
CSE 114, Computer Science 1

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

1

Enumerated Types

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 An enumerated type defines a list of enumerated values

 Each value is an identifier
enum MyFavoriteColor {RED, BLUE, GREEN, YELLOW};

 A value of an enumerated type is like a constant and so, by

convention, is spelled with all uppercase letters

 Also, by convention, an enumerated type is named like a

class with first letter of each word capitalized

 Once a type is defined, you can declare a variable of that type:
MyFavoriteColor color;

 The variable color can hold one of the values defined in the enumerated type

MyFavoriteColor or null, but nothing else

 Using enumerated values (e.g., Color.BLUE, Day.MONDAY) rather

than literal integer values (e.g., 0, 1, and so on) can make program easier

to read and maintain

2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 The enumerated values can be accessed using the syntax

EnumeratedTypeName.valueName

 For example, the following statement assigns enumerated value

BLUE to variable color:

color = MyFavoriteColor.BLUE;

 An enumerated type is treated as a special class, so an

enumerated type variable is therefore a reference variable
 An enumerated type is a subtype of the Object class (inherits all

the methods in the Object class) and the Comparable interface

(has the compareTo method in the Comparable interface)

3

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 The following methods are defined for any enumerated object:
public String name();

 Returns a name of the value for the object

public int ordinal();
 Returns the ordinal value associated with the enumerated value

 The first value in an enumerated type has an ordinal value of 0, the second

has an ordinal value of 1, the third one 3, and so on

4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class EnumeratedTypeDemo {

static enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY};

public static void main(String[] args) {

Day day1 = Day.FRIDAY;

Day day2 = Day.THURSDAY;

System.out.println("day1's name is " + day1.name());

System.out.println("day2's name is " + day2.name());

System.out.println("day1's ordinal is " + day1.ordinal());

System.out.println("day2's ordinal is " + day2.ordinal());

System.out.println("day1.equals(day2) returns " +

day1.equals(day2));

System.out.println("day1.toString() returns " +

day1.toString());

System.out.println("day1.compareTo(day2) returns " +

day1.compareTo(day2));

}

}

5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY};

public class EnumeratedTypeDemo {

public static void main(String[] args) {

Day day1 = Day.FRIDAY;

Day day2 = Day.THURSDAY;

System.out.println("day1's name is " + day1.name());

System.out.println("day2's name is " + day2.name());

System.out.println("day1's ordinal is " + day1.ordinal());

System.out.println("day2's ordinal is " + day2.ordinal());

System.out.println("day1.equals(day2) returns " +

day1.equals(day2));

System.out.println("day1.toString() returns " +

day1.toString());

System.out.println("day1.compareTo(day2) returns " +

day1.compareTo(day2));

}

}

6

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

day1's name is FRIDAY

day2's name is THURSDAY

day1's ordinal is 5

day2's ordinal is 4

day1.equals(day2) returns false

day1.toString() returns FRIDAY

day1.compareTo(day2) returns 1

7

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types
 An enumerated type can be defined inside a class or standalone

 After the first program is compiled, a class named

EnumeratedTypeDemo$Day.class is created
 When an enumerated type is declared inside a class, the type must be

declared as a static member of the class and cannot be declared

inside a method

 static may be omitted

 In the latter case, the type is treated as a standalone class, so

after the program is compiled, a class named Day.class is

created

8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Using if or switch Statements

with an Enumerated Variable
Often your program needs to perform a specific

action depending on the value
 For example, if the value is Day.MONDAY, play soccer; if the

value is Day.TUESDAY, take piano lesson, and so on

if (day.equals(Day.MONDAY)) {

// process Monday

} else if (day.equals(Day.TUESDAY)) {

// process Tuesday

} else

...

9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Using if or switch Statements

with an Enumerated Variable
switch (day) {

case MONDAY:

// process Monday

break;

case TUESDAY:

// process Tuesday

break;

...

}

 In the switch statement, the case label is an unqualified

enumerated value (e.g., MONDAY, but not Day.MONDAY).

10

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Processing Enumerated Values

Using a Foreach Loop
 Each enumerated type has a static method values()

that returns all enumerated values for the type in an

array:
Day[] days = Day.values();

for (int i = 0; i < days.length; i++)

System.out.println(days[i]);

// is equivalent with:

for (Day day: days)

System.out.println(day);

11

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types with Data Fields,

Constructors, and Methods
public enum TrafficLight {

RED ("Please stop"), GREEN ("Please go"),

YELLOW ("Please caution");

private String description;

private TrafficLight(String description) {

this.description = description;

}

public String getDescription() {

return description;

}

};

 The constructor is invoked whenever an enumerated value is accessed

 The enumerated value’s argument is passed to the constructor, which is

then assigned to description

12

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Enumerated Types with Data Fields,

Constructors, and Methods
public class TestTrafficLight {

public static void main(String[] args) {

TrafficLight light = TrafficLight.RED;

System.out.println(light.getDescription());

}

}

 An enumerated value TrafficLight.RED is assigned to variable
light

 Accessing TrafficLight.RED causes the JVM to invoke the constructor

with argument “please stop”

13

