R}^{+} \rightarrow \mathbf{R}
$$

Examples:

$$
\begin{array}{lll}
\log _{3} 9=2 & \text { because } & 3^{2}=9 \\
\log _{10}(1)=0 & \text { because } & 10^{0}=1 \\
\log _{2} 1 / 2=-1 & \text { because } & 2^{-1}=1 / 2
\end{array}
$$

Functions
 - Example: Encoding and Decoding Functions

For each string $\mathrm{s} \in \mathrm{A}$,
$\mathrm{E}(\mathrm{s})=$ the string obtained from s by replacing each bit of s by the same bit written three times
For each string $t \in T$,
$\mathrm{D}(\mathrm{t})=$ the string obtained from t by replacing each consecutive triple of three identical bits of t by a single copy of that bit

$$
E(s)=t \text {, for all } t \in T \quad \text { and } \quad D(t)=s
$$

Functions

- The Hamming Distance Function

Let S_{n} be the set of all strings of 0's and 1's of length n.

$$
\mathrm{H}: \mathrm{S}_{\mathrm{n}} \times \mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{Z}^{\text {nonneg }}
$$

For each pair of strings $(s, t) \in S_{n} \times S_{n}$
$H(s, t)=$ the number of positions in which s and t differ
For $\mathrm{n}=5, \mathrm{H}(11111,00000)=5$

$$
\begin{aligned}
& \mathrm{H}(10101,00000)=3 \\
& \mathrm{H}(01010,00000)=2
\end{aligned}
$$

Functions

- Boolean functions:

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

(n-place) Boolean function

the domain $=$ the set of all ordered n-tuples of 0 's and 1's the co-domain $=$ the set $\{0,1\}$

$$
(\mathrm{P} \wedge \mathrm{Q} / \wedge \mathrm{R}) \vee(\mathrm{P} / \wedge \mathrm{Q} \wedge \sim \mathrm{R}) \vee
$$

Input			Output
\boldsymbol{P}	\boldsymbol{Q}	\boldsymbol{R}	\boldsymbol{S}
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

Functions

- Boolean functions example:

$$
\begin{gathered}
\mathrm{f}:\{0,1\}^{3} \rightarrow\{0,1\} \\
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right) \bmod 2 \\
\mathrm{f}(0,0,0)=(0+0+0) \bmod 2=0 \bmod 2=0 \\
\mathrm{f}(0,0,1)=(0+0+1) \bmod 2=1 \bmod 2=1 \\
\mathrm{f}(0,1,0)=(0+1+0) \bmod 2=1 \bmod 2=1 \\
\mathrm{f}(0,1,1)=(0+1+1) \bmod 2=2 \bmod 2=0 \\
\mathrm{f}(1,0,0)=(1+0+0) \bmod 2=1 \bmod 2=1 \\
\mathrm{f}(1,0,1)=(1+0+1) \bmod 2=2 \bmod 2=0 \\
\mathrm{f}(1,1,0)=(1+1+0) \bmod 2=2 \bmod 2=0 \\
\mathrm{f}(1,1,1)=(1+1+1) \bmod 2=3 \bmod 2=1
\end{gathered}
$$

Functions

- Checking Whether a Function Is Well Defined:

A function f is "not well defined" if:
(1) there is no element in the co-domain y that satisfies $f(x)=y$ for some element x in the domain $\boldsymbol{O R}$
(2) there are two different values of y that satisfy $f(x)=y$

- Example 1:
$\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})$ is the real number y such that $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ f is "not well defined":
(1) $x=2$, there is no real number y such that $2^{2}+y^{2}=1$ OR
(2) $x=0$, there are 2 real numbers $y=1$ and $y=-1$ such that

$$
0^{2}+y^{2}=1
$$

Functions

- Example 2 (Not Well Defined):
$\mathrm{f}: \mathbf{Q} \rightarrow \mathbf{Z}$
$\mathrm{f}(\mathrm{m} / \mathrm{n})=\mathrm{m}$, for all integers m and n with $\mathrm{n} \neq 0$

$$
1 / 2=2 / 4 \rightarrow f(1 / 2)=f(2 / 4)!
$$

BUT

$$
f(1 / 2)=1 \quad \neq \quad 2=f(2 / 4)
$$

Condition (2):"there are two different values of y that satisfy $f(x)=y$ " is True.

Functions Acting on Sets

- If $f: X \rightarrow Y$ is a function and $A \subseteq X$ and $C \subseteq Y$, then

$$
f(A)=\{y \in Y \mid y=f(x) \text { for some } x \text { in } A\}
$$

$f(A)$ is the image of A
$\mathrm{f}^{-1}(\mathrm{C})=\{\mathrm{x} \in \mathrm{X} \mid \mathrm{f}(\mathrm{x}) \in \mathrm{C}\}$
$f^{-1}(C)$ is the inverse image of C
Example: $\mathrm{X}=\{1,2,3,4\}, \mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$

$$
\begin{array}{ll}
f(\{1,4\})=\{\mathrm{b}\} & \mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{~b}\})=\{1,2,4\} \\
\mathrm{f}(\mathrm{X})=\underset{\text { (e) Paulf Foodr(cs scony Brook) }}{\{\mathrm{a}, \mathrm{~b}, \mathrm{~d}\}} & \left.\mathrm{f}^{-1}(\mathrm{c}, \mathrm{e}\}\right)=\emptyset
\end{array}
$$

Functions Acting on Sets

- Let X and Y be sets, let $F: X \rightarrow Y$ be a function and $A \subseteq X$ and $B \subseteq X$, then $F(A \cup B) \subseteq F(A) \cup F(B)$

Proof:

Suppose y $\in \mathcal{F}(A \cup B)$.
By definition of function, $y=F(x)$ for some $x \in A \cup B$. By definition of union, $x \in A$ or $x \in B$.
Case 1, $x \in A: F(x)=y$, so $y \in F(A)$.
By definition of union: $y \in F(A) \cup F(B)$
Case 2, $x \in B: F(x)=y$, so $y \in F(B)$.
By definition of union: $y \in F(A) \cup F(B) \quad$ ■

Functions

- One-to-One Functions (injective):
- A function $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is one-to-one (injective) \Leftrightarrow for all elements $\mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{x}_{2} \in \mathrm{X}, \mathrm{F}\left(\mathrm{x}_{1}\right)=\mathrm{F}\left(\mathrm{x}_{2}\right) \rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$ or, equivalently $\underset{X=\text { domain of } F}{\text { by }}$ contraposition) $, \mathrm{x}_{Y=\text { codomain of } F} \neq \mathrm{x}, \rightarrow \mathrm{F}\left(\mathrm{x}_{1}\right) \neq \mathrm{F}\left(\mathrm{x}_{2}\right)$

- A function $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is NOT one-to-one (injective) \Leftrightarrow \exists elements $x_{1} \in X$ and $x_{2} \in X$, such that $x_{1} \neq x_{2}$ and $F\left(x_{1}\right)=F\left(x_{2}\right)$.

Two distinct elements
of X are sent to
the same element of Y.

One-to-One Functions Defined on Finite Sets

- Example 1: F: $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \rightarrow\{\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}\}$ defined by the following arrow diagram is one-to-one:

$$
\forall \mathrm{x}_{1} \in \mathrm{X} \text { and } \mathrm{x}_{2} \in \mathrm{X}, \quad \mathrm{x}_{1} \neq \mathrm{x}_{2} \rightarrow \mathrm{~F}\left(\mathrm{x}_{1}\right) \neq \mathrm{F}\left(\mathrm{x}_{2}\right)
$$

One-to-One Functions Defined on Finite Sets

- Example 2: G: $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \rightarrow\{\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}\}$ defined by the following arrow diagram is NOT one-to-one:

Domain of $G \quad$ Co-domain of G

$$
\mathrm{G}(\mathrm{a})=\mathrm{G}(\mathrm{c})=\mathrm{w}
$$

\exists elements $x_{1} \in X$ and $x_{2} \in X$, such that $x_{1} \neq x_{2}$ and $G\left(x_{1}\right)=G\left(x_{2}\right)$
I.e., $a \in X$ and $c \in X$, such that $a \neq c$ and $G(a)=G(c)$

One-to-One Functions Defined on Finite Sets

- Example 3: $\mathrm{H}:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{H}(1)=\mathrm{c}$,
$\mathrm{H}(2)=\mathrm{a}$, and
$H(3)=d$
H is one-to-one:
$\forall \mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{x}_{2} \in \mathrm{X}, \quad \mathrm{x}_{1} \neq \mathrm{x}_{2} \rightarrow \mathrm{H}\left(\mathrm{x}_{1}\right) \neq \mathrm{H}\left(\mathrm{x}_{2}\right)$
- Example 4: $\mathrm{K}:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$K(1)=d$,
$K(2)=b$, and
$K(3)=\mathrm{d}$
K is NOT one-to-one:

$$
K(1)=K(3)=d
$$

\exists elements $x_{1} \in X$ and $x_{2} \in X$, such that $x_{1} \neq x_{2}$ and $K\left(x_{1}\right)=K\left(x_{2}\right)$

One-to-One Functions on Infinite Sets

- f is one-to-one $\Leftrightarrow \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$, if $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ then $\mathrm{x}_{1}=\mathrm{x}_{2}$
- To show f is one-to-one, we will generally use the method of direct proof:
- suppose x_{1} and x_{2} are elements of X such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
- show that $\mathrm{x}_{1}=\mathrm{x}_{2}$.
- To show f is not one-to-one, we will try to use the method of direct proof and detect that we cannot (similar to counterexample method):
- find elements x_{1} and x_{2} in X so that $f\left(x_{1}\right)=f\left(x_{2}\right)$ but

One-to-One Functions on Infinite Sets

- Example: $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$,

$$
\mathrm{f}(\mathrm{x})=4 \mathrm{x}-1 \text { for all } \mathrm{x} \in \mathbf{R} \quad \text { is } \mathrm{f} \text { one-to-one? }
$$

f is one-to-one $\Leftrightarrow \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$, if $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ then $\mathrm{x}_{1}=\mathrm{x}_{2}$
suppose x_{1} and x_{2} are any real numbers such that $4 \mathrm{x}_{1}-1=4 \mathrm{x}_{2}-1$
Adding 1 to both sides and and dividing by 4 both sides gives

$$
\mathbf{x}_{1}=\mathbf{x}_{2} \quad \text { Yes! } \rightarrow \mathbf{f} \text { is one-to-one }
$$

- Example: $g: \mathbf{Z} \rightarrow \mathbf{Z}$,

$$
g(n)=n^{2} \text { for all } n \in \mathbb{Z} \quad \text { is } g \text { one-to-one? }
$$

Start by try to show that \mathbf{g} is one-to-one:
suppose n_{1} and n_{2} are integers such that $n_{1}{ }^{2}=n_{2}{ }^{2}$ and try to show that
$\mathrm{n}_{1}=\mathrm{n}_{2}$ No! $1^{2}=(-1)^{2}=1 \rightarrow \mathrm{~g}$ is not one-to-one

Hash Functions

- Hash Functions are functions defined from larger to smaller sets of integers used in signing documents.
- Example: Hash:SSN $\rightarrow\{0,1,2,3,4,5,6\}$
$\mathrm{SSN}=$ the set of all social security numbers (ignoring hyphens)
Hash(n) $=\mathrm{n} \bmod 7 \quad$ for all social security numbers n .
$\operatorname{Hash}(328343419)=328343419-(7 \cdot 46906202)=5$
- Hash is not one-to one: called a collision for hash functions.
$\operatorname{Hash}(328343412)=328343412-(7 \cdot 46906201)=5$
- Collision resolution methods: if position Hash(n) in the hash array is already occupied, then start from that position and search downward to place the record in the first empty position.

Onto Functions

- $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is onto (surjective) \Leftrightarrow

$$
\forall y \in Y, \quad \exists x \in X \text { such that } F(x)=y
$$

For arrow diagrams, a function is onto if each element of the codomain has an arrow pointing to it from some element of the domain.

- $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is NOT onto (surjective) \Leftrightarrow

$$
\exists y \in Y \text { such that } \forall x \in X, F(x) \neq y .
$$

There is some element in Y that is not the image of any element in X . For arrow diagrams, a function is not onto if at least one element in its co-domain does not have an arrow pointing to it.

Onto Functions with Arrow Diagrams

- F is onto:

Each element y in
Y equals $F(x)$ for at least one x in X.

Onto Functions with Arrow Diagrams

- Example: G: $\{1,2,3,4,5\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

G is onto
$\forall y \in Y, \quad \exists x \in X$ such that $G(x)=y$

Onto Functions with Arrow Diagrams

- F is not onto

At least one element in Y does not equal $F(x)$ for any x in X.

Onto Functions with Arrow Diagrams

- Example: $\mathrm{F}:\{1,2,3,4,5\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

F is not onto because $b \neq F(x)$ for any x in X $\exists y \in Y$ such that $\forall x \in X, F(x) \neq y$

Onto Functions

- Example: $\mathrm{H}:\{1,2,3,4\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\mathrm{H}(1)=\mathrm{c}, \quad \mathrm{H}(2)=\mathrm{a}, \quad \mathrm{H}(3)=\mathrm{c}$, and $\quad \mathrm{H}(4)=\mathrm{b}$
H is onto because $\forall y \in Y, \exists x \in X$ such that $H(x)=y$:

$$
\begin{aligned}
& a=H(2) \\
& b=H(4) \\
& c=H(1)=H(3)
\end{aligned}
$$

- Example: $K:\{1,2,3,4\} \rightarrow\{a, b, c\}$
$K(1)=c, \quad K(2)=b, \quad K(3)=b$, and $K(4)=c$ H is not onto because $a \neq K(x)$ for any $x \in\{1,2,3,4\}$.

Onto Functions on Infinite Sets

- F is onto $\Leftrightarrow \forall \mathrm{y} \in \mathrm{Y}, \exists \mathrm{x} \in \mathrm{X}$ such that $\mathrm{F}(\mathrm{x})=\mathrm{y}$.
- We prove F is onto using the method of generalizing from the generic particular: - suppose that y is any element of Y , - show that there is an element x of X with $F(x)=y$.
- Prove F is not onto:
- find an element y of Y such that $y \neq F(x)$ for any x in X .

Onto Functions on Infinite Sets

- Example: $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R} \quad$ Prove f is onto or give counterexample.

$$
f(x)=4 x-1 \text { for all } x \in \mathbf{R}
$$

suppose $\mathrm{y} \in \mathbf{R}$
show that there exists a real number x such that $\mathrm{y}=4 \mathrm{x}-1$. $4 \mathrm{x}-1=\mathrm{y} \Leftrightarrow \mathrm{x}=(\mathrm{y}+1) / 4 \in \mathbf{R}$ by adding 1 and dividing by 4
$\rightarrow \mathrm{f}$ is onto

- Example: $\mathrm{h}: \mathbf{Z} \rightarrow \mathbf{Z} \quad$ Prove h is onto or give counterexample.

$$
h(n)=4 n-1 \text { for all } n \in \mathbf{Z}
$$

$0 \in \mathbf{Z}$, if $\mathrm{h}(\mathrm{n})=0$, then $4 \mathrm{n}-1=0 \Leftrightarrow \mathrm{n}=1 / 4 \notin \mathbf{Z}$ $\mathrm{h}(\mathrm{n}) \neq 0$ for any integer $\mathrm{n} \rightarrow \mathrm{h}$ is not onto

Exponential Functions

- The exponential function with base $\mathrm{b}: \exp _{\mathrm{b}}: \mathbf{R} \rightarrow \mathbf{R}^{+}$

$$
\exp _{b}(x)=b^{x}
$$

$\exp _{b}(0)=b^{0}=1$
$\exp _{b}(-x)=b^{-x}=1 / b^{x}$

- The exponential function is one-to-one and onto

For any positive real number $\mathrm{b} \neq 1, \mathrm{~b}^{\mathrm{v}}=\mathrm{b}^{\mathrm{u}} \rightarrow \mathrm{u}=\mathrm{v}, \forall \mathrm{u}, \mathrm{v} \in \mathbf{R}$

- Laws of Exponents: $\forall \mathrm{b}, \mathrm{c} \in \mathbf{R}^{+}$and $\mathrm{u}, \mathrm{v} \in \mathbf{R}$

$$
\begin{aligned}
& b^{u} b^{v}=b^{u+v} \\
& \left(b^{u}\right)^{v}=b^{u v} \\
& b^{u} / b^{v}=b^{u-v} \\
& (b c)^{u}=b^{u} c^{u}
\end{aligned}
$$

Logarithmic Functions

- The logarithmic function with base $\mathrm{b}: \log _{\mathrm{b}}: \mathbf{R}^{+} \rightarrow \mathbf{R}$

$$
\log _{\mathrm{b}}(\mathrm{x})=\mathrm{y} \Leftrightarrow \mathrm{~b}^{\mathrm{y}}=\mathrm{x}
$$

- The logarithmic function is one-to-one and onto.

For any positive real number $\mathrm{b} \neq 1$,

$$
\log _{\mathrm{b}} \mathrm{u}=\log _{\mathrm{b}} \mathrm{v} \rightarrow \mathrm{u}=\mathrm{v}, \forall \mathrm{u}, \mathrm{v} \in \mathbf{R}^{+}
$$

- Properties of Logarithms: $\forall \mathrm{b}, \mathrm{c}, \mathrm{x} \in \mathbf{R}^{+}$, with $\mathrm{b} \neq 1$ and $\mathrm{c} \neq 1$

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b}\left(x^{a}\right)=a \log _{b} x \\
& \log _{c} x=\log _{b} x / \log _{b} c
\end{aligned}
$$

Exponential and Logarithmic Functions

$-\forall b, c, x \in \mathbf{R}^{+}$, with $b \neq 1$ and $c \neq 1: \log _{c} x=\log _{b} x / \log _{b} C$
Proof: Suppose positive real numbers b, c, and x are given,

$$
\begin{array}{lll}
\text { s.t. (1) } \log _{\mathrm{b}} \mathrm{c}=\mathrm{u} & \text { (2) } \log _{\mathrm{c}} \mathrm{x}=\mathrm{v} & \text { (3) } \log _{\mathrm{b}} \mathrm{x}=\mathrm{w}
\end{array}
$$

By definition of logarithm: $c=b^{u}, x=c^{v}$ and $x=b^{w}$
$\mathrm{x}=\mathrm{c}^{\mathrm{v}}=\left(\mathrm{b}^{\mathrm{u}}\right)^{\mathrm{v}}=\mathrm{b}^{\mathrm{uv}}$, by laws of exponents
But $\mathrm{x}=\mathrm{b}^{\mathrm{w}}=\mathrm{b}^{\mathrm{uv}}$, so uv $=\mathrm{w}$ (by one-one exponent) \rightarrow
By (1), (2) and (3): $\left(\log _{b} \mathrm{c}\right)\left(\log _{\mathrm{c}} \mathrm{x}\right)=\log _{\mathrm{b}} \mathrm{x}$
By dividing both sides by $\log _{\mathrm{b}} \mathrm{c}: \quad \log _{\mathrm{c}} \mathrm{x}=\log _{\mathrm{b}} \mathrm{x} / \log _{\mathrm{b}} \mathrm{c}$

Exponential and Logarithmic Functions

- Notations:
- Logarithms with base 10 are called common logarithms and are denoted by simply log.
- Logarithms with base e are called natural logarithms and are denoted by \ln.
- Example: $\log _{2} 5=\log 5 / \log 2=\ln 5 / \ln 2$

One-to-One Correspondences

- A one-to-one correspondence (or bijection)
from a set X to a set Y is a function $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ that is both one-to-one and onto.
- Example: $\quad X=\operatorname{domain}$ of $F{ }_{F}^{Y=\text { co-domain of } F}$

One-to-One Correspondences

- Example: A Function from a Power Set to a Set of Strings

$$
h: P(\{a, b\}) \rightarrow\{00,01,10,11\}
$$

If a is in A , write a 1 in the $1^{\text {st }}$ position of the string $h(A)$.
If a is not in A, write a 0 in the $1^{\text {st }}$ position of the string $h(A)$. If b is in A, write a 1 in the $2^{\text {nd }}$ position of the string $h(A)$. If b is not in A, write $a 0$ in the $2^{\text {nd }}$ position of the string $h(A)$.

h				$\mathscr{P}(\{a, b\})$	h
Subset of $\{a, b\}$	Status of a	Status of b	String in S		
\emptyset	not in	not in	00		
$\{a\}$	in	not in	10		
$\{b\}$	not in	in	01		
$\{a, b\}$	in	in	11		

One-to-One Correspondences

- Example: F: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$

$$
F(x, y)=(x+y, x-y), \text { for all }(x, y) \in \mathbf{R} \times \mathbf{R}
$$

Part 1: Proof that F is one-to-one:
Suppose that $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are any ordered pairs in $\mathbf{R} \times \mathbf{R}$ such that $F\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)=F\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$.
$\Leftrightarrow\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{1}-\mathrm{y}_{1}\right)=\left(\mathrm{x}_{2}+\mathrm{y}_{2}, \mathrm{x}_{2}-\mathrm{y}_{2}\right)$
$\Leftrightarrow(1) \mathrm{x}_{1}+\mathrm{y}_{1}=\mathrm{x}_{2}+\mathrm{y}_{2}$ and (2) $\mathrm{x}_{1}-\mathrm{y}_{1}=\mathrm{x}_{2}-\mathrm{y}_{2}$
$(1)+(2) \rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2} \rightarrow(3) \mathrm{x}_{1}=\mathrm{x}_{2}$
Substituting (3) in (2) $\rightarrow \mathrm{x}_{2}+\mathrm{y}_{1}=\mathrm{x}_{2}+\mathrm{y}_{2} \rightarrow \mathrm{y}_{1}=\mathrm{y}_{2}$
$\rightarrow\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Yes, F is one-to-one.

One-to-One Correspondences

- Example: F: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$

$$
F(x, y)=(x+y, x-y), \text { for all }(x, y) \in \mathbf{R} \times \mathbf{R}
$$

Part2: Proof that F is onto:

Let (u, v) be any ordered pair in $\mathbf{R} \times \mathbf{R}$
Suppose that we found $(r, s) \in \mathbf{R} \times \mathbf{R}$ such that $F(r, s)=(u, v)$.
$\Leftrightarrow(\mathrm{r}+\mathrm{s}, \mathrm{r}-\mathrm{s})=(\mathrm{u}, \mathrm{v}) \Leftrightarrow \mathrm{r}+\mathrm{s}=\mathrm{u}$ and $\mathrm{r}-\mathrm{s}=\mathrm{v}$
$\Leftrightarrow 2 \mathrm{r}=\mathrm{u}+\mathrm{v}$ (by sum of 2 eqs) and $2 \mathrm{~s}=\mathrm{u}-\mathrm{v}$ (by diff eqs)
$\Leftrightarrow \mathrm{r}=(\mathrm{u}+\mathrm{v}) / 2$ and $\mathrm{s}=(\mathrm{u}-\mathrm{v}) / 2$
We found $(\mathrm{r}, \mathrm{s}) \in \mathbf{R} \times \mathbf{R}$
Yes, F is onto.
So, F is a One-to-One correspondence.
(c) Paul Fodor (CS Stony Brook)

Inverse Functions

- If $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is a one-to-one correspondence, then there is an inverse function for $\mathrm{F}, \mathrm{F}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$, s.t.for any element $y \in Y$
$F^{-1}(y)=$ that unique element $x \in X$ such that $F(x)=y$

$$
F^{-1}(y)=x \Leftrightarrow F(x)=y
$$

$$
X=\text { domain of } F \quad Y=\text { co-domain of } F
$$

Inverse Functions

- Example:

the inverse function for h is h^{-1} :

Inverse Functions

- Example: $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})=4 \mathrm{x}-1$ for all real numbers x .

The inverse function for f is $f^{-1}: \mathbf{R} \longrightarrow \mathbf{R}$,
For any [particular but arbitrarily chosen] y in \mathbf{R}
$f^{-1}(y)=$ that unique real number x such that $f(x)=y$.
$\mathrm{f}(\mathrm{x})=\mathrm{y} \Leftrightarrow 4 \mathrm{x}-1=\mathrm{y} \Leftrightarrow \mathrm{x}=(\mathrm{y}+1) / 4$
Hence $f^{-1}(y)=(y+1) / 4$.

Inverse Functions

- If X and Y are sets and $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is one-to-one and onto, then $\mathrm{F}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$ is also one-to-one and onto.

Proof:

$\mathbf{F}^{\mathbf{- 1}}$ is one-to-one: Suppose y_{1} and y_{2} are elements of Y, s.t. $F^{-1}\left(y_{1}\right)=F^{-1}\left(y_{2}\right)$
Let $\mathrm{x}=\mathrm{F}^{-1}\left(\mathrm{y}_{1}\right)=\mathrm{F}^{-1}\left(\mathrm{y}_{2}\right), \mathrm{x} \in \mathrm{X}$.
By definition of $F^{-1}, F(x)=y_{1}$ and $F(x)=y_{2}$, so $y_{1}=y_{2}$
F^{-1} is onto: Suppose $x \in X$.
Let $\mathrm{y}=\mathrm{F}(\mathrm{x}), \mathrm{y} \in \mathrm{Y}$
By definition of $\mathrm{F}^{-1}, \mathrm{~F}^{-1}(\mathrm{y})=\mathrm{x}$.

One-to-One and Onto for Finite Sets

- Let X and Y be finite sets with the same number of elements and suppose f is a function from X to Y .

f is one-to-one $\Leftrightarrow \mathbf{f}$ is onto

Proof: Let $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ and $\mathrm{Y}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{m}}\right\}$
(1) f is one-to-one $\rightarrow \mathrm{f}$ is onto
$\mathrm{f}\left(\mathrm{x}_{1}\right), \mathrm{f}\left(\mathrm{x}_{2}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{m}}\right)$ are all distinct, and $\mathrm{S}=\{\mathrm{y} \in \mathrm{Y} \mid \forall \mathrm{x} \in \mathrm{X}, \mathrm{f}(\mathrm{x}) \neq \mathrm{y}\}$
$\left\{\mathrm{f}\left(\mathrm{x}_{1}\right)\right\},\left\{\mathrm{f}\left(\mathrm{x}_{2}\right)\right\}, \ldots,\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{m}}\right)\right\}$ and S are mutually disjoint
$\left.\mathrm{m}=\mathrm{N}(\mathrm{Y})=\mathrm{N}\left(\left\{\mathrm{f}\left(\mathrm{x}_{1}\right)\right\}\right)+\mathrm{N}\left(\left\{\mathrm{f}\left(\mathrm{x}_{2}\right)\right\}\right)+\ldots+\mathrm{N}\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{m}}\right)\right\}\right)+\mathrm{N}(\mathrm{S})=\mathrm{m}+\mathrm{N}(\mathrm{S})$
$\Leftrightarrow N(S)=0$, there is no element of Y that is not the image of some element of X
f is onto
(2) f is onto $\rightarrow \mathrm{f}$ is one-to-one
$\mathrm{N}\left(\mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{i}}\right)\right) \geq 1$ for all $\mathrm{i}=1, \ldots, \mathrm{~m} \rightarrow$
$\mathrm{m}=\mathrm{N}(\mathrm{X})=\mathrm{N}\left(\mathrm{f}^{-1}\left(\mathrm{y}_{1}\right)\right)+\ldots+\mathrm{N}\left(\mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right), \mathrm{m}$ terms $\rightarrow \mathrm{N}\left(\mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{i}}\right)\right)=1$,
f is one-to-one

Composition of Functions

- Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}^{\prime}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be functions with the property that the range of f is a subset of the domain of $g: Y^{\prime} \subseteq Y$
The composition of f and g is a function $g \circ f: X \rightarrow Z$:

$$
(g \circ f)(x)=g(f(x)) \quad \text { for all } x \in X
$$

$g \circ f$

Composition of Functions

- Example composition of functions:

Let $\mathrm{f}: \mathbf{Z} \rightarrow \mathbf{Z}$ and $\mathrm{g}: \mathbf{Z} \rightarrow \mathbf{Z}$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\mathrm{n}+1, \text { for all } \mathrm{n} \in \mathbf{Z} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n}^{2}, \text { for all } \mathrm{n} \in \mathbf{Z}
\end{aligned}
$$

$$
(\mathrm{g} \circ \mathrm{f})(\mathrm{n})=\mathrm{g}(\mathrm{f}(\mathrm{n}))=\mathrm{g}(\mathrm{n}+1)=(\mathrm{n}+1)^{2}, \text { for all } \mathrm{n} \in \mathbf{Z}
$$

$$
(\mathrm{f} \circ \mathrm{~g})(\mathrm{n})=\mathrm{f}(\mathrm{~g}(\mathrm{n}))=\mathrm{f}\left(\mathrm{n}^{2}\right)=\mathrm{n}^{2}+1, \text { for all } \mathrm{n} \in \mathbf{Z}
$$

$$
\begin{gathered}
(g \circ f)(1)=(1+1)^{2}=4 \\
(f \circ g)(1)=1^{2}+1=2 \\
f \circ g \neq g \circ f
\end{gathered}
$$

Composition of Functions

- Example composition of functions:

Let $\mathrm{f}:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{g}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\} \rightarrow\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

(c) Paul Fodor (CS Stony Brook)

Composition of Functions

- Example composition of functions:

Let $X=\{a, b, c, d\}$ and $Y=\{u, v, w\}, f: X \rightarrow Y$

$\mathrm{I}_{\mathrm{X}}: \mathrm{X} \rightarrow \mathrm{X}$ is an identity function $\mathrm{I}_{\mathrm{X}}(\mathrm{x})=\mathrm{x}$, for all $\mathrm{x} \in \mathrm{X}$ $\left(\mathrm{f} \circ \mathrm{I}_{\mathrm{X}}\right)(\mathrm{x})=\mathrm{f}\left(\mathrm{I}_{\mathrm{X}}(\mathrm{x})\right)=\mathrm{f}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X}$
$\mathrm{I}_{\mathrm{Y}}: \mathrm{Y} \rightarrow \mathrm{Y}$ is an identity function
$\mathrm{I}_{\mathrm{Y}}(\mathrm{y})=\mathrm{y}$, for all $\mathrm{y} \in \mathrm{Y}$
$\left(\mathrm{I}_{\mathrm{Y}} \circ \mathrm{f}\right)(\mathrm{x})=\mathrm{I}_{\mathrm{Y}}(\mathrm{f}(\mathrm{x}))=\mathrm{f}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X}$

(c) Paul Fodor (CS Stony Brook)

Composition of Functions

- Composing a Function with Its Inverse:

Let $f:\{a, b, c\} \rightarrow\{x, y, z\}$ be a one-to-one and onto function

f is one-to-one correspondence $\rightarrow \mathrm{f}^{-1}:\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$$
\begin{aligned}
& \left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{a})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{a}))=\mathrm{f}^{-1}(\mathrm{z})=\mathrm{a} \\
& \left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{b})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{~b}))=\mathrm{f}^{-1}(\mathrm{x})=\mathrm{b} \quad \rightarrow \mathrm{f}^{-1} \circ \mathbf{f}=\mathbf{I}_{\mathbf{X}}
\end{aligned}
$$

$$
\left.5 f f^{-1} \circ \mathrm{f}\right)(\mathrm{c})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{c}))=\underset{(\mathrm{c}) \text { Paul Fodor }(\mathrm{cs}}{\mathrm{f}}
$$

$$
\text { also } \mathbf{f} \circ \mathbf{f}^{-1}=\mathbf{I}_{\mathbf{Y}}
$$

Composition of Functions

- Composing a Function with Its Inverse:

If $f: X \rightarrow Y$ is a one-to-one and onto function with inverse
function $f^{-1}: Y \rightarrow X$, then $(\mathbf{a}) \mathrm{f}^{-1} \circ \mathrm{f}=\mathrm{I}_{\mathrm{X}}$ and $(\mathbf{b}) \mathrm{f} \circ \mathrm{f}^{-1}=\mathrm{I}_{\mathrm{Y}}$

Proof (a):

Let x be any element in $\mathrm{X}:\left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{x})^{\left.-f^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}^{\prime} \in \mathrm{X}(*), ~\right) ~}$
Definition of inverse function:

$$
\begin{aligned}
& \mathrm{f}^{-1}(\mathrm{~b})=\mathrm{a} \Leftrightarrow \mathrm{f}(\mathrm{a})=\mathrm{b} \text { for all } \mathrm{a} \in \mathrm{X} \text { and } \mathrm{b} \in \mathrm{Y} \\
& \rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}^{\prime} \Leftrightarrow \mathrm{f}\left(\mathrm{x}^{\prime}\right)=\mathrm{f}(\mathrm{x})
\end{aligned}
$$

Since f is one-to-one, this implies that $\mathrm{x}^{\prime}=\mathrm{x}$.
$(*) \rightarrow\left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{x})=\mathrm{x}$

Composition of Functions

- Composition of One-to-One Functions:

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both one-to-one functions, then $g^{\circ} f$ is also one-to-one.

Proof (by the method of direct proof):

Suppose $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both one-to-one functions.

Suppose $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$ such that: $(\mathrm{g} \circ \mathrm{f})\left(\mathrm{x}_{1}\right)=(\mathrm{g} \circ \mathrm{f})\left(\mathrm{x}_{2}\right)$
By definition of composition of functions, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since g is one-to-one, $f\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$.
Since f is one-to-one, $\mathrm{x}_{1}=\mathrm{x}_{2}$.

Composition of Functions

- Composition of One-to-One Functions Example:

X
Y
Z

Composition of Functions

- Composition of Onto Functions:

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both onto functions, then $\mathrm{g} \circ \mathrm{f}$ is onto.

Proof:

Suppose $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both onto functions. Let z be a [particular but arbitrarily chosen] element of Z. Since g is onto, there is an element y in Y such that $g(y)=z$. Since f is onto, there is an element x in X such that $f(x)=y$. $\mathrm{z}=\mathrm{g}(\mathrm{y})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=(\mathrm{g} \circ \mathrm{f})(\mathrm{x}) \boldsymbol{\mathrm { g }} \circ \mathrm{f}$ is onto

Composition of Functions

- Composition of Onto Functions Example:

