
CSE 114, Computer Science 1

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

Binary I/O

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Motivation
 Data stored in a text files is represented in human-

readable form

 Data stored in a binary files is represented in binary

form

The advantage of binary files is that they are more

efficient to process than text files (e.g., the number

123 is smaller than the text "123")

But, people cannot read binary files
 Binary files are designed to be read by programs

 Java bytecode classes are stored in binary files and are read

by the JVM

2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

How is I/O Handled in Java?
 A File object encapsulates the properties of a file or a path, but

does not contain the methods for reading/writing data from/to a file

 In order to perform I/O, you need to create objects using

appropriate Java I/O classes: Scanner and PrintWriter:

3

PrintWriter output = new PrintWriter("temp.txt");

output.println("Java 101");

output.close();

Scanner input = new Scanner(new File("temp.txt"));

System.out.println(input.nextLine());

Program

Input object

created from an

input class

Output object

created from an

output class

Input stream

Output stream

File

File
01011…1001

11001…1011

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Text Files vs. Binary Files
A text file consists of a sequence of characters

For example, the decimal integer 199 is stored
as the sequence of three characters: '1', '9', '9' in
a text file

A binary file consists of a sequence of bits
For example, the decimal integer 199 is stored as a

binary value for the hexadecimal number C7 in a
binary file, because decimal 199 equals to hex C7

4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Text I/O program

The Unicode of

the character
Encoding/

Decoding

 Binary I/O program

A byte is read/written (b)

(a)

e.g.

,
"199"

The encoding of the character

is stored in the file

0x31

e.g.

,
199 00110111

00110001 00111001 00111001

 0x39 0x39

0xC7

The same byte in the file

5

 Text I/O requires encoding and decoding: the JVM converts a Unicode

to a file specific encoding when writing a character and coverts a file

specific encoding to a Unicode when reading a character

 Binary I/O does not require conversions: when you write a byte to a file,

the original byte is copied into the file, and when you read a byte from a

file, the exact byte in the file is returned

Text Files vs. Binary Files

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Binary I/O Classes

6

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

• The abstract InputStream is the root class for reading binary data

• The abstract OutputStream is the root class for writing binary data

• The design of the Java I/O classes is a good example of applying

inheritance, where common operations are generalized in

superclasses, and subclasses provide specialized operations.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,
len: int): int

+available(): int

+close(): void

+skip(n: long): long

+markSupported(): boolean

+mark(readlimit: int): void

+reset(): void

Reads the next byte of data from the input stream. The value byte is returned as

an int value in the range 0 to 255. If no byte is available because the end of

the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the

actual number of bytes read. Returns -1 at the end of the stream.

Reads bytes from the input stream and stores into b[off], b[off+1], …,
b[off+len-1]. The actual number of bytes read is returned. Returns -1 at the

end of the stream.

Returns the number of bytes that can be read from the input stream.

Closes this input stream and releases any system resources associated with the

stream.

Skips over and discards n bytes of data from this input stream. The actual
number of bytes skipped is returned.

Tests if this input stream supports the mark and reset methods.

Marks the current position in this input stream.

Repositions this stream to the position at the time the mark method was last

called on this input stream.

InputStream

7

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

OutputStream

8

java.io.OutputStream

+write(int b): void

+write(b: byte[]): void

+write(b: byte[], off: int,

len: int): void

+close(): void

+flush(): void

Writes the specified byte to this output stream. The parameter b is an int value.
(byte)b is written to the output stream.

Writes all the bytes in array b to the output stream.

Writes b[off], b[off+1], …, b[off+len-1] into the output stream.

Closes this input stream and releases any system resources associated with the

stream.

Flushes this output stream and forces any buffered output bytes to be written out.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FileInputStream/FileOutputStream
 FileInputStream/FileOutputStream are for

reading/writing bytes from/to files.

 All the methods in FileInputStream/FileOuptputStream are
inherited from its superclasses

9

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FileInputStream
To construct a FileInputStream, use the

following constructors:

public FileInputStream(String filename)

public FileInputStream(File file)

 A java.io.FileNotFoundException would

occur if you attempt to create a FileInputStream

with a nonexistent file

10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FileOutputStream
 To construct a FileOutputStream, use the following

constructors:
public FileOutputStream(String filename)

public FileOutputStream(File file)

public FileOutputStream(String filename,

boolean append)

public FileOutputStream(File file,

boolean append)

 If the file does not exist, a new file would be created

 If the file already exists, the first two constructors would delete the current
contents in the file

 To retain the current content and append new data into the file, use the last
two constructors by passing true to the append parameter

11

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
12

import java.io.*;

public class TestFileStream {

public static void main(String[] args) throws IOException {

// Create an output stream for the file

try (FileOutputStream output =

new FileOutputStream("temp.dat");) {

// Output values to the file

for (int i = 1; i <= 10; i++) {

output.write(i);

}

}

// Create an input stream for the file

try (FileInputStream input =

new FileInputStream("temp.dat");){

// Read values from the file

int value;

while ((value = input.read()) != -1) {

System.out.print(value + " ");

}

}

}

} Run: 1 2 3 4 5 6 7 8 9 10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

FilterInputStream/FilterOutputStream
 Filter streams are streams that filter bytes for some purpose

 The basic byte input stream provides a read method that can only be used for
reading bytes

 If you want to read integers, doubles, or strings, you need a filter class to wrap the
byte input stream

 Using a filter class enables you to read integers, doubles, and strings instead of
bytes and characters

 FilterInputStream and FilterOutputStream are the base
classes for filtering data
 When you need to process primitive numeric types, use
DataInputStream and DataOutputStream to filter bytes

13

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

DataInputStream/DataOutputStream
 DataInputStream reads bytes from the stream and converts them

into appropriate primitive type values or strings

 DataOutputStream converts primitive type values or strings into
bytes and output the bytes to the stream

14

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

DataInputStream

15

DataInputStream extends FilterInputStream and

implements the DataInput interface

java.io.DataInput

+readBoolean(): boolean

+readByte(): byte

+readChar(): char

+readFloat(): float

+readDouble(): float

+readInt(): int

+readLong(): long

+readShort(): short

+readLine(): String

+readUTF(): String

Reads a Boolean from the input stream.

Reads a byte from the input stream.

Reads a character from the input stream.

Reads a float from the input stream.

Reads a double from the input stream.

Reads an int from the input stream.

Reads a long from the input stream.

Reads a short from the input stream.

Reads a line of characters from input.

Reads a string in UTF format.

InputStream

FilterInputStream

DataInputStream

+DataInputStream(

in: InputStream)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

DataOutputStream

16

DataOutputStream extends FilterOutputStream and

implements the DataOutput interface

java.io.DataOutput

+writeBoolean(b: Boolean): void

+writeByte(v: int): void

+writeBytes(s: String): void

+writeChar(c: char): void

+writeChars(s: String): void

+writeFloat(v: float): void

+writeDouble(v: float): void

+writeInt(v: int): void

+writeLong(v: long): void

+writeShort(v: short): void

+writeUTF(s: String): void

Writes a Boolean to the output stream.

Writes to the output stream the eight low-order bits

of the argument v.

Writes the lower byte of the characters in a string to
the output stream.

Writes a character (composed of two bytes) to the

output stream.

Writes every character in the string s, to the output

stream, in order, two bytes per character.

Writes a float value to the output stream.

Writes a double value to the output stream.

Writes an int value to the output stream.

Writes a long value to the output stream.

Writes a short value to the output stream.

Writes two bytes of length information to the output

stream, followed by the UTF representation of
every character in the string s.

OutputStream

FilterOutputStream

DataOutputStream

+DataOutputStream(

out: OutputStream)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Characters and Strings in Binary I/O
 Java uses Unicode (UTF-16) and consists of two bytes

 The writeChar(char c) method writes the Unicode of character
c to the output

 The writeChars(String s) method writes the Unicode for
each character in the string s to the output

 Most operating systems use ASCII since most applications need
only the ASCII character set and it is a waste to represent an 8-bit
ASCII character as a 16-bit Unicode character

 The UTF-8 is an alternative scheme that stores a character
using 1, 2, or 3 bytes
 ASCII values (less than 0x7F) are coded in one byte

 Unicode values less than 0x7FF are coded in two bytes

 Other Unicode values are coded in three bytes

17

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Using DataInputStream/DataOutputStream
 Data streams are used as wrappers on existing input and output

streams to filter data in the original stream

 They are created using the following constructors:

public DataInputStream(InputStream instream)

public DataOutputStream(OutputStream

outstream)

 The statements given below create data streams: the first
statement creates an input stream for file in.dat; the second
statement creates an output stream for file out.dat.
DataInputStream infile =

new DataInputStream(new FileInputStream("in.dat"));

DataOutputStream outfile =

new DataOutputStream(new FileOutputStream("out.dat"));

18

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
19

import java.io.*;

public class TestDataStream {

public static void main(String[] args) throws IOException {

// Create an output stream for file temp.dat

try (DataOutputStream output =

new DataOutputStream(new FileOutputStream("temp.dat"));) {

// Write student test scores to the file

output.writeUTF("John");

output.writeDouble(85.5);

output.writeUTF("Jim");

output.writeDouble(185.5);

output.writeUTF("George");

output.writeDouble(105.25);

}

// Create an input stream for file temp.dat

try (DataInputStream input =

new DataInputStream(new FileInputStream("temp.dat"));) {

// Read student test scores from the file

System.out.println(input.readUTF() + " " + input.readDouble());

System.out.println(input.readUTF() + " " + input.readDouble());

System.out.println(input.readUTF() + " " + input.readDouble());

}

}

}

Run:

John 85.5

Jim 185.5

George 105.25

CAUTION: You have to read the data in the same order and same format in which they are
stored. For example, since names are written in UTF-8 using writeUTF, you must read
names using readUTF.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Checking End of File

 If you keep reading data at the end of a stream, an
EOFException would occur.
You can use input.available() to check it

input.available() == 0 indicates that it
is the end of a file

20

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
21

import java.io.*;

public class DetectEndOfFile {

public static void main(String[] args) {

try {

try (DataOutputStream output =

new DataOutputStream(new FileOutputStream("test.dat"))) {

output.writeDouble(4.5);

output.writeDouble(43.25);

output.writeDouble(3.2);

}

try (DataInputStream input =

new DataInputStream(new FileInputStream("test.dat"))) {

while (true) // or input.available() == 0

System.out.println(input.readDouble());

}

} catch (EOFException ex) {

System.out.println("All data were read");

} catch (IOException ex) {

ex.printStackTrace();

}

}

}

Run:

4.5

43.25

3.2

All data were read

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

BufferedInputStream/BufferedOutputStream

 Using buffers to speed up I/O:

22

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

BufferedInputStream/BufferedOutputStream does not contain new methods: all the

methods BufferedInputStream/BufferedOutputStream are inherited from the
InputStream/OutputStream classes

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Constructing BufferedInputStream/

BufferedOutputStream
 Create a BufferedInputStream:

public BufferedInputStream(InputStream in)

public BufferedInputStream(InputStream in, int

bufferSize)

 Create a BufferedOutputStream:

public BufferedOutputStream(OutputStream out)

public BufferedOutputStream(OutputStreamr out,

int bufferSize)

23

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Copy File

24

import java.io.*;

public class CopyFile {

/**

* Main method

*

* @param args[0] for sourcefile

* @param args[1] for target file

*/

public static void main(String[] args) throws IOException {

// Check command-line parameter usage

if (args.length != 2) {

System.out.println(

"Usage: java Copy sourceFile targetfile");

System.exit(1);

}

// Check if source file exists

File sourceFile = new File(args[0]);

if (!sourceFile.exists()) {

System.out.println("Source file " + args[0]

+ " does not exist");

System.exit(2);

}

// Check if target file exists

File targetFile = new File(args[1]);

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Copy File

25

if (targetFile.exists()) {

System.out.println("Target file " + args[1]

+ " already exists");

System.exit(3);

}

try (

// Create an input stream

BufferedInputStream input

= new BufferedInputStream(new FileInputStream(sourceFile));

// Create an output stream

BufferedOutputStream output

= new BufferedOutputStream(new FileOutputStream(targetFile));) {

// Continuously read a byte from input and write it to output

int r, numberOfBytesCopied = 0;

while ((r = input.read()) != -1) {

output.write((byte) r);

numberOfBytesCopied++;

}

// Display the file size

System.out.println(numberOfBytesCopied + " bytes copied");

}

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Object I/O
 DataInputStream/DataOutputStream enables

you to perform I/O for primitive type values and strings.

 Finaly, ObjectInputStream/ObjectOutputStream
enables you to perform I/O for objects in addition for primitive
type values and strings

26

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

ObjectInputStream
 ObjectInputStream extends InputStream and

implements ObjectInput and
ObjectStreamConstants

27

java.io.ObjectInput

+readObject(): Object

Reads an object.

java.io.InputStream

java.io.ObjectInputStream

+ObjectInputStream(in: InputStream)

java.io.DataInput

ObjectStreamConstants

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

ObjectOutputStream
 ObjectOutputStream extends OutputStream

and implements ObjectOutput and
ObjectStreamConstants:

28

java.io.ObjectOutput

+writeObject(o: Object): void

Writes an object.

java.io.OutputStream

java.io.ObjectOutputStream

+ObjectOutputStream(out: OutputStream)

java.io.DataOutput

ObjectStreamConstants

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Object Streams
 You may wrap an

ObjectInputStream/ObjectOutputStream on any

InputStream/OutputStream using the following

constructors:

// Create an ObjectInputStream

public ObjectInputStream(InputStream in)

// Create an ObjectOutputStream

public ObjectOutputStream(OutputStream out)

29

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
30

import java.io.*;

public class TestObjectInputOutputStream {

public static void main(String[] args) throws

ClassNotFoundException, IOException {

try (// Create an output stream for file object.dat

ObjectOutputStream output

= new ObjectOutputStream(new FileOutputStream("object.dat"));) {

// Write a string, double value, and object to the file

output.writeUTF("John");

output.writeDouble(85.5);

output.writeObject(new java.util.Date());

}

try (// Create an input stream for file object.dat

ObjectInputStream input

= new ObjectInputStream(new FileInputStream("object.dat"));) {

// Read a string, double value, and object from the file

String name = input.readUTF();

double score = input.readDouble();

java.util.Date date = (java.util.Date) (input.readObject());

System.out.println(name + " " + score + " " + date);

}

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The Serializable Interface
 Not all objects can be written to an output stream!

 Objects that can be written to an object stream is said to be

serializable: a serializable object is an instance of the

java.io.Serializable interface (so the class of a

serializable object must implement Serializable)

 The Serializable interface is a marker interface: it has no

methods, so you don't need to add additional code in your class that

implements Serializable

 Implementing this interface enables the Java serialization

mechanism to automate the process of storing the

objects and arrays

31

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The transient Keyword
 An object instance of Serializable may contains

non-serializable instance data fields
 To enable the object to be serialized, you can use the transient

keyword to mark these data fields to tell the JVM to ignore

these fields when writing the object to an object stream:
public class Foo implements java.io.Serializable {

private int v1;

private static double v2;

private transient A v3 = new A();

}

class A { } // A is not serializable

 Note: When an object of the Foo class is serialized, only variable v1 is

serialized.

 Variable v2 is not serialized because it is a static variable, and variable

v3 is not serialized because it is marked transient

 If v3 were not marked transient, a java.io.NotSerializableException

would occur.32

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Serializing Arrays
 An array is serializable if all its elements are serializable:

 The entire array can be saved using writeObject into a file and later

restored using readObject:
int[] numbers = {1, 2, 3, 4, 5};

String[] strings = {"John", "Susan", "Kim"};

try (// Create an output stream for file array.dat

ObjectOutputStream output = new ObjectOutputStream(new

FileOutputStream("array.dat", true));) {

// Write arrays to the object output stream

output.writeObject(numbers);

output.writeObject(strings);

}

try (// Create an input stream for file array.dat

ObjectInputStream input =

new ObjectInputStream(new FileInputStream("array.dat"));){

int[] newNumbers = (int[])(input.readObject());

String[] newStrings = (String[])(input.readObject());

}33

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Random Access Files
 All of the previous are read-only or write-only streams

 The external files of these streams are sequential files that
cannot be updated without creating a new file

 RandomAccessFile class allows a file to be read from
and write to at random locations.
RandomAccessFile raf =

new RandomAccessFile("test.dat", "rw");

//allows read and write

RandomAccessFile raf =

new RandomAccessFile("test.dat", "r");

//read only

34

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
35

Creates a RandomAccessFile stream with the specified File object and
mode.

Creates a RandomAccessFile stream with the specified file name

string and mode.

Closes the stream and releases the resource associated with the stream.

Returns the offset, in bytes, from the beginning of the file to where the

next read or write occurs.

Returns the length of this file.

Reads a byte of data from this file and returns –1 an the end of stream.

Reads up to b.length bytes of data from this file into an array of bytes.

Reads up to len bytes of data from this file into an array of bytes.

Sets the offset (in bytes specified in pos) from the beginning of the

stream to where the next read or write occurs.

Sets a new length of this file.

Skips over n bytes of input discarding the skipped bytes.

Writes b.length bytes from the specified byte array to this file, starting
at the current file pointer.

Writes len bytes from the specified byte array starting at offset off to

this file.

DataInput

DataInput

java.io.RandomAccessFile

+RandomAccessFile(file: File, mode:
String)

+RandomAccessFile(name: String,

mode: String)

+close(): void

+getFilePointer(): long

+length(): long

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int, len: int) : int

+seek(long pos): void

+setLength(newLength: long): void

+skipBytes(int n): int

+write(b: byte[]): void

+write(byte b[], int off, int len)
+write(b: byte[], off: int, len: int):

void

Random Access Files

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

File Pointer
 A random access file consists of a sequence of bytes and there is a special

marker called file pointer that is positioned at one of these bytes

 A read or write operation takes place at the location of the file pointer

 When a file is opened, the file pointer sets at the beginning of the file

 When you read or write data to the file, the file pointer moves forward to the
next data
 For example, if you read an int value using readInt(), the JVM reads four bytes from

the file pointer and now the file pointer is four bytes ahead of the previous location.

36

byte

file

byte

…

byte

byte

byte

byte

byte

…

byte

byte

byte

byte

byte

file pointer

byte

file

byte

…

byte

byte

byte

byte

byte

…

byte

byte

byte

byte

byte

file pointer

(A) Before readInt()

(B) Before readInt()

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

RandomAccessFile Methods
 Many methods in RandomAccessFile are the same as those in

DataInputStream and DataOutputStream: readInt(),

readLong(), writeDouble(), readLine(), writeInt(),

writeLong() ...

 void seek(long pos) sets the offset from the beginning of the

RandomAccessFile stream to where the next read or write occurs.

 long getFilePointer() returns the current offset, in bytes,

from the beginning of the file to where the next read

or write occurs.

 long length() returns the length of the file.

 final void writeChar(int v) writes a character to the file as

a two-byte Unicode, with the high byte written first.

 final void writeChars(String s)writes a string to the file

as a sequence of characters.
37

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
38

import java.io.*;

public class TestRandomAccessFile {

public static void main(String[] args) throws IOException {

try (// Create a random access file

RandomAccessFile inout = new RandomAccessFile("inout.dat", "rw");

) {

// Clear the file to destroy the old contents if exists

inout.setLength(0);

// Write new integers to the file

for (int i = 0; i < 200; i++)

inout.writeInt(i);

// Display the current length of the file

System.out.println("Current file length is " + inout.length());

// Retrieve the first number

inout.seek(0); // Move the file pointer to the beginning

System.out.println("The first number is " + inout.readInt());

// Retrieve the second number

inout.seek(1 * 4); // Move the file pointer to the second number

System.out.println("The second number is " + inout.readInt());

// Retrieve the tenth number

inout.seek(9 * 4); // Move the file pointer to the tenth number

System.out.println("The tenth number is " + inout.readInt());

// Modify the eleventh number

inout.writeInt(555);

// Append a new number

inout.seek(inout.length()); // Move the file pointer to the end

inout.writeInt(999);

// Display the new length

System.out.println("The new length is " + inout.length());

// Retrieve the new eleventh number

inout.seek(10 * 4); // Move the file pointer to the eleventh number

System.out.println("The eleventh number is " + inout.readInt());

}

}

}

Current file length is 800
The first number is 0
The second number is 1
The tenth number is 9
The new length is 804
The eleventh number is 555

