#### Sequences and Mathematical Induction

CSE 215, Foundations of Computer Science Stony Brook University <u>http://www.cs.stonybrook.edu/~cse215</u>

- A sequence is a function whose domain is
  - all the integers between two given integers

a<sub>m</sub>, a<sub>m+1</sub>, a<sub>m+2</sub>,..., a<sub>n</sub>
all the integers greater than or equal to a given integer a<sub>m</sub>, a<sub>m+1</sub>, a<sub>m+2</sub>,...
a<sub>k</sub> is a *term* in the sequence
k is the *subscript* or *index*m is the *subscript of the initial term*n is the *subscript of the last term* (m ≤ n)

• An *explicit formula* or *general formula* for a sequence is a rule that shows how the values of  $a_k$  depend on k

• Examples:

 $a_k = 2^k$  is the sequence 2, 4, 8, 16, 32, 64, 128,...

| Index | 1 | 2 | 3 | 4  | 5  | 6  | 7   | 8   |
|-------|---|---|---|----|----|----|-----|-----|
| Term  | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |

$$a_{k} = k/k + 1, \text{ for all integers } k \ge 1: \qquad b_{i} = i - 1/i, \text{ for all integers } i \ge 2:$$

$$a_{1} = \frac{1}{1+1} = \frac{1}{2} \qquad b_{2} = \frac{2-1}{2} = \frac{1}{2}$$

$$a_{2} = \frac{2}{2+1} = \frac{2}{3} \qquad b_{3} = \frac{3-1}{3} = \frac{2}{3}$$

$$a_{3} = \frac{3}{3+1} = \frac{3}{4} \qquad b_{4} = \frac{4-1}{4} = \frac{3}{4}$$

•  $a_k$  for  $k \ge 1$  is the same sequence with  $b_i$  for  $i \ge 2$ (c) Paul Fodor (CS Stony Brook)

• An Alternating Sequence:  $c_i = (-1)^j$  for all integers  $j \ge 0$ :  $c_0 = (-1)^0 = 1$  $c_1 = (-1)^1 = -1$  $c_2 \equiv (-1)^2 \equiv 1$  $c_3 = (-1)^3 = -1$  $c_4 = (-1)^4 = 1$  $c_5 = (-1)^5 = -1$ 

• • •

# Find an explicit formula for a sequence

• The initial terms of a sequence are:

$$1, \quad -\frac{1}{4}, \quad \frac{1}{9}, \quad -\frac{1}{16}, \quad \frac{1}{25}, \quad -\frac{1}{36}$$

•  $a_k$  is the general term of the sequence,  $a_1$  is the first element

• observe that the denominator of each term is a perfect square

• observe that the numerator equals  $\pm 1$ :  $a_k = \frac{\pm 1}{k^2}$ 

• alternating sequence with -1 when k is even:

$$a_k = \frac{(-1)^{k+1}}{k^2}$$
 for all integers  $k \ge 1$ .

## Find an explicit formula for a sequence

• Result sequence:

$$a_k = \frac{(-1)^{k+1}}{k^2}$$
 for all integers  $k \ge 1$ .

• Alternative sequence:

$$a_k = \frac{(-1)^k}{(k+1)^2}$$
 for all integers  $k \ge 0$ 

• If m and n are integers and  $m \le n$ , the summation from k equals m to n of  $a_k$ ,  $\sum_{k=m}^{n} a_k$ , is the sum of all the terms  $a_m$ ,  $a_{m+1}, a_{m+2}, \dots, a_n$ 

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n$$

k is the index of the summation m is the lower limit of the summation n is the upper limit of the summation

• Example:

$$a_{1} = -2, \quad a_{2} = -1, \quad a_{3} = 0, \quad a_{4} = 1, \quad a_{5} = 2$$

$$\sum_{k=1}^{5} a_{k} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} = (-2) + (-1) + 0 + 1 + 2 = 0$$

$$\sum_{k=2}^{2} a_{k} = a_{2} = -1$$

$$\sum_{k=1}^{2} a_{2k} = a_{2 \cdot 1} + a_{2 \cdot 2} = a_{2} + a_{4} = -1 + 1 = 0$$

• Summation notation with formulas example:

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

• Changing from Summation Notation to Expanded Form:

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n}}{n+1}$$

• Changing from Expanded Form to Summation Notation:

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$$

• The general term of this summation can be expressed as  $\frac{k+1}{n+k}$  for integers k from 0 to n

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}$$

• Evaluating expression for given limits:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)}$$

$$n = 1 \qquad \frac{1}{1 \cdot 2} = \frac{1}{2}$$

$$n = 2 \qquad \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$

$$n = 3 \qquad \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{3}{4}$$

• Recursive definitions:

$$\sum_{k=m}^{m} a_k = a_m \quad \text{and} \quad \sum_{k=m}^{n} a_k = \sum_{k=m}^{n-1} a_k + a_n \quad \text{for all integers } n > m$$

• Use of recursion examples:

$$\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^n \frac{1}{i^2} + \frac{1}{(n+1)^2}$$
$$\sum_{k=0}^n 2^k + 2^{n+1} = \sum_{k=0}^{n+1} 2^k$$



#### **Product Notation**

 $a_{m+2}, ..., a_n$ 

• The product from *k* equals *m* to *n* of  $a_k$ ,  $\prod_{k=m}^{n} a_k$ , for *m* and *n* integers and  $m \leq n$ , is the product of all the terms  $a_m$ ,  $a_{m+1}$ ,

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n$$

• Example: 
$$\prod_{k=1}^{5} a_k = a_1 a_2 a_3 a_4 a_5$$
$$\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$

### **Product Notation**

• Recursive definition:

$$\prod_{k=m}^{m} a_k = a_m \quad \text{and} \quad \prod_{k=m}^{n} a_k = \left(\prod_{k=m}^{n-1} a_k\right) \cdot a_n \quad \text{for all integers } n > m$$

• If  $a_m$ ,  $a_{m+1}$ ,  $a_{m+2}$ ,... and  $b_m$ ,  $b_{m+1}$ ,  $b_{m+2}$ ,... are sequences of real numbers:

$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$
$$\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \prod_{k=m}^{n} (a_k \cdot b_k)$$

• Generalized distributive law: if *c* is any real number:

$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k$$

• Using Properties of Summation and Product:

$$a_{k} = k + 1$$

$$b_{k} = k - 1$$

$$\sum_{k=m}^{n} a_{k} + 2 \cdot \sum_{k=m}^{n} b_{k} = \sum_{k=m}^{n} (k + 1) + 2 \cdot \sum_{k=m}^{n} (k - 1)$$

$$= \sum_{k=m}^{n} (k + 1) + \sum_{k=m}^{n} 2 \cdot (k - 1)$$

$$= \sum_{k=m}^{n} ((k + 1) + 2 \cdot (k - 1))$$

$$= \sum_{k=m}^{n} (3k - 1)$$

• Using Properties of Summation and Product:  $a_k = k + 1$   $b_k = k - 1$ 

$$\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \left(\prod_{k=m}^{n} (k+1)\right) \cdot \left(\prod_{k=m}^{n} (k-1)\right)$$
$$= \prod_{k=m}^{n} (k+1) \cdot (k-1)$$
$$= \prod_{k=m}^{n} (k^2 - 1)$$

• Change of variable examples:

$$\sum_{j=2}^{4} (j-1)^2 = (2-1)^2 + (3-1)^2 + (4-1)^2$$
$$= 1^2 + 2^2 + 3^2$$
$$= \sum_{k=1}^{3} k^2.$$
$$\sum_{k=0}^{6} \frac{1}{k+1} \quad change \ of \ variable: \ j = k+1$$
$$\frac{1}{k+1} = \frac{1}{(j-1)+1} = \frac{1}{j}$$
$$k = 0, \quad j = k+1 = 0+1 = 1$$
$$k = 6, \quad j = k+1 = 6+1 = 7$$
$$\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{j=1}^{7} \frac{1}{j}$$

## **Factorial Notation**

• The quantity n factorial, n!, is defined to be the product of all the integers from 1 to n:

$$n! = n \cdot (n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$

0! is defined to be 1: 0! = 1

$$0! = 1$$

$$1! = 1$$

$$2! = 2 \cdot 1 = 2$$

$$3! = 3 \cdot 2 \cdot 1 = 6$$

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5,040$$

$$8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40,320$$

$$9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362,880$$

### **Factorial Notation**

• A recursive definition for factorial is:

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n \ge 1. \end{cases}$$

• Computing with Factorials:

$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

$$\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$$

$$\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$$

$$\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)$$

$$= n^3 - 3n^2 + 2n$$

#### n choose r

• *n* choose *r*,  $\binom{n}{r}$ , represents the number of subsets of size *r* that can be chosen from a set with *n* elements, for *n* and *r* integers with  $0 \le r \le n$ 

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

• Examples:

$$\binom{8}{5} = \frac{8!}{5!(8-5)!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot (\cdot 3 \cdot 2 \cdot 1)} = 56$$
$$\binom{n+1}{n} = \frac{(n+1)!}{n!((n+1)-n)!} = \frac{(n+1)!}{n!1!} = \frac{(n+1) \cdot n!}{n!} = n+1$$

#### n choose r

- 4 choose 2 = 4! / (2!\*2!) = 6
- Example: Let  $S = \{1, 2, 3, 4\}$ 
  - The 6 subsets of S with 2 elements are:

 $\{1,2\}$  $\{1,3\}$  $\{1,4\}$  $\{2,3\}$  $\{2,4\}$  $\{3,4\}$ 

# Sequences in Computer Programming

```
Arrays: int[] a = new int[50];
s := a[1]
for k := 2 to n
s := s + a[k]
next k
```

# Example Algorithm with Arrays

$$38 = 19 \cdot 2 + 0$$
  
=  $(9 \cdot 2 + 1) \cdot 2 + 0 = 9 \cdot 22 + 1 \cdot 2 + 0$   
=  $(4 \cdot 2 + 1) \cdot 2^{2} + 1 \cdot 2 + 0 = 4 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2 + 0$   
=  $(2 \cdot 2 + 0) \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2 + 0$   
=  $(2 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2 + 0)$   
=  $(1 \cdot 2 + 0) \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2 + 0$   
=  $1 \cdot 2^{5} + 0 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2 + 0$   
a =  $2^{k} \cdot r[k] + 2^{k-1} \cdot r[k-1] + \dots + 2^{2} \cdot r[2] + 2^{1} \cdot r[1] + 2^{0} \cdot r[0]$   
 $a_{10} = (r[k]r[k-1] \cdots r[2]r[1]r[0])_{2}$ 

# Convert from Base 10 to Base 2

Input: n [a nonnegative integer]
Algorithm Body:
q := n, i := 0
while (i = 0 or q = 0)
r[i] := q mod 2
q := q div 2
i := i + 1
end while

Output: r[0], r[1], r[2], ..., r[i - 1] [a sequence of integers]

#### • The Principle of Mathematical Induction:

Let P(n) be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:1. P(a) is true.

2. For all integers  $k \ge a$ , if P(k) is true then P(k + 1) is true.

Then the statement "for all integers  $n \ge a$ , P(n)" is true. That is:

> P(*a*) is true. P(k) → P(k + 1),  $\forall k \ge a$ ∴ P(n) is true,  $\forall n \ge a$

#### • The Method of Proof by Mathematical Induction:

To prove a statement of the form:

"For all integers  $n \ge a$ , a property P(n) is true."

Step 1 (base step): Show that P(a) is true.

- Step 2 (inductive step): Show that for all integers k ≥ a, if P(k)
  is true then P(k + 1) is true:
  - Inductive hypothesis: suppose that P(k) is true, where k is any particular but arbitrarily chosen integer with  $k \ge a$ .
  - Then show that P(k + 1) is true.

• Example: For all integers  $n \ge 8$ , nc can be obtained using 3c and 5c coins: Base step: P(8) is true because  $8\phi$  can = one  $3\phi$  coin and one  $5\phi$  coin Inductive step: for all integers  $k \ge 8$ , if P(k) is true then P(k+1) is also true Inductive hypothesis: suppose that k is any integer with  $k \ge 8$ : P(k):  $k \notin can be obtained using 3 \notin and 5 \notin coins$ We must show: P(k+1) is true:  $(k+1)\phi$  can be obtained using  $3\phi$  and  $5\phi$  coins Case 1 (There is a  $5\phi$  coin among those used to make up the  $k\phi$ ): replace the  $5\phi$  coin by two  $3\phi$  coins; the result will be  $(k + 1)\phi$ . Case 2 (There is not a 5¢ coin among those used to make up the  $k\phi$ ): because  $k \ge 8$ , at least three  $3\phi$  coins must have been used. Remove three  $3\phi$  coins

(9¢) and replace them by two 5¢ coins (10¢); the result will be  $(k + 1)\phi$ 

• Example: The Sum of the First n Integers:

 $1 + 2 + \dots + n = \frac{n(n+1)}{2} \quad \text{for all integers } n \ge 1$ Base step: P(1):  $1 = \frac{1(1+1)}{2}$ Inductive step: P(k) is true, for a particular but arbitrarily chosen integer k \ge 1:

$$1 + 2 + \dots + k = \frac{k(k+1)}{2}$$
  
Prove P(k+1): 1 + 2 + \dots + (k+1) =  $\frac{(k+1)(k+2)}{2}$ 

$$(1+2+\dots+k) + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$

# The Sum of the First n Integers

- A formula in closed form represents a sum with a variable number of terms without an ellipsis or a summation symbol.
- Applying the Formula for the Sum of the First n Integers:

$$2 + 4 + 6 + \dots + 500 = 2 \cdot (1 + 2 + 3 + \dots + 250)$$
$$= 2 \cdot \left(\frac{250 \cdot 251}{2}\right)$$
$$= 62.750.$$

 $5 + 6 + 7 + 8 + \dots + 50 = (1 + 2 + 3 + \dots + 50) - (1 + 2 + 3 + 4)$ 

### Geometric sequence

 Each term is obtained from the preceding one by multiplying by a constant factor: if the first term is 1 and the constant factor is r: 1,  $r, r^2, r^3, ..., r^n, ...$  $1 + r + r^{2} + \dots + r^{n} = \sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$ Base step: Prove P(0):  $\sum_{i=0}^{0} r^{i} = \frac{r^{0+1} - 1}{r - 1} \iff 1 = 1 \text{ (Proved)}$ Inductive hypothesis:Suppose P(k) is true:for  $k \ge 0$ :  $\sum_{k=1}^{k} r^{i} = \frac{r^{k+1} - 1}{r - 1}$ Prove P(k + 1):  $\sum_{i=0}^{k+1} r^i = \frac{r^{k+2} - 1}{r - 1}$ 

### Geometric sequence

$$\sum_{i=0}^{k+1} r^{i} = 1 + r + r^{2} + \dots + r^{k} + r^{k+1}$$
$$= \frac{r^{k+1} - 1}{r - 1} + r^{k+1}$$
$$= \frac{r^{k+2} - 1}{r - 1}$$

(c) Paul Fodor (CS Stony Brook)

33

### Geometric sequence

• Examples:

$$1 + 3 + 3^{2} + \dots + 3^{m-2} = \frac{3^{(m-2)+1} - 1}{3 - 1}$$
$$= \frac{3^{m-1} - 1}{2}.$$

$$3^{2} + 3^{3} + 3^{4} + \dots + 3^{m} = 3^{2} \cdot (1 + 3 + 3^{2} + \dots + 3^{m-2})$$
 by factoring out 3<sup>2</sup>  
=  $9 \cdot \left(\frac{3^{m-1} - 1}{2}\right)$ 

#### • Proving a Divisibility Property:

P(n): for all integers n ≥ 0,  $2^{2n} - 1$  is divisible by 3 Basic step P(0):  $2^{2 \cdot 0} - 1 = 0$  is divisible by 3 Induction hypothesis: Suppose P(k) is True:  $2^{2k} - 1$  is divisible by 3 <u>Prove:</u> P(k+1):  $2^{2(k+1)} - 1$  is divisible by 3 ?

• Proving a Divisibility Property:

 $2^{2(k+1)} - 1 = 2^{2k+2} - 1$  $= 2^{2k} \cdot 2^2 - 1$ by the laws of exponents  $= 2^{2k} \cdot 4 - 1$  $=2^{2k}(3+1)-1$  $= 2^{2k} \cdot 3 + (2^{2k} - 1)$  by the laws of algebra  $= 2^{2k} \cdot 3 + 3r$ by inductive hypothesis  $= 3(2^{2k} + r)$ by factoring out the 3.  $2^{2k} + r$  is an integer because integers are closed under multiplication and summation so,  $2^{2(k+1)} - 1$  is divisible by 3 (c) Paul Fodor (CS Stony Brook)

## **Mathematical Induction**

#### • Proving an Inequality:

P(n): for all integers  $n \ge 3$ ,  $2n + 1 < 2^n$ Base step: Prove P(3):  $2 \cdot 3 + 1 < 2^3$ 7 < 8 (True)

Inductive step: Suppose that for  $k \ge 3$ , P(k) is True:  $2k + 1 < 2^k$ Show: P(k+1):  $2(k+1) + 1 < 2^{k+1}$ 

That is:  $2k + 3 < 2^{k+1}$ 

 $2k + 3 = (2k + 1) + 2 < 2^k + 2^k = 2^{k+1}$ 

because  $2k + 1 < 2^k$  by the inductive hypothesis and because  $2 < 2^k$  for all integers  $k \ge 3$ 

#### **Mathematical Induction**

- A sequence:  $a_1 = 2$  and  $a_k = 5a_{k-1}$  for all integers  $k \ge 2$
- Prove:  $a_n = 2 \cdot 5^{n-1}$

Proof by induction:  $P(n): a_n = 2 \cdot 5^{n-1}$  for all integers  $n \ge 1$ Base step:  $P(1): a_1 = 2 \cdot 5^{1-1} = 2 \cdot 5^0 = 2 \cdot 1 = 2$ Inductive hypothesis: assume P(k) is true:  $a_{k} = 2 \cdot 5^{k-1}$ Show: P(k+1):  $a_{k+1} = 2 \cdot 5^{(k+1)-1} = 2 \cdot 5^k$ ? by definition of  $a_1, a_2, a_3, \ldots$  $a_{k+1} = 5a_{(k+1)-1}$  $= 5 \cdot \mathbf{a}_{\mathbf{k}}$ since (k + 1) - 1 = k $= 5 \cdot 2 \cdot 5^{k-1}$ by inductive hypothesis  $= 2 \cdot (5 \cdot 5^{k-1})$  by regrouping  $= 2 \cdot 5^k$ by the laws of exponents



## **Mathematical Induction**

Inductive hypothesis for  $k \ge 1$ : P(k): if one square is removed from a  $2^k \times 2^k$  checkerboard, the remaining squares can be completely covered by L-shaped trominoes

P(k+1):

if one square is removed from a  $2^{k+1} \times 2^{k+1}$  checkerboard, the remaining squares can be completely covered by L-shaped trominoes



- The Principle of Strong Mathematical Induction (or the principle of complete induction):
- P(n) is a property that is defined for integers n, and a and b are fixed integers with a  $\leq$  b.
  - **Base step:** P(a), P(a + 1), . . . , and P(b) are all true
  - Inductive step: For any integer k ≥ b, if P(i) is true for all integers i from a through k (inductive hypothesis), then P(k + 1) is true

Then the statement for all integers  $n \ge a$ , P(n) is true.

That is:

P(a), P(a+1),..., P(b-1), P(b) are true.  $\forall k \ge b$ , ( $\forall a \le i \le k$ , P(i)) → P(k + 1)  $\therefore$  P(n) is true,  $\forall n \ge a$ 

<sup>(</sup>c) Paul Fodor (CS Stony Brook)

 Any statement that can be proved with ordinary mathematical induction can be proved with strong mathematical induction (and vice versa).

#### • Divisibility by a Prime:

Any integer greater than 1 is divisible by a prime number
P(n): n is divisible by a prime number
Base case: P(2): 2 is divisible by a prime number
2 is divisible by 2 and 2 is a prime number
Inductive hypothesis: Let k be any integer with k ≥ 2
P(i): i is divisible by a prime number for all integers
P(i) is true for all integers i from 2 through k

Show: P(k + 1): k + 1 is divisible by a prime number

- Case 1 (k + 1 is prime): In this case k + 1 is divisible by itself (a prime number): k+1 = 1\*(k+1)
- Case 2 (k + 1 is not prime): k + 1 = a\*b
  where a and b are integers with 1<a<k+1 and 1<b<k+1.</li>
  From k + 1 = a\*b, k + 1 is divisible by a
  By inductive hypothesis, a is divisible by a prime number p
  By transitivity of divisibility, k + 1 is divisible by the prime number p.

Therefore, k+1 is divisible by a prime number p.

• A sequence s<sub>0</sub>, s<sub>1</sub>, s<sub>2</sub>,...

 $s_0=0, s_1=4, s_k=6s_{k-1}-5s_{k-2}$  for all integers  $k \ge 2$   $s_2=6s_1-5s_0=6\cdot4-5\cdot0=24,$   $s_3=6s_2-5s_1=6\cdot24-5\cdot4=144-20=124$ Prove:  $s_1=5n-1$ 

Prove:  $s_n = 5^n - 1$ 

Base step P(0) and P(1) are true: P(0):  $s_0 = 5^0 - 1 = 1 - 1 = 0$ P(1):  $s_1 = 5^1 - 1 = 5 - 1 = 4$ 

**Inductive step:** Let k be any integer with  $k \ge 1$ ,  $s_i = 5^i - 1$  for all integers i with  $0 \le i \le k$ 

• We must show P(k + 1) is true:  $s_{k+1} = 5^{k+1} - 1$ 

$$\begin{aligned} \mathbf{s_{k+1}} &= 6\mathbf{s_k} - 5\mathbf{s_{k-1}} & \text{by definition of } \mathbf{s_0}, \mathbf{s_1}, \mathbf{s_2}, \dots \\ &= 6(5^k - 1) - 5(5^{k-1} - 1) & \text{by definition hypothesis} \\ &= 6 \cdot 5^k - 6 - 5^k + 5 & \text{by multiplying out and applying} \\ & a law of exponents \\ &= (6 - 1)5^k - 1 & \text{by factoring out 6 and arithmetic} \\ &= 5 \cdot 5^k - 1 & \text{by arithmetic} \\ &= 5^{k+1} - 1 & \text{by applying a law of exponents} \end{aligned}$$

- The Number of Multiplications Needed to Multiply n Numbers is (n-1)
  - P(n): If  $x_1, x_2, ..., x_n$  are n numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is n 1.
- ➢ Base case P(1): The number of multiplications needed to compute the product of  $x_1$  is 1 − 1 = 0
- ➤ Inductive hypothesis: Let k by any integer with  $k \ge 1$  and for all integers i from 1 through k, if  $x_1, x_2, ..., x_i$  are numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is i - 1.

- ➤ We must show: P(k + 1): If  $x_1, x_2, ..., x_{k+1}$  are k + 1numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is (k + 1) - 1 = k
- When parentheses are inserted in order to compute the product  $x_1 x_2 \dots x_{k+1}$ , some multiplication is the final one: let L be the product of the left-hand l factors and R be the product of the right-hand r factors: l + r = k + 1
- By inductive hypothesis, evaluating L takes l = 1 multiplications and evaluating R takes r = 1 multiplications

(l-1) + (r-1) + 1 = (l+r) - 1 = (k+1) - 1 = k

• Existence and Uniqueness of Binary Integer Representations: any positive integer n has a unique representation in the form

 $n = c_r \cdot 2^r + c_{r-1} \cdot 2^{r-1} + \dots + c_2 \cdot 2^2 + c_1 \cdot 2 + c_0$ 

where r is a nonnegative integer,  $c_r = 1$ , and  $c_j = 0$  or 1 for j = 0, ..., r-1**Proof of Existence:** 

Base step:  $P(1): 1 = c_0 \cdot 2^0$  where  $c_0 = 1$ , r=0.

Inductive hypothesis:  $k \ge 1$  is an integer and for all integers i from 1 through k: P(i):  $i = c_r \cdot 2^r + c_{r-1} \cdot 2^{r-1} + \dots + c_2 \cdot 2^2 + c_1 \cdot 2 + c_0$ We must show that k + 1 can be written in the required form.

• Case 1 (k + 1 is even): (k + 1)/2 is an integer

By inductive hypothesis:

$$(k + 1)/2 = c_r \cdot 2^r + c_{r-1} \cdot 2^{r-1} + \dots + c_2 \cdot 2^2 + c_1 \cdot 2 + c_0$$
  

$$k + 1 = c_r \cdot 2^{r+1} + c_{r-1} \cdot 2^r + \dots + c_2 \cdot 2^3 + c_1 \cdot 2^2 + c_0 \cdot 2$$
  

$$= c_r \cdot 2^{r+1} + c_{r-1} \cdot 2^r + \dots + c_2 \cdot 2^3 + c_1 \cdot 2^2 + c_0 \cdot 2^1 + 0 \cdot 2^0$$

Case 2 (k + 1 is odd): k is even, so k/2 is an integer
By inductive hypothesis:

$$\begin{split} k/2 = & c_r \cdot 2^r + c_{r-1} \cdot 2^{r-1} + \dots + c_2 \cdot 2^2 + c_1 \cdot 2 + c_0 \\ k = & c_r \cdot 2^{r+1} + c_{r-1} \cdot 2^r + \dots + c_2 \cdot 2^3 + c_1 \cdot 2^2 + c_0 \cdot 2 \\ k + & 1 = & c_r \cdot 2^{r+1} + c_{r-1} \cdot 2^r + \dots + c_2 \cdot 2^3 + c_1 \cdot 2^2 + c_0 \cdot 2 + 1 \\ = & c_r \cdot 2^{r+1} + c_{r-1} \cdot 2^r + \dots + c_2 \cdot 2^3 + c_1 \cdot 2^2 + c_0 \cdot 2^1 + 1 \cdot 2^0 \\ & (c) \text{ Paul Fodor (CS Stony Brook)} \end{split}$$

#### • Proof of Uniqueness:

Proof by contradiction: Suppose that there is an integer n with two different representations as a sum of nonnegative integer powers of 2:  $2^{r} + c_{r-1} \cdot 2^{r-1} + \dots + c_{1} \cdot 2 + c_{0} = 2^{s} + d_{s-1} \cdot 2^{s-1} + \dots + d_{1} \cdot 2 + d_{0}$ r and s are nonnegative integers, and each  $c_{i}$  and each  $d_{i}$  equal 0 or 1

Assume: r < s

By geometric sequence:

 $\begin{aligned} 2^{r} + c_{r-1} \cdot 2^{r-1} + \cdots + c_{1} \cdot 2 + c_{0} &\leq 2^{r} + 2^{r-1} + \cdots + 2 + 1 = 2^{r+1} - 1 < 2^{s} \\ 2^{r} + c_{r-1} \cdot 2^{r-1} + \cdots + c_{1} \cdot 2 + c_{0} &\leq 2^{s} + d_{s-1} \cdot 2^{s-1} + \cdots + d_{1} \cdot 2 + d_{0} \\ Contradiction \end{aligned}$ 

- A sequence can be defined in 3 ways:
  - enumeration: -2,3,-4,5,...
  - general pattern:  $a_n = (-1)^n (n+1)$ , for all integers  $n \ge 1$
  - recursion:  $a_1 = -2$  and  $a_n = (-1)^{n-1} a_{n-1} + (-1)^n$ 
    - define one or more initial values for the sequence AND
    - define each later term in the sequence by reference to earlier terms
- A recurrence relation for a sequence  $a_0, a_1, a_2,...$  is a formula that relates each term  $a_k$  to certain of its predecessors  $a_{k-1}, a_{k-2},..., a_{k-i}$ , where i is an integer with  $k-i \ge 0$
- The initial conditions for a recurrence relation specify the values of a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., a<sub>i-1</sub>, if i is a fixed integer, OR
   a<sub>0</sub>, a<sub>1</sub>,..., a<sub>m</sub>, where m is an integer with m ≥ 0, if i depends on k.

- Computing Terms of a Recursively Defined Sequence:
  - Example:

Initial conditions:  $c_0 = 1$  and  $c_1 = 2$ Recurrence relation:  $c_k = c_{k-1} + k * c_{k-2} + 1$ , for all integers  $k \ge 2$ by substituting k = 2 into the recurrence relation  $c_2 = c_1 + 2 c_0 + 1$  $= 2 + 2 \cdot 1 + 1$ since  $c_1 = 2$  and  $c_0 = 1$  by the initial conditions = 5 $c_3 = c_2 + 3 c_1 + 1$ by substituting k = 3 into the recurrence relation  $= 5 + 3 \cdot 2 + 1$ since  $c_2 = 5$  and  $c_1 = 2$ = 12 $c_4 = c_3 + 4 c_2 + 1$ by substituting k = 4 into the recurrence relation = 12 + 4.5 + 1since  $c_3 = 12$  and  $c_2 = 5$ = 33

#### • Writing a Recurrence Relation in More Than One Way:

• Example:

Initial condition:  $s_0 = 1$ 

Recurrence relation 1:  $s_k = 3s_{k-1} - 1$ , for all integers  $k \ge 1$ 

Recurrence relation 2:  $s_{k+1} = 3s_k - 1$ , for all integers k $\geq 0$ 

- Sequences That Satisfy the Same Recurrence Relation:
  - Example:

Initial conditions:  $a_1 = 2$  and  $b_1 = 1$ Recurrence relations:  $a_k = 3a_{k-1}$  and  $b_k = 3b_{k-1}$  for all integers  $k \ge 2$ 

 $a_2 = 3a_1 = 3 \cdot 2 = 6$   $a_3 = 3a_2 = 3 \cdot 6 = 18$   $b_2 = 3b_1 = 3 \cdot 1 = 3$  $b_3 = 3b_2 = 3 \cdot 3 = 9$ 

$$a_4 = 3a_3 = 3 \cdot 18 = 54$$
  $b_4 = 3b_3 = 3 \cdot 9 = 27$ 

#### • Fibonacci numbers:

- 1. We have one pair of rabbits (male and female) at the beginning of a year.
- 2. Rabbit pairs are not fertile during their first month of life but thereafter give birth to one new male&female pair at the end of every month.



#### • Fibonacci numbers:

The initial number of rabbit pairs:  $F_0 = 1$ 

 $F_n$  : the number of rabbit pairs at the end of month n, for each integer  $n \geq 1$ 

 $F_n = F_{n-1} + F_{n-2}$ , for all integers  $k \ge 2$ 

 $F_1 = 1$ , because the first pair of rabbits is not fertile until the second month How many rabbit pairs are at the end of one year?

January 1<sup>st</sup>: 
$$F_0 = 1$$
  
February 1<sup>st</sup>:  $F_1 = 1$   
March 1<sup>st</sup>:  $F_2 = F_1 + F_0 = 1 + 1 = 2$   
April 1<sup>st</sup>:  $F_3 = F_2 + F_1 = 2 + 1 = 3$   
May 1<sup>st</sup>:  $F_4 = F_3 + F_2 = 3 + 2 = 5$   
June 1<sup>st</sup>:  $F_5 = F_4 + F_3 = 5 + 3 = 8$   
July 1<sup>st</sup>:  $F_6 = F_5 + F_4 = 8 + 5 = 13$   
August 1<sup>st</sup>:  $F_7 = F_6 + F_5 = 13 + 8 = 21$ 

September  $1^{st}: F_8 = F_7 + F_6 = 21 + 13 = 34$ October  $1^{st}: F_9 = F_8 + F_7 = 34 + 21 = 55$ November  $1^{st}: F_{10} = F_9 + F_8 = 55 + 34 = 89$ December  $1^{st}: F_{11} = F_{10} + F_9 = 89 + 55 = 144$ January  $1^{st}: F_{12} = F_{11} + F_{10} = 144 + 89 = 233$ 

#### • Compound Interest:

• A deposit of \$100,000 in a bank account earning 4% interest compounded annually:

the amount in the account at the end of any particular year = the amount in the account at the end of the previous year + the interest earned on the account during the year

= the amount in the account at the end of the previous year +  $0.04 \cdot$  the amount in the account at the end of the previous year  $A_0 = \$100,000$ 

 $\begin{aligned} \mathbf{A_k} &= \mathbf{A_{k-1}} + (0.04) \cdot \mathbf{A_{k-1}} = 1.04 \cdot \mathbf{A_{k-1}}, \text{ for each integer } \mathbf{k} \ge 1 \\ \mathbf{A_1} &= 1.04 \cdot \mathbf{A_0} = \$104,000 \\ \mathbf{A_2} &= 1.04 \cdot \mathbf{A_1} = 1.04 \cdot \$104,000 = \$108, 160 \end{aligned}$ 

• Compound Interest with Compounding Several Times a Year:

• An annual interest rate of i is compounded m times per year: the interest rate paid per each period is i/m $P_k$  is the sum of the the amount at the end of the (k - 1) period

+ the interest earned during k-th period

$$P_k = P_{k-1} + P_{k-1} \cdot i/m = P_{k-1} \cdot (1 + i/m)$$

• If 3% annual interest is compounded quarterly, then the interest rate paid per quarter is 0.03/4 = 0.0075

# **Compound Interest**

Example: deposit of \$10,000 at 3% compounded quarterly
 For each integer n ≥ 1, P<sub>n</sub> = the amount on deposit after n consecutive quarters.

$$\begin{split} & P_k = 1.0075 \cdot P_{k-1} \\ & P_0 = \$10,000 \\ & P_1 = 1.0075 \cdot P_0 = 1.0075 \cdot \$10,000 = \$10,075.00 \\ & P_2 = 1.0075 \cdot P_1 = (1.0075) \cdot \$10,075.00 = \$10,150.56 \\ & P_3 = 1.0075 \cdot P_2 \sim (1.0075) \cdot \$10,150.56 = \$10,226.69 \\ & P_4 = 1.0075 \cdot P_3 \sim (1.0075) \cdot \$10,226.69 = \$10,303.39 \end{split}$$
 The annual percentage rate (APR) is the percentage increase in the value of the account over a one-year period:  
APR = (10303.39 - 10000) / 10000 = 0.03034 = 3.034\%

## **Recursive Definitions of Sum and Product**

• The summation from i=1 to n of a sequence is defined using recursion:

$$\sum_{i=1}^{n} a_i = a_1 \text{ and } \sum_{i=1}^{n} a_i = \left(\sum_{i=1}^{n-1} a_i\right) + a_n, \text{ if } n > 1$$

• The product from i=1 to n of a sequence is defined using recursion:

$$\prod_{i=1}^{n} a_i = a_1 \text{ and } \prod_{i=1}^{n} a_i = \left(\prod_{i=1}^{n-1} a_i\right) \cdot a_n, \text{ if } n > 1.$$

## Sum of Sums

• For any positive integer n, if  $a_1, a_2, \ldots, a_n$  and  $b_1, b_2, \ldots, b_n$  are real numbers, then

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i.$$

• Proof by induction

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i. \quad \leftarrow P(n)$$
  
• base step: 
$$\sum_{i=1}^{1} (a_i + b_i) = a_1 + b_1 = \sum_{i=1}^{1} a_i + \sum_{i=1}^{1} b_i$$
  
• inductive hypothesis: 
$$\sum_{i=1}^{k} (a_i + b_i) = \sum_{i=1}^{k} a_i + \sum_{i=1}^{k} b_i. \quad \leftarrow P(k)$$

i=1

i=1

(c) Paul Fodor (CS Stony Brook)

i=1

#### Sum of Sums

• Cont.: We must show that:

$$\sum_{i=1}^{k+1} (a_i + b_i) = \sum_{i=1}^{k+1} a_i + \sum_{i=1}^{k+1} b_i. \qquad \leftarrow P(k+1)$$

$$\sum_{i=1}^{k+1} (a_i + b_i) = \sum_{i=1}^{k} (a_i + b_i) + (a_{k+1} + b_{k+1})$$
$$= \left(\sum_{i=1}^{k} a_i + \sum_{i=1}^{k} b_i\right) + (a_{k+1} + b_{k+1})$$
$$= \left(\sum_{i=1}^{k} a_i + a_{k+1}\right) + \left(\sum_{i=1}^{k} b_i + b_{k+1}\right)$$
$$= \sum_{i=1}^{k+1} a_i + \sum_{i=1}^{k+1} b_i$$

by definition of  $\boldsymbol{\Sigma}$ 

by inductive hypothesis

by the associative and cummutative laws of algebra

by definition of  $\boldsymbol{\Sigma}$ 

Q.E.D.

• Arithmetic sequence: there is a constant d such that  $a_k = a_{k-1} + d$  for all integers  $k \ge 1$ 

It follows that,  $a_n = a_0 + d*n$  for all integers  $n \ge 0$ .

 Geometric sequence: there is a constant r such that
 a<sub>k</sub> = r \* a<sub>k-1</sub> for all integers k ≥ 1

 It follows that, a<sub>n</sub> = r<sup>n</sup> \* a<sub>0</sub> for all integers n ≥ 0.

• A second-order linear homogeneous recurrence relation with constant coefficients is a recurrence relation of the form:

 $a_{k} = A * a_{k-1} + B * a_{k-2}$ for all integers  $k \ge$  some fixed integer where A and B are fixed real numbers with B = 0. Supplemental material on Sequences: Correctness of Algorithms

- A program is correct if it produces the output specified in its documentation for each set of inputs
  - initial state (inputs): pre-condition for the algorithm
  - final state (outputs): post-condition for the algorithm
- Example:
  - Algorithm to compute a product of nonnegative integers
     Pre-condition: The input variables m and n are nonnegative integers
     Post-condition: The output variable p equals m\*n

# **Correctness of Algorithms**

• The steps of an algorithm are divided into sections with assertions about the current state of algorithm

[Assertion 1: pre-condition for the algorithm]

- $\{Algorithm \ statements\}$
- [Assertion 2]
- {Algorithm statements}
- [Assertion k 1]

{Algorithm statements}

[Assertion k: post-condition for the algorithm]

## **Correctness of Algorithms**

• Loop Invariants: used to prove correctness of a loop with respect to pre- and post-conditions

[Pre-condition for the loop]

while (G)

[Statements in the body of the loop]

end while

[Post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions if, and only if, whenever the algorithm variables satisfy the precondition for the loop and the loop terminates after a finite number of steps, the algorithm variables satisfy the postcondition for the loop

## Loop Invariant

- A loop invariant I(n) is a predicate with domain a set of integers, which for each iteration of the loop, <u>(induction)</u> if the predicate is true before the iteration, the it is true after the iteration
- If <u>the loop invariant I(0) is true before the first</u> <u>iteration of the loop</u> AND
- After a finite number of iterations of the loop, the guard G becomes false **AND**

The truth of <u>the loop invariant ensures the truth of the</u> <u>post-condition of the loop</u>

<u>then the loop will be correct with respect to it pre-</u> <u>and post-conditions</u>

## Loop Invariant

- Correctness of a Loop to Compute a Product:
- A loop to compute the product m\*x for a nonnegative integer m and a real number x, without using multiplication

[Pre-condition: m is a nonnegative integer, x is a real number, i = 0, and product = 0] while ( $i \neq m$ )

product := product + x

i := i + 1

end while

[Post-condition: product = mx] Loop invariant I(n): [i = n and product = n\*x]Guard G:  $i \neq m$ 

Base Property: I (0) is "i = 0 and product =  $0 \cdot x = 0$ " Inductive Property: [If  $G \land I$  (k) is true before a loop iteration (where  $k \ge 0$ ), then I (k+1) is true after the loop iteration.] Let k is a nonnegative integer such that  $G \land I(k)$  is true:  $i \neq m \land i \equiv n \land product \equiv n*x$ Since  $i \neq m$ , the guard is passed and product = product + x = k\*x + x = (k + 1)\*xi = i + 1 = k + 1I(k + 1): (i = k + 1 and product = (k + 1)\*x) is true **Eventual Falsity of Guard: [After a finite number of iterations** of the loop, G becomes false] After m iterations of the loop: i = m and G becomes false

#### Correctness of the Post-Condition: [If N is the least number of iterations after which G is false and I (N) is true, then the value of the algorithm variables will be as specified in the post-condition of the loop.]

I(N) is true at the end of the loop: i = N and product = N\*x

G becomes false after N iterations, i = m, so m = i = N

The post-condition: the value of product after execution of the loop should be mx is true.