Sequences and Mathematical Induction

CSE 215, Foundations of Computer Science
Stony Brook University
http://www.cs.stonybrook.edu/~cse215

Sequences

- A sequence is a function whose domain is
- all the integers between two given integers

$$
a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}
$$

- all the integers greater than or equal to a given integer

$$
a_{m}, a_{m+1}, a_{m+2}, \ldots
$$

a_{k} is a term in the sequence
k is the subscript or index
m is the subscript of the initial term
n is the subscript of the last term $(\mathrm{m} \leq \mathrm{n})$

- An explicit formula or general formula for a sequence is a rule that shows how the values of a_{k} depend on k

Sequences

- Examples:
$a_{k}=2^{k} \quad$ is the sequence $2,4,8,16,32,64,128, \ldots$

Index	$\mathbf{1}$	2	3	4	5	6	7	8
Term	2	4	8	16	32	64	128	256

$a_{\mathrm{k}}=\mathrm{k} / \mathrm{k}+1$, for all integers $\mathrm{k} \geq 1: \quad b_{\mathrm{i}}=\mathrm{i}-1 / \mathrm{i}$, for all integers $\mathrm{i} \geq 2$:

$$
\begin{array}{ll}
a_{1}=\frac{1}{1+1}=\frac{1}{2} & b_{2}=\frac{2-1}{2}=\frac{1}{2} \\
a_{2}=\frac{2}{2+1}=\frac{2}{3} & b_{3}=\frac{3-1}{3}=\frac{2}{3} \\
a_{3}=\frac{3}{3+1}=\frac{3}{4} & b_{4}=\frac{4-1}{4}=\frac{3}{4}
\end{array}
$$

- a_{k} for $\mathrm{k} \geq 1$ is the same sequence with b_{i} for $\mathrm{i} \geq 2$

Sequences

- An Alternating Sequence:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{j}}=(-1)^{\mathrm{j}} \text { for all integers } \mathrm{j} \geq 0 \\
& \mathrm{c}_{0}=(-1)^{0}=1 \\
& \mathrm{c}_{1}=(-1)^{1}=-1 \\
& \mathrm{c}_{2}=(-1)^{2}=1 \\
& \mathrm{c}_{3}=(-1)^{3}=-1 \\
& \mathrm{c}_{4}=(-1)^{4}=1 \\
& \mathrm{c}_{5}=(-1)^{5}=-1
\end{aligned}
$$

Find an explicit formula for a sequence

- The initial terms of a sequence are:

$$
1, \quad-\frac{1}{4}, \quad \frac{1}{9}, \quad-\frac{1}{16}, \quad \frac{1}{25}, \quad-\frac{1}{36}
$$

- a_{k} is the general term of the sequence, a_{1} is the first element
- observe that the denominator of each term is a perfect square

$$
\begin{array}{cccccc}
\frac{1}{1^{2}} & \frac{(-1)}{2^{2}}, & \frac{1}{3^{2}}, & \frac{(-1)}{4^{2}}, & \frac{1}{5^{2}}, & \frac{(-1)}{6^{2}} \\
\mathfrak{\imath} & \uparrow & \uparrow & \uparrow & \uparrow & \downarrow \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}
\end{array}
$$

- observe that the numerator equals $\pm 1: a_{k}=\frac{ \pm 1}{k^{2}}$
- alternating sequence with -1 when k is even:

$$
a_{k}=\frac{(-1)^{k+1}}{k^{2}} \quad \text { for all integers } k \geq 1
$$

Find an explicit formula for a sequence

- Result sequence:

$$
a_{k}=\frac{(-1)^{k+1}}{k^{2}} \quad \text { for all integers } k \geq 1
$$

- Alternative sequence:

$$
a_{k}=\frac{(-1)^{k}}{(k+1)^{2}} \quad \text { for all integers } k \geq 0
$$

Summation Notation

- If m and n are integers and $m \leq n$, the summation from k equals m to n of $\mathrm{a}_{\mathrm{k}}, \sum_{k=m}^{n} a_{k}$, is the sum of all the terms a_{m}, $a_{m+1}, a_{m+2}, \ldots, a_{n}$

$$
\sum_{k=m}^{n} a_{k}=a_{m}+a_{m+1}+a_{m+2}+\cdots+a_{n}
$$

k is the index of the summation m is the lower limit of the summation
n is the upper limit of the summation

Summation Notation

- Example:

$$
\begin{aligned}
& a_{1}=-2, \quad a_{2}=-1, \quad a_{3}=0, \quad a_{4}=1, \quad a_{5}=2 \\
& \sum_{k=1}^{5} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=(-2)+(-1)+0+1+2=0 \\
& \sum_{k=2}^{2} a_{k}=a_{2}=-1 \\
& \sum_{k=1}^{2} a_{2 k}=a_{2 \cdot 1}+a_{2 \cdot 2}=a_{2}+a_{4}=-1+1=0
\end{aligned}
$$

Summation Notation

- Summation notation with formulas example:

$$
\sum_{k=1}^{5} k^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55
$$

- Changing from Summation Notation to Expanded Form:

$$
\begin{aligned}
\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} & =\frac{(-1)^{0}}{0+1}+\frac{(-1)^{1}}{1+1}+\frac{(-1)^{2}}{2+1}+\frac{(-1)^{3}}{3+1}+\cdots+\frac{(-1)^{n}}{n+1} \\
& =\frac{1}{1}+\frac{(-1)}{2}+\frac{1}{3}+\frac{(-1)}{4}+\cdots+\frac{(-1)^{n}}{n+1} \\
& =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n}}{n+1}
\end{aligned}
$$

Summation Notation

- Changing from Expanded Form to Summation Notation:

$$
\frac{1}{n}+\frac{2}{n+1}+\frac{3}{n+2}+\cdots+\frac{n+1}{2 n}
$$

- The general term of this summation can be expressed as $\frac{k+1}{n+k}$ for integers k from 0 to n

$$
\frac{1}{n}+\frac{2}{n+1}+\frac{3}{n+2}+\cdots+\frac{n+1}{2 n}=\sum_{k=0}^{n} \frac{k+1}{n+k}
$$

Sequences

- Evaluating expression for given limits:

$$
\begin{array}{ll}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n \cdot(n+1)} \\
n=1 & \frac{1}{1 \cdot 2}=\frac{1}{2} \\
n=2 & \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}=\frac{1}{2}+\frac{1}{6}=\frac{2}{3} \\
n=3 & \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}=\frac{3}{4}
\end{array}
$$

Sequences

- Recursive definitions:

$$
\sum_{k=m}^{m} a_{k}=a_{m} \quad \text { and } \quad \sum_{k=m}^{n} a_{k}=\sum_{k=m}^{n-1} a_{k}+a_{n} \quad \text { for all integers } n>m
$$

- Use of recursion examples:

$$
\begin{aligned}
& \sum_{i=1}^{n+1} \frac{1}{i^{2}}=\sum_{i=1}^{n} \frac{1}{i^{2}}+\frac{1}{(n+1)^{2}} \\
& \sum_{k=0}^{n} 2^{k}+2^{n+1}=\sum_{k=0}^{n+1} 2^{k}
\end{aligned}
$$

Sequences

- Telescoping Sums:

$$
\frac{1}{k}-\frac{1}{k+1}=\frac{(k+1)-k}{k(k+1)}=\frac{1}{k(k+1)}
$$

$=1-\frac{1}{n+1}$

Product Notation

- The product from k equals m to n of $a_{k}, \prod_{k=m}^{n} a_{k}$,for m and n integers and $m \leq n$, is the product of all the terms a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}

$$
\prod_{k=m}^{n} a_{k}=a_{m} \cdot a_{m+1} \cdot a_{m+2} \cdots a_{n}
$$

- Example: $\prod_{k=1}^{5} a_{k}=a_{1} a_{2} a_{3} a_{4} a_{5}$

$$
\prod_{k=1}^{5} k=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120
$$

Product Notation

- Recursive definition:

$$
\prod_{k=m}^{m} a_{k}=a_{m} \quad \text { and } \quad \prod_{k=m}^{n} a_{k}=\left(\prod_{k=m}^{n-1} a_{k}\right) \cdot a_{n} \quad \text { for all integers } n>m
$$

Sequences

- If $a_{m}, a_{m+1}, a_{m+2}, \ldots$ and $b_{m}, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers:

$$
\begin{gathered}
\sum_{k=m}^{n} a_{k}+\sum_{k=m}^{n} b_{k}=\sum_{k=m}^{n}\left(a_{k}+b_{k}\right) \\
\left(\prod_{k=m}^{n} a_{k}\right) \cdot\left(\prod_{k=m}^{n} b_{k}\right)=\prod_{k=m}^{n}\left(a_{k} \cdot b_{k}\right)
\end{gathered}
$$

- Generalized distributive law: if c is any real number:

$$
c \cdot \sum_{k=m}^{n} a_{k}=\sum_{k=m}^{n} c \cdot a_{k}
$$

Sequences

- Using Properties of Summation and Product:

$$
\begin{aligned}
& a_{k}=k+1 \\
& \sum_{k=m}=k-1 \\
& \sum_{k=m}^{n} a_{k}+2 \cdot \sum_{k=m}^{n} b_{k}=\sum_{k=m}^{n}(k+1)+2 \cdot \sum_{k=m}^{n}(k-1) \\
& = \\
& \sum_{k=m}^{n}(k+1)+\sum_{k=m}^{n} 2 \cdot(k-1) \\
& \\
& =\sum_{k=m}^{n}((k+1)+2 \cdot(k-1)) \\
& \\
& =\sum_{k=m}^{n}(3 k-1)
\end{aligned}
$$

Sequences

- Using Properties of Summation and Product:

$$
\begin{aligned}
a_{k}=k+1 & b_{k}=k-1 \\
\left(\prod_{k=m}^{n} a_{k}\right) \cdot\left(\prod_{k=m}^{n} b_{k}\right) & =\left(\prod_{k=m}^{n}(k+1)\right) \cdot\left(\prod_{k=m}^{n}(k-1)\right) \\
& =\prod_{k=m}^{n}(k+1) \cdot(k-1) \\
& =\prod_{k=m}^{n}\left(k^{2}-1\right)
\end{aligned}
$$

Sequences

- Change of variable examples:

$$
\begin{aligned}
& \begin{aligned}
\sum_{j=2}^{4}(j-1)^{2} & =(2-1)^{2}+(3-1)^{2}+(4-1)^{2} \\
& =1^{2}+2^{2}+3^{2} \\
& =\sum_{k=1}^{3} k^{2} .
\end{aligned} \\
& \begin{aligned}
& \sum_{k=0}^{6} \frac{1}{k+1} \quad \text { change of variable: } j=k+1 \\
& \frac{1}{k+1}=\frac{1}{(j-1)+1}=\frac{1}{j} \\
& k=0, \quad j=k+1=0+1=1 \quad \sum_{k=0}^{6} \frac{1}{k+1}=\sum_{i=1}^{7} \frac{1}{j} \\
& k=6, \quad j=k+1=6+1=7 \quad
\end{aligned}
\end{aligned}
$$

Factorial Notation

- The quantity n factorial, n !, is defined to be the product of all the integers from 1 to n :

$$
\mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-1) \cdot \cdots 3 \cdot 2 \cdot 1
$$

$0!$ is defined to be $1: \quad 0!=1$

$$
\begin{array}{ll}
0!=1 & 1!=1 \\
2!=2 \cdot 1=2 & 3!=3 \cdot 2 \cdot 1=6 \\
4!=4 \cdot 3 \cdot 2 \cdot 1=24 & 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \\
6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720 \\
7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5,040 \\
8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40,320 \\
9!=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=362,880
\end{array}
$$

Factorial Notation

- A recursive definition for factorial is:

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { if } n \geq 1\end{cases}
$$

- Computing with Factorials:

$$
\begin{aligned}
& \frac{8!}{7!}=\frac{8 \cdot 7!}{7!}=8 \\
& \frac{5!}{2!\cdot 3!}=\frac{5 \cdot 4 \cdot 3!}{2!\cdot 3!}=\frac{5 \cdot 4}{2 \cdot 1}=10 \\
& \frac{(n+1)!}{n!}=\frac{(n+1) \cdot n!}{n!}=n+1 \\
& \frac{n!}{(n-3)!}=\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)!}{(n-3)!}=n \cdot(n-1) \cdot(n-2) \\
& =n^{3}-3 n^{2}+2 n
\end{aligned}
$$

n choose r

- n choose $r,\binom{n}{r}$, represents the number of subsets of size r that can be chosen from a set with n elements, for n and r integers with $0 \leq_{r} \leq_{n}$

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

- Examples:

$$
\begin{gathered}
\binom{8}{5}=\frac{8!}{5!(8-5)!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot(\cdot 3 \cdot 2 \cdot 1)}=56 \\
\binom{n+1}{n}=\frac{(n+1)!}{n!((n+1)-n)!}=\frac{(n+1)!}{n!1!}=\frac{(n+1) \cdot n!}{n!}=n+1
\end{gathered}
$$

n choose r

- 4 choose $2=4!/(2!* 2!)=6$
- Example: Let $S=\{1,2,3,4\}$
- The 6 subsets of S with 2 elements are:
$\{1,2\}$
$\{1,3\}$
$\{1,4\}$
$\{2,3\}$
$\{2,4\}$
$\{3,4\}$

Sequences in Computer Programming

- Arrays: int[] $a=$ new int[50];

$$
\begin{aligned}
& s:=a[1] \\
& \text { for } k:=2 \text { to } n \\
& \qquad s:=s+a[k]
\end{aligned}
$$

next k

Example Algorithm with Arrays

- Convert from Base 10 to Base 2:

$$
\begin{aligned}
& 38=19 \cdot 2+0 \\
& =(9 \cdot 2+1) \cdot 2+0=9 \cdot 22+1 \cdot 2+0 \\
& =(4 \cdot 2+1) \cdot 2^{2}+1 \cdot 2+0=4 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =(2 \cdot 2+0) \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =2 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =(1 \cdot 2+0) \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& a=2^{k} \cdot r[k]+2^{k-1} \cdot r[k-1]+\cdots+2^{2} \cdot r[2]+2^{1} \cdot r[1]+2^{0} \cdot r[0] \\
& a_{10}=(r[k] r[k-1] \cdots r[2] r[1] r[0])_{2}
\end{aligned}
$$

Convert from Base 10 to Base 2

Input: n [a nonnegative integer]
Algorithm Body:
$\mathrm{q}:=\mathrm{n}, \mathrm{i}:=0$
while ($\mathrm{i}=0$ or $\mathrm{q}=0$)
$\mathrm{r}[\mathrm{i}]:=\mathrm{q} \bmod 2$
$\mathrm{q}:=\mathrm{q} \operatorname{div} 2$
i : = i + 1
end while
Output: $\mathrm{r}[0], \mathrm{r}[1], \mathrm{r}[2], \ldots, r[\mathrm{i}-1]$ [a sequence of integers]

Mathematical Induction

- The Principle of Mathematical Induction:

Let $\mathrm{P}(\mathrm{n})$ be a property that is defined for integers n , and let a be a fixed integer. Suppose the following two statements are true:

1. $\mathrm{P}(\mathrm{a})$ is true.
2. For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Then the statement "for all integers $n \geq a, P(n)$ " is true. That is:
$\mathrm{P}(a)$ is true.
$\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1), \forall \mathrm{k} \geq a$
$\therefore \mathrm{P}(\mathrm{n})$ is true, $\forall \mathrm{n} \geq a$

Mathematical Induction

- The Method of Proof by Mathematical Induction:

To prove a statement of the form:
"For all integers $\mathrm{n} \geq$ a, a property $\mathrm{P}(\mathrm{n})$ is true."
Step 1 (base step): Show that $\mathbf{P (a)}$ is true.
Step 2 (inductive step): Show that for all integers $\mathbf{k} \geq \mathbf{a}$, if $\mathbf{P (k)}$ is true then $P(k+1)$ is true:

- Inductive hypothesis: suppose that $\mathrm{P}(\mathrm{k})$ is true, where k is any particular but arbitrarily chosen integer with $k \geq a$.
- Then show that $\mathrm{P}(\mathrm{k}+1)$ is true.

Mathematical Induction

- Example: For all integers $n \geq 8$, n¢ can be obtained using $3 ¢$ and $5 ¢$ coins:

Base step: $\mathrm{P}(8)$ is true because $8 \notin$ can $=$ one $3 \notin$ coin and one $5 \notin$ coin
Inductive step: for all integers $\mathrm{k} \geq 8$, if $\mathrm{P}(\mathrm{k})$ is true then $\mathrm{P}(\mathrm{k}+1)$ is also true Inductive hypothesis: suppose that k is any integer with $\mathrm{k} \geq 8$:
$\mathrm{P}(\mathrm{k})$: kc can be obtained using $3 ¢$ and $5 ¢$ coins
We must show: $\mathrm{P}(\mathrm{k}+1)$ is true: $(\mathrm{k}+1) ¢$ can be obtained using $3 ¢$ and $5 ¢$ coins
Case 1 (There is a $5 ¢$ coin among those used to make up the $k \notin$): replace the $5 ¢$ coin by two $3 ¢$ coins; the result will be $(k+1) ¢$.

Case 2 (There is not a $5 ¢$ coin among those used to make up the $\mathrm{k} \notin$): because $\mathrm{k} \geq 8$, at least three 3ϕ coins must have been used. Remove three 3ϕ coins (9ϕ) and replace them by two $5 \not \subset$ coins (10ϕ); the result will be $(k+1) \phi$

Mathematical Induction

- Example:The Sum of the First n Integers:

$$
1+2+\cdots+n=\frac{n(n+1)}{2} \quad \text { for all integers } n \geq 1
$$

Base step: $\mathrm{P}(1): \quad 1=\frac{1(1+1)}{2}$
Inductive step: $\mathrm{P}(\mathrm{k})$ is true, for a particular but arbitrarily chosen integer $\mathrm{k} \geq 1$:

$$
1+2+\cdots+k=\frac{k(k+1)}{2}
$$

Prove $\mathrm{P}(\mathrm{k}+1): 1+2+\cdots+(k+1)=\frac{(k+1)(k+2)}{2}$

$$
(1+2+\cdots+k)+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}
$$

The Sum of the First n Integers

- A formula in closed form represents a sum with a variable number of terms without an ellipsis or a summation symbol.
- Applying the Formula for the Sum of the First n Integers:

$$
\begin{aligned}
2+4+6+\cdots+500 & =2 \cdot(1+2+3+\cdots+250) \\
& =2 \cdot\left(\frac{250 \cdot 251}{2}\right) \\
& =62,750
\end{aligned}
$$

$5+6+7+8+\cdots+50=(1+2+3+\cdots+50)-(1+2+3+4)$

Geometric sequence

- Each term is obtained from the preceding one by multiplying by a constant factor: if the first term is 1 and the constant factor is $\mathrm{r}: 1, r, r^{2}, r^{3}, \ldots, r^{\mathrm{n}}, \ldots$

$$
1+r+r^{2}+\cdots+r^{n}=\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1}
$$

Base step: Prove $\mathrm{P}(0): \sum_{i=0}^{0} r^{i}=\frac{r^{0+1}-1}{r-1} \Leftrightarrow 1=1$ (Proved)
Inductive hypothesis:Suppose $\mathrm{P}(\mathrm{k})$ is true:for $k \geq 0: \sum_{i=0}^{k} r^{i}=\frac{r^{k+1}-1}{r-1}$
Prove $\mathrm{P}(\mathrm{k}+1): \sum_{i=0}^{k+1} r^{i}=\frac{r^{k+2}-1}{r-1}$

Geometric sequence

$$
\begin{array}{rlc}
\sum_{i=0}^{k+1} r^{i} & = & 1+r+r^{2}+\cdots+r^{k}+r^{k+1} \\
& = & \frac{r^{k+1}-1}{r-1}+r^{k+1} \\
& = & \frac{r^{k+2}-1}{r-1}
\end{array}
$$

Geometric sequence

- Examples:

$$
\begin{aligned}
1+3+3^{2}+\cdots+3^{m-2} & =\frac{3^{(m-2)+1}-1}{3-1} \\
& =\frac{3^{m-1}-1}{2} .
\end{aligned}
$$

$$
\begin{aligned}
3^{2}+3^{3}+3^{4}+\cdots+3^{m} & =3^{2} \cdot\left(1+3+3^{2}+\cdots+3^{m-2}\right) \quad \text { by factoring out } 3^{2} \\
& =9 \cdot\left(\frac{3^{m-1}-1}{2}\right)
\end{aligned}
$$

Mathematical Induction

- Proving a Divisibility Property:
$\mathrm{P}(\mathrm{n})$: for all integers $\mathrm{n} \geq 0,2^{2 \mathrm{n}}-1$ is divisible by 3
Basic step $P(0): 2^{2 \cdot 0}-1=0$ is divisible by 3
Induction hypothesis: Suppose $\mathrm{P}(\mathrm{k})$ is True: $2^{2 \mathrm{k}}-1$ is divisible by 3 Prove: $\mathrm{P}(\mathrm{k}+1): 2^{2(\mathrm{k}+1)}-1$ is divisible by 3 ?

Mathematical Induction

- Proving a Divisibility Property:

$$
\begin{aligned}
2^{2(k+1)}-1 & =2^{2 k+2}-1 & & \\
& =2^{2 k} \cdot 2^{2}-1 & & \text { by the laws of exponents } \\
& =2^{2 k} \cdot 4-1 & & \\
& =2^{2 k}(3+1)-1 & & \\
& =2^{2 k} \cdot 3+\left(2^{2 k}-1\right) & & \text { by the laws of algebra } \\
& =2^{2 k} \cdot 3+3 r & & \text { by inductive hypothesis } \\
& =3\left(2^{2 k}+r\right) & & \text { by factoring out the } 3 .
\end{aligned}
$$

$2^{2 k}+r$ is an integer because integers are closed under multiplication and summation
so, $2^{2(k+1)}-1$ is divisible by 3

Mathematical Induction

- Proving an Inequality:

$$
\mathrm{P}(\mathrm{n}): \text { for all integers } \mathrm{n} \geq 3,2 \mathrm{n}+1<2^{\mathrm{n}}
$$

Base step: Prove $P(3): 2 \cdot 3+1<2^{3}$

$$
7<8 \text { (True) }
$$

Inductive step: Suppose that for $\mathrm{k} \geq 3, \mathrm{P}(\mathrm{k})$ is True: $2 \mathrm{k}+1<2^{\mathrm{k}}$
Show: $P(k+1): 2(k+1)+1<2^{k+1}$
That is: $\quad 2 \mathrm{k}+3<2^{\mathrm{k}+1}$
$2 \mathrm{k}+3=(2 \mathrm{k}+1)+2<2^{\mathrm{k}}+2^{\mathrm{k}}=2^{\mathrm{k}+1}$
because $2 \mathrm{k}+1<2^{\mathrm{k}}$ by the inductive hypothesis
and because $2<2^{\mathrm{k}}$ for all integers $\mathrm{k} \geq 3$

Mathematical Induction

- A sequence: $\mathrm{a}_{1}=2$ and $\mathrm{a}_{\mathrm{k}}=5 \mathrm{a}_{\mathrm{k}-1}$ for all integers $\mathrm{k} \geq 2$
- Prove: $\mathrm{a}_{\mathrm{n}}=2 \cdot 5^{\mathrm{n}-1}$

Proof by induction: $\mathrm{P}(\mathrm{n}): \mathrm{a}_{\mathrm{n}}=2 \cdot 5^{\mathrm{n}-1}$ for all integers $\mathrm{n} \geq 1$
Base step: $P(1): a_{1}=2 \cdot 5^{1-1}=2 \cdot 5^{0}=2 \cdot 1=2$
Inductive hypothesis: assume $P(k)$ is true: $a_{k}=2 \cdot 5^{k-1}$
Show: $\mathrm{P}(\mathrm{k}+1): \mathrm{a}_{\mathrm{k}+1}=2 \cdot 5^{(\mathrm{k}+1)-1}=2 \cdot 5^{\mathrm{k}}$?

$$
\begin{aligned}
a_{k+1} & =5 a_{(k+1)-1} & & \text { by definition of } a_{1}, a_{2}, a_{3}, \ldots \\
& =5 \cdot a_{k} & & \text { since }(k+1)-1=k \\
& =5 \cdot 2 \cdot 5^{k-1} & & \text { by inductive hypothesis } \\
& =2 \cdot\left(5 \cdot 5^{k-1}\right) & & \text { by regrouping } \\
& =2 \cdot 5^{k} & & \text { by the laws of exponents }
\end{aligned}
$$

Mathematical Induction

- A Problem with Trominoes (Tetris):

straight

\square and L-shaped

For any integer $\mathrm{n} \geq 1$, if one square is removed from a $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ checkerboard, the remaining squares can be completely covered by L-shaped trominoes
Base case: a 2×2 checkerboard can be covered by 1 L -shaped tromino

Mathematical Induction

Inductive hypothesis for $\mathrm{k} \geq 1: \mathrm{P}(\mathrm{k})$: if one square is removed from a $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ checkerboard, the remaining squares can be completely covered by L-shaped trominoes
$\mathrm{P}(\mathrm{k}+1)$:
if one square is removed from a $2^{k+1} \times 2^{k+1}$ checkerboard, the remaining squares can be completely covered by L-shaped trominoes

Strong Mathematical Induction

- The Principle of Strong Mathematical Induction (or the principle of complete induction):
$\mathrm{P}(\mathrm{n})$ is a property that is defined for integers n , and a and b are fixed integers with $\mathrm{a} \leq \mathrm{b}$.
- Base step: $\mathrm{P}(\mathrm{a}), \mathrm{P}(\mathrm{a}+1), \ldots$, and $\mathrm{P}(\mathrm{b})$ are all true
- Inductive step: For any integer $k \geq b$, if $P(i)$ is true for all integers i from a through k (inductive hypothesis), then $\mathrm{P}(\mathrm{k}+1)$ is true
Then the statement for all integers $\mathrm{n} \geq \mathrm{a}, \mathrm{P}(\mathrm{n})$ is true.
That is:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{a}), \mathrm{P}(\mathrm{a}+1), \ldots, \mathrm{P}(\mathrm{~b}-1), \mathrm{P}(\mathrm{~b}) \text { are true. } \\
& \forall \mathrm{k} \geq \mathrm{b},(\forall \mathrm{a} \leq \mathrm{i} \leq \mathrm{k}, \mathrm{P}(\mathrm{i})) \Rightarrow \mathrm{P}(\mathrm{k}+1) \\
& \therefore \mathrm{P}(\mathrm{n}) \text { is true, } \forall \mathrm{n} \geq a
\end{aligned}
$$

Strong Mathematical Induction

- Any statement that can be proved with ordinary mathematical induction can be proved with strong mathematical induction (and vice versa).

Strong Mathematical Induction

- Divisibility by a Prime:

Any integer greater than 1 is divisible by a prime number
$\mathrm{P}(\mathrm{n}): \mathrm{n}$ is divisible by a prime number
Base case: $\mathrm{P}(2): 2$ is divisible by a prime number
2 is divisible by 2 and 2 is a prime number
Inductive hypothesis: Let k be any integer with $\mathrm{k} \geq 2$
$\mathrm{P}(\mathrm{i})$: i is divisible by a prime number for all integers
$\mathrm{P}(\mathrm{i})$ is true for all integers i from 2 through k

Show: $\mathrm{P}(\mathrm{k}+1)$: $\mathrm{k}+1$ is divisible by a prime number

Strong Mathematical Induction

- Case $1(\mathrm{k}+1$ is prime): In this case $\mathrm{k}+1$ is divisible by itself (a prime number): $\mathrm{k}+1=1 *(\mathrm{k}+1)$
- Case $2(k+1$ is not prime): $k+1=a * b$
where a and b are integers with $1<\mathrm{a}<\mathrm{k}+1$ and $1<\mathrm{b}<\mathrm{k}+1$.
From $\mathrm{k}+1=\mathrm{a} * \mathrm{~b}, \mathrm{k}+1$ is divisible by a
By inductive hypothesis, a is divisible by a prime number p By transitivity of divisibility, $\mathrm{k}+1$ is divisible by the prime number p.
Therefore, $\mathrm{k}+1$ is divisible by a prime number p .

Strong Mathematical Induction

- A sequence $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots$
$\mathrm{s}_{0}=0, \mathrm{~s}_{1}=4, \mathrm{~s}_{\mathrm{k}}=6 \mathrm{~s}_{\mathrm{k}-1}-5 \mathrm{~s}_{\mathrm{k}-2}$ for all integers $\mathrm{k} \geq 2$

$$
\begin{aligned}
& s_{2}=6 s_{1}-5 s_{0}=6 \cdot 4-5 \cdot 0=24, \\
& s_{3}=6 s_{2}-5 s_{1}=6 \cdot 24-5 \cdot 4=144-20=124
\end{aligned}
$$

Prove: $\mathrm{s}_{\mathrm{n}}=5^{\mathrm{n}}-1$
Base step $P(0)$ and $P(1)$ are true:

$$
\begin{aligned}
& P(0): \mathrm{s}_{0}=5^{0}-1=1-1=0 \\
& \mathrm{P}(1): \mathrm{s}_{1}=5^{1}-1=5-1=4
\end{aligned}
$$

Inductive step: Let k be any integer with $\mathrm{k} \geq 1$,

$$
\mathrm{s}_{\mathrm{i}}=5^{\mathrm{i}}-1 \text { for all integers i with } 0 \leq \mathrm{i} \leq \mathrm{k}
$$

Strong Mathematical Induction

- We must show $P(k+1)$ is true: $s_{k+1}=5^{k+1}-1$

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{k}+1}=6 \mathrm{~s}_{\mathrm{k}}-5 \mathrm{~s}_{\mathrm{k}-1} \text { by definition of } \mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots \\
&=6\left(5^{\mathrm{k}}-1\right)-5\left(5^{\mathrm{k}-1}-1\right) \text { by definition hypothesis } \\
&=6 \cdot 5^{\mathrm{k}}-6-5^{\mathrm{k}}+5 \\
& \text { by multiplying out and applying }
\end{aligned}
$$

$=(6-1) 5^{\mathrm{k}}-1 \quad$ by factoring out 6 and arithmetic
$=5 \cdot 5^{k}-1 \quad$ by arithmetic
$=5^{\mathrm{k}+1}-1$
a law of exponents
by applying a law of exponents

Strong Mathematical Induction

- The Number of Multiplications Needed to Multiply n Numbers is ($\mathrm{n}-1$)
- $\mathrm{P}(\mathrm{n})$: If $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are n numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is $n-1$.
$>$ Base case $\mathrm{P}(1)$: The number of multiplications needed to compute the product of x_{1} is $1-1=0$
$>$ Inductive hypothesis: Let k by any integer with $\mathrm{k} \geq 1$ and for all integers ifrom 1 through k, if $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}$ are numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is $\mathrm{i}-1$.

Strong Mathematical Induction

\Rightarrow We must show: $\mathrm{P}(\mathrm{k}+1)$: If $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}+1}$ are $\mathrm{k}+1$ numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is $(\mathrm{k}+1)-1=\mathrm{k}$
When parentheses are inserted in order to compute the product $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}+1}$, some multiplication is the final one: let L be the product of the left-hand l factors and R be the product of the right-hand r factors: $l+r=k+1$
By inductive hypothesis, evaluating L takes $l-1$ multiplications and evaluating R takes $\mathrm{r}-1$ multiplications
$(\mathrm{l}-1)+(\mathrm{r}-1)+1=(\mathrm{l}+\mathrm{r})-1=(\mathrm{k}+1)-1=\mathrm{k}$

Strong Mathematical Induction

- Existence and Uniqueness of Binary Integer Representations: any positive integer n has a unique representation in the form

$$
\mathrm{n}=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0}
$$

where r is a nonnegative integer, $c_{r}=1$, and $c_{j}=0$ or 1 for $j=0, \ldots, r-1$

Proof of Existence:

Base step: $\mathrm{P}(1): 1=\mathrm{c}_{0} \cdot 2^{0}$ where $\mathrm{c}_{0}=1, \mathrm{r}=0$.
Inductive hypothesis: $k \geq 1$ is an integer and for all integers i from 1 through k: $\mathrm{P}(\mathrm{i}): \mathrm{i}=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0}$
We must show that $\mathrm{k}+1$ can be written in the required form.

Strong Mathematical Induction

- Case $1(k+1$ is even $):(k+1) / 2$ is an integer

By inductive hypothesis:

$$
\begin{aligned}
& (\mathrm{k}+1) / 2={ }_{\mathrm{c}_{\mathrm{r}}} \cdot 2^{\mathrm{r}}+{ }_{\mathrm{c}_{\mathrm{r}-} \cdot} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0} \\
& \mathrm{k}+1=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}+1}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2 \\
& \quad={ }_{\mathrm{c}_{\mathrm{r}}} \cdot 2^{\mathrm{r}+1}+{ }_{\mathrm{c}_{\mathrm{r}-1}} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2^{1}+0 \cdot 2^{0}
\end{aligned}
$$

- Case 2 ($k+1$ is odd): k is even, so $\mathrm{k} / 2$ is an integer By inductive hypothesis:

$$
\begin{aligned}
& \mathrm{k} / 2=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0} \\
& \mathrm{k}={ }_{\mathrm{c}_{\mathrm{r}}} \cdot 2^{\mathrm{r}+1}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2 \\
& \mathrm{k}+1
\end{aligned} \begin{aligned}
& \mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}+1}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2+1 \\
& \quad={ }_{\mathrm{c}_{\mathrm{r}}} \cdot 2^{\mathrm{r}+1}+{ }_{\mathrm{c}_{\mathrm{r}-1}} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2^{1}+1 \cdot 2^{0}
\end{aligned}
$$

Strong Mathematical Induction

- Proof of Uniqueness:

Proof by contradiction: Suppose that there is an integer n with two different representations as a sum of nonnegative integer powers of 2: $2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0}=2^{\mathrm{s}}+\mathrm{d}_{\mathrm{s}-1} \cdot 2^{\mathrm{s}-1}+\cdots+\mathrm{d}_{1} \cdot 2+\mathrm{d}_{0}$ r and s are nonnegative integers, and each c_{i} and each d_{i} equal 0 or 1 Assume: $\mathrm{r}<\mathrm{s}$

By geometric sequence:

$$
\begin{gathered}
2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0} \leq 2^{\mathrm{r}}+2^{\mathrm{r}-1}+\cdots+2+1=2^{\mathrm{r}+1}-1<2^{\mathrm{s}} \\
2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0}<2^{\mathrm{s}}+\mathrm{d}_{\mathrm{s}-1} \cdot 2^{\mathrm{s}-1}+\cdots+\mathrm{d}_{1} \cdot 2+\mathrm{d}_{0}
\end{gathered}
$$

Contradiction

Recursion

- A sequence can be defined in 3 ways:
- enumeration: - $2,3,-4,5, \ldots$
- general pattern: $a_{n}=(-1)^{n}(n+1)$, for all integers $n \geq 1$
- recursion: $\mathrm{a}_{1}=-2$ and $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}-1} \mathrm{a}_{\mathrm{n}-1}+(-1)^{\mathrm{n}}$
- define one or more initial values for the sequence AND
- define each later term in the sequence by reference to earlier terms
- A recurrence relation for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a formula that relates each term a_{k} to certain of its predecessors $\mathrm{a}_{\mathrm{k}-1}, \mathrm{a}_{\mathrm{k}-2}, \ldots$, a_{k-i}, where i is an integer with $\mathrm{k}-\mathrm{i} \geq 0$
- The initial conditions for a recurrence relation specify the values of $a_{0}, a_{1}, a_{2}, \ldots, a_{i-1}$, if i is a fixed integer, OR $a_{0}, a_{1}, \ldots, a_{m}$, where m is an integer with $m \geq 0$, if i depends on k.

Recursion

- Computing Terms of a Recursively Defined Sequence:
- Example:

Initial conditions: $\mathrm{c}_{0}=1$ and $\mathrm{c}_{1}=2$
Recurrence relation: $\mathrm{c}_{\mathrm{k}}=\mathrm{c}_{\mathrm{k}-1}+\mathrm{k} * \mathrm{c}_{\mathrm{k}-2}+1$, for all integers $\mathrm{k} \geq 2$

$$
\begin{array}{rlrl}
\mathrm{c}_{2} & =\mathrm{c}_{1}+2 \mathrm{c}_{0}+1 & & \text { by substituting } \mathrm{k}=2 \text { into the recurrence relation } \\
& =2+2 \cdot 1+1 & & \text { since } \mathrm{c}_{1}=2 \text { and } \mathrm{c}_{0}=1 \text { by the initial conditions } \\
& =5 & & \\
\mathrm{c}_{3} & =\mathrm{c}_{2}+3 \mathrm{c}_{1}+1 & & \text { by substituting } \mathrm{k}=3 \text { into the recurrence relation } \\
& =5+3 \cdot 2+1 & & \text { since } \mathrm{c}_{2}=5 \text { and } \mathrm{c}_{1}=2 \\
& =12 & \\
\mathrm{c}_{4} & =c_{3}+4 \mathrm{c}_{2}+1 & & \text { by substituting } \mathrm{k}=4 \text { into the recurrence relation } \\
& =12+4 \cdot 5+1 & & \text { since } c_{3}=12 \text { and } c_{2}=5 \\
& =33
\end{array}
$$

Recursion

- Writing a Recurrence Relation in More Than One Way:
- Example:

Initial condition: $\mathrm{s}_{0}=1$
Recurrence relation 1: $\mathrm{s}_{\mathrm{k}}=3 \mathrm{~s}_{\mathrm{k}-1}-1$, for all integers $\mathrm{k} \geq 1$
Recurrence relation 2: $\mathrm{s}_{\mathrm{k}+1}=3 \mathrm{~s}_{\mathrm{k}}-1$, for all integers $\mathrm{k} \geq 0$

Recursion

- Sequences That Satisfy the Same Recurrence Relation:
- Example:

Initial conditions: $a_{1}=2$ and $b_{1}=1$
Recurrence relations: $\mathrm{a}_{\mathrm{k}}=3 \mathrm{a}_{\mathrm{k}-1}$ and $\mathrm{b}_{\mathrm{k}}=3 \mathrm{~b}_{\mathrm{k}-1}$ for all integers $\mathrm{k} \geq 2$

$$
\begin{array}{ll}
a_{2}=3 a_{1}=3 \cdot 2=6 & b_{2}=3 b_{1}=3 \cdot 1=3 \\
a_{3}=3 a_{2}=3 \cdot 6=18 & b_{3}=3 b_{2}=3 \cdot 3=9 \\
a_{4}=3 a_{3}=3 \cdot 18=54 & b_{4}=3 b_{3}=3 \cdot 9=27
\end{array}
$$

Recursion

- Fibonacci numbers:

1. We have one pair of rabbits (male and female) at the beginning of a year.
2. Rabbit pairs are not fertile during their first month of life but thereafter give birth to one new male\&female pair at the end of every month.

Recursion

- Fibonacci numbers:

The initial number of rabbit pairs: $\mathrm{F}_{0}=1$
F_{n} : the number of rabbit pairs at the end of month n, for each integer $n \geq 1$
$F_{n}=F_{n-1}+F_{n-2}$, for all integers $k \geq 2$
$F_{1}=1$, because the first pair of rabbits is not fertile until the second month How many rabbit pairs are at the end of one year?

January $1^{\text {st }}: \mathrm{F}_{0}=1$
February $1^{\text {st }}$: $\mathrm{F}_{1}=1$
March 1st $: \mathrm{F}_{2}=\mathrm{F}_{1}+\mathrm{F}_{0}=1+1=2$
April $1^{\text {st }}: \mathrm{F}_{3}=\mathrm{F}_{2}+\mathrm{F}_{1}=2+1=3$
May 1 ${ }^{\text {st }}: \mathrm{F}_{4}=\mathrm{F}_{3}+\mathrm{F}_{2}=3+2=5$
June $1^{\text {st }}: \mathrm{F}_{5}=\mathrm{F}_{4}+\mathrm{F}_{3}=5+3=8$
July $1^{\text {st }}: \mathrm{F}_{6}=\mathrm{F}_{5}+\mathrm{F}_{4}=8+5=13$
August $1^{\text {st }}: \mathrm{F}_{7}=\mathrm{F}_{6}+\mathrm{F}_{5}=13+8=21$

September $1^{\text {st }}: \mathrm{F}_{8}=\mathrm{F}_{7}+\mathrm{F}_{6}=21+13=34$
October $1^{\text {st }}: \mathrm{F}_{9}=\mathrm{F}_{8}+\mathrm{F}_{7}=34+21=55$
November $1^{\text {st }}: \mathrm{F}_{10}=\mathrm{F}_{9}+\mathrm{F}_{8}=55+34=89$
December $1^{\text {st }}: \mathrm{F}_{11}=\mathrm{F}_{10}+\mathrm{F}_{9}=89+55=144$
January $1^{\text {st }}: \mathrm{F}_{12}=\mathrm{F}_{11}+\mathrm{F}_{10}=144+89=233$

Recursion

- Compound Interest:
- A deposit of $\$ 100,000$ in a bank account earning 4% interest compounded annually:
the amount in the account at the end of any particular year $=$ the amount in the account at the end of the previous year + the interest earned on the account during the year
$=$ the amount in the account at the end of the previous year + $0.04 \cdot$ the amount in the account at the end of the previous year

$$
\mathrm{A}_{0}=\$ 100,000
$$

$$
\mathbf{A}_{\mathrm{k}}=\mathbf{A}_{\mathrm{k}-1}+(0.04) \cdot \mathbf{A}_{\mathrm{k}-1}=1.04 \cdot \mathrm{~A}_{\mathrm{k}-1}, \text { for each integer } \mathrm{k} \geq 1
$$

$$
\mathrm{A}_{1}=1.04 \cdot \mathrm{~A}_{0}=\$ 104,000
$$

$$
\mathrm{A}_{2}=1.04 \cdot \mathrm{~A}_{1}=1.04 \cdot \$ 104,000=\$ 108,160
$$

Recursion

- Compound Interest with Compounding Several Times a Year:
- An annual interest rate of i is compounded m times per year: the interest rate paid per each period is i / m P_{k} is the sum of the the amount at the end of the $(k-1)$ period
+ the interest earned during k-th period
$\mathrm{P}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}-1}+\mathrm{P}_{\mathrm{k}-1} \cdot \mathrm{i} / \mathrm{m}=\mathrm{P}_{\mathrm{k}-1} \cdot(1+\mathrm{i} / \mathrm{m})$
- If 3% annual interest is compounded quarterly, then the interest rate paid per quarter is $0.03 / 4=0.0075$

Compound Interest

- Example: deposit of $\$ 10,000$ at 3% compounded quarterly

For each integer $\mathrm{n} \geq 1, \mathrm{P}_{\mathrm{n}}=$ the amount on deposit after n consecutive quarters.
$\mathrm{P}_{\mathrm{k}}=1.0075 \cdot \mathrm{P}_{\mathrm{k}-1}$
$P_{0}=\$ 10,000$
$\mathrm{P}_{1}=1.0075 \cdot \mathrm{P}_{0}=1.0075 \cdot \$ 10,000=\$ 10,075.00$
$P_{2}=1.0075 \cdot P_{1}=(1.0075) \cdot \$ 10,075.00=\$ 10,150.56$
$\mathrm{P}_{3}=1.0075 \cdot \mathrm{P}_{2} \sim(1.0075) \cdot \$ 10,150.56=\$ 10,226.69$
$\mathrm{P}_{4}=1.0075 \cdot \mathrm{P}_{3} \sim(1.0075) \cdot \$ 10,226.69=\$ 10,303.39$
The annual percentage rate (APR) is the percentage increase in the value of the account over a one-year period:
$\operatorname{APR}=(10303.39-10000) / 10000=0.03034=3.034 \%$

Recursive Definitions of Sum and Product

- The summation from $\mathrm{i}=1$ to n of a sequence is defined using recursion:

$$
\sum_{i=1}^{1} a_{i}=a_{1} \quad \text { and } \quad \sum_{i=1}^{n} a_{i}=\left(\sum_{i=1}^{n-1} a_{i}\right)+a_{n}, \quad \text { if } n>1
$$

- The product from $\mathrm{i}=1$ to n of a sequence is defined using recursion:

$$
\prod_{i=1}^{1} a_{i}=a_{1} \quad \text { and } \prod_{i=1}^{n} a_{i}=\left(\prod_{i=1}^{n-1} a_{i}\right) \cdot a_{n}, \quad \text { if } n>1
$$

Sum of Sums

- For any positive integer n , if $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$ are real numbers, then

$$
\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} .
$$

- Proof by induction

$$
\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} . \quad \leftarrow P(n)
$$

- base step: $\quad \sum_{i=1}^{1}\left(a_{i}+b_{i}\right)=a_{1}+b_{1}=\sum_{i=1}^{1} a_{i}+\sum_{i=1}^{1} b_{i}$
- inductive hypothesis: $\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{k} a_{i}+\sum_{i=1}^{k} b_{i}$.

Sum of Sums

- Cont.: We must show that:

$$
\sum_{i=1}^{k+1}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{k+1} a_{i}+\sum_{i=1}^{k+1} b_{i} . \quad \leftarrow P(k+1)
$$

$$
\sum_{i=1}^{k+1}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)+\left(a_{k+1}+b_{k+1}\right) \quad \text { by definition of } \Sigma
$$

$$
=\left(\sum_{i=1}^{k} a_{i}+\sum_{i=1}^{k} b_{i}\right)+\left(a_{k+1}+b_{k+1}\right) \quad \text { by inductive hypothesis }
$$

$$
=\left(\sum^{k} a_{i}+a_{k+1}\right)+\left(\sum^{k} b_{i}+b_{k+1}\right) \quad \text { by the associative and cummutative }
$$

$$
=\sum_{i=1}^{\substack{k+1}} a_{i}+\sum_{i=1}^{k+1} b_{i}
$$

Q.E.D.

Recursion

- Arithmetic sequence: there is a constant d such that

$$
a_{k}=a_{k-1}+d \text { for all integers } k \geq 1
$$

It follows that, $a_{n}=a_{0}+d * n$ for all integers $n \geq 0$.

- Geometric sequence: there is a constant r such that

$$
a_{k}=r * a_{k-1} \text { for all integers } k \geq 1
$$

It follows that, $\mathrm{a}_{\mathrm{n}}=\mathrm{r}^{\mathrm{n}} * \mathrm{a}_{0}$ for all integers $\mathrm{n} \geq 0$.

Recursion

- A second-order linear homogeneous recurrence relation with constant coefficients is a recurrence relation of the form:

$$
\mathrm{a}_{\mathrm{k}}=\mathrm{A} * \mathrm{a}_{\mathrm{k}-1}+\mathrm{B} * \mathrm{a}_{\mathrm{k}-2}
$$

for all integers $\mathrm{k} \geq$ some fixed integer
where A and B are fixed real numbers with $\mathrm{B}=0$.

Supplemental material on Sequences: Correctness of Algorithms

- A program is correct if it produces the output specified in its documentation for each set of inputs
- initial state (inputs): pre-condition for the algorithm
- final state (outputs): post-condition for the algorithm
- Example:
- Algorithm to compute a product of nonnegative integers

Pre-condition: The input variables m and n are nonnegative integers Post-condition: The output variable p equals $m *_{n}$

Correctness of Algorithms

- The steps of an algorithm are divided into sections with assertions about the current state of algorithm
[Assertion 1: pre-condition for the algorithm]
\{Algorithm statements $\}$
[Assertion 2]
\{Algorithm statements\}
[Assertion k-1]
\{Algorithm statements $\}$
[Assertion k: post-condition for the algorithm]

Correctness of Algorithms

- Loop Invariants: used to prove correctness of a loop with respect to pre- and post-conditions
[Pre-condition for the loop] while (G)
[Statements in the body of the loop]
end while
[Post-condition for the loop]
A loop is correct with respect to its pre- and post-conditions if, and only if, whenever the algorithm variables satisfy the precondition for the loop and the loop terminates after a finite number of steps, the algorithm variables satisfy the postcondition for the loop

Loop Invariant

- A loop invariant $\mathbf{I}(\mathbf{n})$ is a predicate with domain a set of integers, which for each iteration of the loop, (induction) if the predicate is true before the iteration, the it is true after the iteration

If the loop invariant $I(0)$ is true before the first iteration of the loop AND

After a finite number of iterations of the loop, the guard G becomes false AND

The truth of the loop invariant ensures the truth of the post-condition of the loop
then the loop will be correct with respect to it preand post-conditions

Loop Invariant

- Correctness of a Loop to Compute a Product:

A loop to compute the product m *x for a nonnegative integer m and a real number x , without using multiplication
[Pre-condition: m is a nonnegative integer, x is a real number, $\mathrm{i}=0$, and product $=0$] while ($\mathbf{i} \neq \mathbf{m}$)

$$
\begin{aligned}
& \text { product }:=\text { product }+\mathrm{x} \\
& \mathrm{i}:=\mathrm{i}+1
\end{aligned}
$$

end while
[Post-condition: product $=\mathrm{mx}]$
Loop invariant $\mathrm{I}(\mathrm{n})$: $\quad[\mathrm{i}=\mathrm{n}$ and product $=\mathrm{n} * \mathrm{x}]$
Guard G: ifm

Base Property: $I(0)$ is " $i=0$ and product $=0 \cdot x=0$ "
Inductive Property: [If G \wedge I (k) is true before a loop iteration (where $k \geq 0$), then $I(k+1)$ is true after the loop iteration.]

Let k is a nonnegative integer such that $\mathrm{G} \wedge \mathrm{I}(\mathrm{k})$ is true:

$$
\mathrm{i} \neq \mathrm{m} \wedge \mathrm{i}=\mathrm{n} \wedge \text { product }=\mathrm{n} * \mathrm{x}
$$

Since $\mathrm{i} \neq \mathrm{m}$, the guard is passed and

$$
\begin{aligned}
& \text { product }=\text { product }+\mathrm{x}=\mathrm{k} * \mathrm{x}+\mathrm{x}=(\mathrm{k}+1) * \mathrm{x} \\
& \mathrm{i}=\mathrm{i}+1=\mathrm{k}+1
\end{aligned}
$$

$\mathrm{I}(\mathrm{k}+1):(\mathrm{i}=\mathrm{k}+1$ and product $=(\mathrm{k}+1) * \mathrm{x})$ is true
Eventual Falsity of Guard: [After a finite number of iterations of the loop, G becomes false]
After m iterations of the loop: $\mathrm{i}=\mathrm{m}$ and G becomes false

Correctness of the Post-Condition: [If N is the least number of iterations after which G is false and $I(N)$ is true, then the value of the algorithm variables will be as specified in the post-condition of the loop.]
$\mathrm{I}(\mathrm{N})$ is true at the end of the loop: $\mathrm{i}=\mathrm{N}$ and product $=\mathrm{N} * \mathrm{x}$
G becomes false after N iterations, $\mathrm{i}=\mathrm{m}$, so $\mathrm{m}=\mathrm{i}=\mathrm{N}$
The post-condition: the value of product after execution of the loop should be $m x$ is true.

