
CSE 215, Foundations of Computer Science
Stony Brook University

http://www.cs.stonybrook.edu/~cse215

Sequences and Mathematical Induction

(c) Paul Fodor (CS Stony Brook)

 A sequence is a function whose domain is
 all the integers between two given integers

am, am+1, am+2,..., an

 all the integers greater than or equal to a given integer
am, am+1, am+2,...

ak is a term in the sequence
k is the subscript or index
m is the subscript of the initial term
n is the subscript of the last term (m ≤ n)

 An explicit formula or general formula for a sequence is a rule that
shows how the values of ak depend on k

2

Sequences

(c) Paul Fodor (CS Stony Brook)

Sequences
 Examples:

ak = 2k is the sequence 2, 4, 8, 16, 32, 64, 128,...

ak = k/k + 1, for all integers k ≥ 1: bi = i-1/i, for all integers i ≥ 2:

 ak for k ≥ 1 is the same sequence with bi for i ≥ 2
3

Index 1 2 3 4 5 6 7 8

Term 2 4 8 16 32 64 128 256

(c) Paul Fodor (CS Stony Brook)

 An Alternating Sequence:
c j = (−1) j for all integers j ≥ 0:

c0 = (−1)0 = 1
c1 = (−1)1 = −1
c2 = (−1)2 = 1
c3 = (−1)3 = −1
c4 = (−1)4 = 1
c5 = (−1)5 = −1
…

4

Sequences

(c) Paul Fodor (CS Stony Brook)

Find an explicit formula for a sequence
 The initial terms of a sequence are:

 ak is the general term of the sequence, a1 is the first element
 observe that the denominator of each term is a perfect square

 observe that the numerator equals ±1:
 alternating sequence with -1 when k is even:

5

(c) Paul Fodor (CS Stony Brook)

Find an explicit formula for a sequence
 Result sequence:

 Alternative sequence:

6

(c) Paul Fodor (CS Stony Brook)

Summation Notation
 If m and n are integers and m ≤ n, the summation from k

equals m to n of ak, , is the sum of all the terms am,
am+1, am+2,..., an

k is the index of the summation
m is the lower limit of the summation
n is the upper limit of the summation

7

(c) Paul Fodor (CS Stony Brook)

Summation Notation
 Example:

a1 = −2, a2 = −1, a3 = 0, a4 = 1, a5 = 2

8

(c) Paul Fodor (CS Stony Brook)

Summation Notation
 Summation notation with formulas example:

 Changing from Summation Notation to Expanded Form:

9

(c) Paul Fodor (CS Stony Brook)

Summation Notation
 Changing from Expanded Form to Summation Notation:

 The general term of this summation can be expressed as
for integers k from 0 to n

10

(c) Paul Fodor (CS Stony Brook)

Sequences
 Evaluating expression for given limits:

11

(c) Paul Fodor (CS Stony Brook)

Sequences
 Recursive definitions:

 Use of recursion examples:

12

(c) Paul Fodor (CS Stony Brook)

Sequences
 Telescoping Sums:

13

This image cannot currently be displayed.

(c) Paul Fodor (CS Stony Brook)

Product Notation
 The product from k equals m to n of ak , ,for m and n

integers and m ≤ n, is the product of all the terms am, am+1,
am+2,..., an

 Example:

14

(c) Paul Fodor (CS Stony Brook)

Product Notation
 Recursive definition:

15

(c) Paul Fodor (CS Stony Brook)

Sequences
 If am, am+1, am+2,... and bm, bm+1, bm+2,... are sequences of real

numbers:

 Generalized distributive law: if c is any real number:

16

(c) Paul Fodor (CS Stony Brook)

Sequences
 Using Properties of Summation and Product:

ak = k + 1 bk = k − 1

17

(c) Paul Fodor (CS Stony Brook)

Sequences
 Using Properties of Summation and Product:

ak = k + 1 bk = k − 1

18

(c) Paul Fodor (CS Stony Brook)

Sequences
 Change of variable examples:

19

(c) Paul Fodor (CS Stony Brook)

Factorial Notation
 The quantity n factorial, n!, is defined to be the product of all

the integers from 1 to n:
n! = n · (n − 1) · · · 3·2·1

0! is defined to be 1: 0! = 1
0! =1 1! = 1
2! = 2·1 =2 3! = 3·2·1 = 6
4! = 4·3·2·1 = 24 5! = 5·4·3·2·1 = 120
6! = 6·5·4·3·2·1 = 720
7! = 7·6·5·4·3·2·1 = 5,040
8! = 8·7·6·5·4·3·2·1 = 40,320
9! = 9·8·7·6·5·4·3·2·1 = 362,880

20

(c) Paul Fodor (CS Stony Brook)

Factorial Notation
 A recursive definition for factorial is:

 Computing with Factorials:

21

(c) Paul Fodor (CS Stony Brook)

n choose r
 n choose r, , represents the number of subsets of size r

that can be chosen from a set with n elements, for n and r
integers with 0 ≤ r ≤ n

 Examples:

22

(c) Paul Fodor (CS Stony Brook)

n choose r
 4 choose 2 = 4! / (2!*2!) = 6

 Example: Let S = {1,2,3,4}
 The 6 subsets of S with 2 elements are:

{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}

23

(c) Paul Fodor (CS Stony Brook)

Sequences in Computer Programming
 Arrays: int[] a = new int[50];

24

(c) Paul Fodor (CS Stony Brook)

Example Algorithm with Arrays
 Convert from Base 10 to Base 2:

38 = 19·2 + 0
= (9·2 + 1) ·2 + 0 = 9·22 + 1·2 + 0
= (4·2 + 1) ·22 + 1·2 + 0 = 4·23 + 1·22 + 1·2 + 0
= (2·2 + 0) ·23 + 1·22 + 1·2 + 0
= 2·24 + 0·23 + 1·22 + 1·2 + 0
= (1·2 + 0) ·24 + 0·23 + 1·22 + 1·2 + 0
= 1·25 + 0·24 + 0·23 + 1·22 + 1·2 + 0

25

(c) Paul Fodor (CS Stony Brook)

Convert from Base 10 to Base 2
Input: n [a nonnegative integer]
Algorithm Body:
q := n, i := 0
while (i = 0 or q = 0)

r[i] := q mod 2
q := q div 2
i := i + 1

end while
Output: r[0], r[1], r[2], . . . , r[i − 1] [a sequence of integers]

26

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
 The Principle of Mathematical Induction:
Let P(n) be a property that is defined for integers n, and let a be a

fixed integer. Suppose the following two statements are true:
1. P(a) is true.
2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true.
Then the statement “for all integers n ≥ a, P(n)” is true.
That is:

P(a) is true.
P(k) P(k + 1), k ≥ a

P(n) is true, n ≥ a

27

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
 The Method of Proof by Mathematical Induction:
To prove a statement of the form:

“For all integers n≥a, a property P(n) is true.”
Step 1 (base step): Show that P(a) is true.
Step 2 (inductive step): Show that for all integers k ≥ a, if P(k)

is true then P(k + 1) is true:
 Inductive hypothesis: suppose that P(k) is true, where k is

any particular but arbitrarily chosen integer with k ≥ a.
 Then show that P(k + 1) is true.

28

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
 Example: For all integers n ≥ 8, n¢ can be obtained using 3¢ and 5¢ coins:
Base step: P(8) is true because 8¢ can = one 3¢ coin and one 5¢ coin
Inductive step: for all integers k ≥ 8, if P(k) is true then P(k+1) is also true

Inductive hypothesis: suppose that k is any integer with k ≥ 8:
P(k): k¢ can be obtained using 3¢ and 5¢ coins
We must show: P(k+1)is true:(k+1)¢ can be obtained using 3¢ and 5¢ coins

Case 1 (There is a 5¢ coin among those used to make up the k¢): replace the
5¢ coin by two 3¢ coins; the result will be (k + 1)¢.

Case 2 (There is not a 5¢ coin among those used to make up the k¢): because
k≥ 8, at least three 3¢ coins must have been used. Remove three 3¢ coins
(9¢) and replace them by two 5¢ coins (10¢); the result will be (k + 1)¢

29

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
 Example: The Sum of the First n Integers:

Base step: P(1):
Inductive step: P(k) is true, for a particular but arbitrarily

chosen integer k ≥ 1:

Prove P(k+1):

30

(c) Paul Fodor (CS Stony Brook)

The Sum of the First n Integers
 A formula in closed form represents a sum with a variable

number of terms without an ellipsis or a summation symbol.
 Applying the Formula for the Sum of the First n Integers:

31

(c) Paul Fodor (CS Stony Brook)

Geometric sequence
 Each term is obtained from the preceding one by multiplying

by a constant factor: if the first term is 1 and the constant
factor is r: 1, r, r2, r3,..., rn,...

Base step: Prove P(0): 1 = 1 (Proved)

Inductive hypothesis:Suppose P(k) is true:for k≥0:

Prove P(k + 1):

32

(c) Paul Fodor (CS Stony Brook)

Geometric sequence

33

(c) Paul Fodor (CS Stony Brook)

Geometric sequence
 Examples:

34

(c) Paul Fodor (CS Stony Brook)

 Proving a Divisibility Property:
P(n): for all integers n ≥ 0, 22n − 1 is divisible by 3

Basic step P(0): 22·0 − 1 = 0 is divisible by 3
Induction hypothesis: Suppose P(k) is True: 22k − 1 is divisible by 3
Prove: P(k+1): 22(k+1) − 1 is divisible by 3 ?

35

Mathematical Induction

(c) Paul Fodor (CS Stony Brook)

 Proving a Divisibility Property:

22k + r is an integer because integers are closed under
multiplication and summation

so, 22(k+1) − 1 is divisible by 3
36

Mathematical Induction

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
 Proving an Inequality:

P(n): for all integers n ≥ 3, 2n + 1 < 2n

Base step: Prove P(3): 2·3 + 1 < 23

7 < 8 (True)
Inductive step: Suppose that for k ≥ 3, P(k) is True: 2k + 1 < 2k

Show: P(k+1): 2(k+1) + 1 < 2k+1

That is: 2k + 3 < 2k+1

2k + 3 = (2k + 1) + 2 < 2k + 2k = 2k+1

because 2k + 1 < 2k by the inductive hypothesis

and because 2 < 2k for all integers k ≥ 3

37

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
 A sequence: a1 = 2 and ak = 5ak-1 for all integers k ≥ 2
 Prove: an = 2·5n −1

Proof by induction: P(n): an = 2·5n −1 for all integers n ≥ 1
Base step: P(1): a1 = 2·51 −1 = 2·50 = 2·1 = 2
Inductive hypothesis: assume P(k) is true: ak = 2·5k −1

Show: P(k+1): ak+1 = 2·5(k+1) −1 = 2·5k ?
ak+1 = 5a(k+1)-1 by definition of a1, a2, a3,...

= 5·ak since (k + 1) − 1 = k
= 5·2·5k −1 by inductive hypothesis
= 2·(5·5k −1) by regrouping
= 2·5k by the laws of exponents

38

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
 A Problem with Trominoes (Tetris):

For any integer n ≥ 1, if one square is removed from a 2n × 2n

checkerboard, the remaining squares can be completely
covered by L-shaped trominoes

Base case: a 2 × 2 checkerboard can be
covered by 1 L-shaped tromino

39

(c) Paul Fodor (CS Stony Brook)

Mathematical Induction
Inductive hypothesis for k ≥ 1: P(k): if one square is removed

from a 2k × 2k checkerboard, the remaining squares can be
completely covered by L-shaped trominoes

P(k+1):

40

if one square is removed from a 2k+1 × 2k+1

checkerboard, the remaining squares can be
completely covered by L-shaped trominoes

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 The Principle of Strong Mathematical Induction (or the

principle of complete induction):
P(n) is a property that is defined for integers n, and a and b are

fixed integers with a ≤ b.
 Base step: P(a), P(a + 1), . . . , and P(b) are all true
 Inductive step: For any integer k ≥ b, if P(i) is true for all

integers i from a through k (inductive hypothesis),
then P(k + 1) is true

Then the statement for all integers n ≥ a, P(n) is true.

That is: P(a), P(a+1),…, P(b-1), P(b) are true.
k ≥ b, (a ≤ i ≤ k, P(i)) P(k + 1)

P(n) is true, n ≥ a
41

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction

Any statement that can be proved with
ordinary mathematical induction can be
proved with strong mathematical induction
(and vice versa).

42

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 Divisibility by a Prime:
Any integer greater than 1 is divisible by a prime number

P(n): n is divisible by a prime number
Base case: P(2): 2 is divisible by a prime number

2 is divisible by 2 and 2 is a prime number
Inductive hypothesis: Let k be any integer with k ≥ 2

P(i): i is divisible by a prime number for all integers
P(i) is true for all integers i from 2 through k

Show: P(k + 1): k + 1 is divisible by a prime number

43

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 Case 1 (k + 1 is prime): In this case k + 1 is divisible by itself

(a prime number): k+1 = 1*(k+1)

 Case 2 (k + 1 is not prime): k + 1 = a*b
where a and b are integers with 1<a<k+1 and 1<b<k+1.
From k + 1 = a*b, k + 1 is divisible by a
By inductive hypothesis, a is divisible by a prime number p
By transitivity of divisibility, k + 1 is divisible by the prime

number p.
Therefore, k+1 is divisible by a prime number p.

44

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 A sequence s0, s1, s2,...
s0=0, s1=4, sk=6sk-1−5sk-2 for all integers k ≥ 2

s2 = 6s1 − 5s0 = 6·4 − 5·0 = 24,
s3 = 6s2 − 5s1 = 6·24 − 5·4 = 144 − 20 = 124

Prove: sn=5n−1
Base step P(0) and P(1) are true:

P(0): s0=50−1 = 1 − 1 = 0
P(1): s1= 51−1 = 5 − 1 = 4

Inductive step: Let k be any integer with k ≥ 1,
si=5i−1 for all integers i with 0 ≤ i ≤ k

45

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 We must show P(k + 1) is true: sk+1 = 5k+1 − 1
sk+1= 6sk − 5sk-1 by definition of s0, s1, s2,...

= 6(5k − 1) − 5(5k-1 − 1) by definition hypothesis
= 6·5k − 6 − 5k + 5 by multiplying out and applying

a law of exponents
= (6 − 1)5k − 1 by factoring out 6 and arithmetic
= 5·5k − 1 by arithmetic
= 5k+1 − 1 by applying a law of exponents

46

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 The Number of Multiplications Needed to Multiply

n Numbers is (n-1)
 P(n): If x1, x2,..., xn are n numbers, then no matter how

parentheses are inserted into their product, the number of
multiplications used to compute the product is n − 1.

Base case P(1): The number of multiplications needed to
compute the product of x1 is 1 − 1 = 0

 Inductive hypothesis: Let k by any integer with k ≥ 1 and for
all integers i from 1 through k, if x1, x2,..., xi are numbers,
then no matter how parentheses are inserted into their
product, the number of multiplications used to compute the
product is i − 1.

47

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
We must show: P(k + 1): If x1, x2,..., xk+1 are k + 1

numbers, then no matter how parentheses are inserted into
their product, the number of multiplications used to
compute the product is (k + 1) − 1 = k

When parentheses are inserted in order to compute the
product x1 x2... xk+1, some multiplication is the final one: let
L be the product of the left-hand l factors and R be the
product of the right-hand r factors: l + r = k + 1

By inductive hypothesis, evaluating L takes l − 1 multiplications
and evaluating R takes r − 1 multiplications

(l − 1) + (r − 1) + 1 = (l + r) − 1 = (k + 1) − 1 = k

48

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 Existence and Uniqueness of Binary Integer

Representations: any positive integer n has a unique
representation in the form

n = cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0

where r is a nonnegative integer, cr=1, and cj=0 or 1 for j=0,..., r−1
Proof of Existence:
Base step: P(1): 1 = c0 ·20 where c0 = 1, r=0.
Inductive hypothesis: k ≥ 1 is an integer and for all integers i from 1

through k: P(i): i = cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0

We must show that k + 1 can be written in the required form.

49

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 Case 1 (k + 1 is even): (k + 1)/2 is an integer
By inductive hypothesis:

(k + 1)/2 =cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0

k + 1 =cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·2
=cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·21 +0·20

 Case 2 (k + 1 is odd): k is even, so k/2 is an integer
By inductive hypothesis:

k/2 =cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0

k =cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·2
k + 1 =cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·2 +1

=cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·21 +1·20
50

(c) Paul Fodor (CS Stony Brook)

Strong Mathematical Induction
 Proof of Uniqueness:
Proof by contradiction: Suppose that there is an integer n with two

different representations as a sum of nonnegative integer powers of 2:
2r + cr-1·2r-1 +···+ c1·2 + c0 = 2s + ds-1·2s-1 +···+ d1·2 + d0

r and s are nonnegative integers, and each ci and each di equal 0 or 1
Assume: r < s

By geometric sequence:
2r + cr-1·2r-1 +···+ c1·2 + c0 ≤ 2r + 2r-1 +···+ 2 + 1 = 2r+1 − 1 < 2s

2r + cr-1·2r-1 +···+ c1·2 + c0 < 2s + ds-1·2s-1 +···+ d1·2 + d0

Contradiction

51

(c) Paul Fodor (CS Stony Brook)

Recursion
 A sequence can be defined in 3 ways:
 enumeration: -2,3,-4,5,...
 general pattern: an=(-1)n(n+1), for all integers n ≥ 1
 recursion: a1=-2 and an=(-1)n-1 an-1 +(-1)n

 define one or more initial values for the sequence AND
 define each later term in the sequence by reference to earlier

terms

 A recurrence relation for a sequence a0, a1, a2,... is a formula
that relates each term ak to certain of its predecessors ak-1, ak-2,...,
ak-i, where i is an integer with k−i ≥ 0

 The initial conditions for a recurrence relation specify the
values of a0, a1, a2,..., ai-1, if i is a fixed integer, OR
a0, a1,..., am, where m is an integer with m ≥ 0, if i depends on k.

52

(c) Paul Fodor (CS Stony Brook)

Recursion
 Computing Terms of a Recursively Defined Sequence:
 Example:
Initial conditions: c0 = 1 and c1 = 2
Recurrence relation: ck = ck-1 + k * ck-2 + 1, for all integers k≥2
c2 = c1 + 2 c0 + 1 by substituting k = 2 into the recurrence relation

= 2 + 2·1 + 1 since c1 = 2 and c0 = 1 by the initial conditions
= 5

c3 = c2 + 3 c1 + 1 by substituting k = 3 into the recurrence relation
= 5 + 3·2 + 1 since c2 = 5 and c1 = 2
= 12

c4 = c3 + 4 c2 + 1 by substituting k = 4 into the recurrence relation
= 12 + 4·5 + 1 since c3 = 12 and c2 = 5
= 33

53

(c) Paul Fodor (CS Stony Brook)

Recursion
 Writing a Recurrence Relation in More Than One Way:
 Example:
Initial condition: s0 = 1
Recurrence relation 1: sk = 3sk-1 - 1, for all integers k≥1
Recurrence relation 2: sk+1 = 3sk - 1, for all integers k≥0

54

(c) Paul Fodor (CS Stony Brook)

Recursion
 Sequences That Satisfy the Same Recurrence Relation:
 Example:

Initial conditions: a1 = 2 and b1 = 1
Recurrence relations: ak = 3ak-1 and bk = 3bk-1 for all integers k≥2

a2 = 3a1 = 3·2 = 6 b2 = 3b1 = 3·1 = 3
a3 = 3a2 = 3·6 = 18 b3 = 3b2 = 3·3 = 9
a4 = 3a3 = 3·18 = 54 b4 = 3b3 = 3·9 = 27

55

(c) Paul Fodor (CS Stony Brook)

Recursion
 Fibonacci numbers:

1. We have one pair of rabbits (male and female) at the beginning of a year.
2. Rabbit pairs are not fertile during their first month of life but thereafter give

birth to one new male&female pair at the end of every month.

56

(c) Paul Fodor (CS Stony Brook)

Recursion
 Fibonacci numbers:

The initial number of rabbit pairs: F0 = 1
Fn : the number of rabbit pairs at the end of month n, for each integer n ≥ 1
Fn = Fn-1 + Fn-2 , for all integers k ≥ 2
F1 = 1 , because the first pair of rabbits is not fertile until the second month
How many rabbit pairs are at the end of one year?
January 1st: F0 = 1 September 1st : F8=F7+F6=21+13=34
February 1st: F1 = 1 October 1st : F9=F8+F7=34+21=55
March 1st : F2 = F1 + F0 = 1+1= 2 November 1st : F10=F9+F8=55+34=89
April 1st : F3 = F2 + F1 = 2+1= 3 December 1st : F11=F10+F9=89+55=144
May 1st : F4 = F3 + F2 = 3+2= 5 January 1st : F12=F11+F10=144+89=233
June 1st : F5 = F4 + F3 = 5+3= 8
July 1st : F6 = F5 + F4 = 8+5= 13
August 1st : F7 = F6 + F5 = 13+8= 21

57

(c) Paul Fodor (CS Stony Brook)

Recursion
 Compound Interest:
 A deposit of $100,000 in a bank account earning 4% interest

compounded annually:
the amount in the account at the end of any particular year =

the amount in the account at the end of the previous year +
the interest earned on the account during the year

= the amount in the account at the end of the previous year +
0.04 · the amount in the account at the end of the previous year

A0 = $100,000
Ak = Ak-1 + (0.04) · Ak-1 = 1.04 · Ak-1 , for each integer k ≥ 1

A1 = 1.04 · A0 = $104,000
A2 = 1.04 · A1 = 1.04 · $104,000 = $108, 160
...

58

(c) Paul Fodor (CS Stony Brook)

Recursion
 Compound Interest with Compounding Several

Times a Year:
 An annual interest rate of i is compounded m times per year:
the interest rate paid per each period is i/m
Pk is the sum of the the amount at the end of the (k − 1) period

+ the interest earned during k-th period
Pk = Pk-1 + Pk-1 · i/m = Pk-1 · (1+ i/m)
 If 3% annual interest is compounded quarterly, then the interest

rate paid per quarter is 0.03/4 = 0.0075

59

(c) Paul Fodor (CS Stony Brook)

Compound Interest
 Example: deposit of $10,000 at 3% compounded quarterly
For each integer n ≥ 1, Pn = the amount on deposit after n

consecutive quarters.
Pk = 1.0075 · Pk-1

P0 = $10,000
P1 = 1.0075· P0 = 1.0075 · $10,000 = $10, 075.00
P2 = 1.0075· P1 = (1.0075) ·$10, 075.00 = $10, 150.56
P3 = 1.0075· P2 ~ (1.0075) ·$10, 150.56 = $10, 226.69
P4 = 1.0075· P3 ~ (1.0075) ·$10, 226.69 = $10, 303.39
The annual percentage rate (APR) is the percentage increase in the

value of the account over a one-year period:
APR = (10303.39 − 10000)/ 10000 = 0.03034 = 3.034%

60

(c) Paul Fodor (CS Stony Brook)

Recursive Definitions of Sum and Product
 The summation from i=1 to n of a sequence is defined using

recursion:

 The product from i=1 to n of a sequence is defined using
recursion:

61

(c) Paul Fodor (CS Stony Brook)

Sum of Sums
 For any positive integer n, if a1,a2,...,an and b1,b2,...,bn are

real numbers, then

 Proof by induction

 base step:

 inductive hypothesis:

62

(c) Paul Fodor (CS Stony Brook)

Sum of Sums
 Cont.: We must show that:

63

Q.E.D.

(c) Paul Fodor (CS Stony Brook)

Recursion
 Arithmetic sequence: there is a constant d such that

ak = ak−1 + d for all integers k ≥ 1
It follows that, an = a0 + d*n for all integers n ≥ 0.

 Geometric sequence: there is a constant r such that
ak = r * ak−1 for all integers k ≥ 1

It follows that, an = rn * a0 for all integers n ≥ 0.

64

(c) Paul Fodor (CS Stony Brook)

Recursion
 A second-order linear homogeneous recurrence

relation with constant coefficients is a recurrence relation
of the form:

ak = A * ak-1 + B * ak-2

for all integers k ≥ some fixed integer
where A and B are fixed real numbers with B = 0.

65

(c) Paul Fodor (CS Stony Brook)

Supplemental material on Sequences:
Correctness of Algorithms

 A program is correct if it produces the output specified in its
documentation for each set of inputs
 initial state (inputs): pre-condition for the algorithm
 final state (outputs): post-condition for the algorithm

 Example:
 Algorithm to compute a product of nonnegative integers
Pre-condition: The input variables m and n are nonnegative integers
Post-condition: The output variable p equals m*n

66

(c) Paul Fodor (CS Stony Brook)

Correctness of Algorithms
 The steps of an algorithm are divided into sections with

assertions about the current state of algorithm
[Assertion 1: pre-condition for the algorithm]
{Algorithm statements}
[Assertion 2]
{Algorithm statements}
...
[Assertion k − 1]
{Algorithm statements}
[Assertion k: post-condition for the algorithm]

67

(c) Paul Fodor (CS Stony Brook)

Correctness of Algorithms
 Loop Invariants: used to prove correctness of a loop with

respect to pre- and post-conditions
[Pre-condition for the loop]
while (G)

[Statements in the body of the loop]
end while
[Post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions if,
and only if, whenever the algorithm variables satisfy the pre-
condition for the loop and the loop terminates after a finite
number of steps, the algorithm variables satisfy the post-
condition for the loop

68

(c) Paul Fodor (CS Stony Brook)

Loop Invariant
 A loop invariant I(n) is a predicate with domain a set of

integers, which for each iteration of the loop, (induction)
if the predicate is true before the iteration, the it is true after
the iteration

If the loop invariant I(0) is true before the first
iteration of the loop AND

After a finite number of iterations of the loop, the guard G
becomes false AND

The truth of the loop invariant ensures the truth of the
post-condition of the loop

then the loop will be correct with respect to it pre-
and post-conditions

69

(c) Paul Fodor (CS Stony Brook)

Loop Invariant
 Correctness of a Loop to Compute a Product:
A loop to compute the product m*x for a nonnegative integer

m and a real number x, without using multiplication
[Pre-condition: m is a nonnegative integer, x is a real number, i = 0, and product = 0]

while (i ≠ m)

product := product + x

i := i + 1

end while

[Post-condition: product = mx]

Loop invariant I(n): [i = n and product = n*x]
Guard G: i ≠ m

70

(c) Paul Fodor (CS Stony Brook)

Base Property: I (0) is “i = 0 and product = 0· x = 0”
Inductive Property: [If G I (k) is true before a loop iteration

(where k ≥ 0), then I (k+1) is true after the loop iteration.]
Let k is a nonnegative integer such that G I (k) is true:

i ≠ m i = n product = n*x
Since i ≠ m, the guard is passed and

product = product + x = k*x + x = (k + 1)*x
i = i + 1 = k + 1

I(k + 1): (i = k + 1 and product = (k + 1)*x) is true
Eventual Falsity of Guard: [After a finite number of iterations

of the loop, G becomes false]
After m iterations of the loop: i = m and G becomes false

71

(c) Paul Fodor (CS Stony Brook)

Correctness of the Post-Condition: [If N is the least number of
iterations after which G is false and I (N) is true, then the
value of the algorithm variables will be as specified in the
post-condition of the loop.]

I(N) is true at the end of the loop: i = N and product = N*x
G becomes false after N iterations, i = m, so m = i = N
The post-condition: the value of product after execution of the loop
should be mx is true.

72

