
CSE 114, Computer Science 1

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

1

Methods

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
2

Opening Problem

Find multiple sums of integers:

- from 1 to 10,

- from 20 to 30,

- from 35 to 45,

...

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
3

int sum = 0;

for (int i = 1; i <= 10; i++)

sum += i;

System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;

for (int i = 20; i <= 30; i++)

sum += i;

System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;

for (int i = 35; i <= 45; i++)

sum += i;

System.out.println("Sum from 35 to 45 is " + sum);

Opening Problem
 Repeat code:

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Use a method and invoke it multiple times!

4

public static int sum(int i1, int i2) {

int sum = 0;

for (int i = i1; i <= i2; i++)

sum += i;

return sum;

}

public static void main(String[] args) {

System.out.println("Sum from 1 to 10 is " + sum(1, 10));

System.out.println("Sum from 20 to 30 is " + sum(20, 30));

System.out.println("Sum from 35 to 45 is " + sum(35, 45));

}

Opening Problem Solution

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Why write methods?
 To shorten your programs

 avoid writing identical code twice or more

 To modularize your programs

 fully tested methods can be trusted

 To make your programs more:

 readable

 reusable

 testable

debuggable

extensible and adaptable

5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Rule of thumb
If you have to perform some

operation in more than in one place

in your program, write a method to

implement this operation and have

other parts of the program use it

6

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
7

Defining Methods

• A method is a collection of statements that are

grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

8

Method Signature
• Method signature is the combination of the

method name and the parameter list.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

9

Formal Parameters
• The variables defined in the method header are

known as formal parameters.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

10

Actual Parameters
• When a method is invoked, you pass values to

the formal parameter with actual parameters or

arguments.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

11

Return Value Type
• A method may return a value.

The returnValueType is the data type of the value the

method returns.

If the method does not return a value, the returnValueType is the keyword void.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
12

Calling Methods

pass the value of j
pass the value of i

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
13

Trace Method Invocation

i is now 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
14

Trace Method Invocation

j is now 2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
15

Trace Method Invocation

invoke max(i, j)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
16

Trace Method Invocation

invoke max(i, j)

Pass the value of i to num1

Pass the value of j to num2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
17

Trace Method Invocation

declare variable result

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
18

Trace Method Invocation

(num1 > num2) is true since num1

is 5 and num2 is 2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
19

Trace Method Invocation

result is now 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
20

Trace Method Invocation

return result, which is 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
21

Trace Method Invocation

return max(i, j) and assign the

return value to k

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
22

Trace Method Invocation

Execute the print statement

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Benefits of Methods
Write a method once and reuse it anywhere.

Information hiding:

 Hide the implementation from the user.

Reduces complexity of the program.

23

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
24

Method Abstraction
Application Programming Interface (API) = the

method body is a black box that contains the detailed

implementation for the method.

Method Header

Method body
Black Box

Optional arguments

for Input
Optional return

value

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Javadoc
 The API for a class is documented using the Javadoc.

 Generate Javadoc for your project in Eclipse with:

1. Project -> Generate Javadoc

2. Check the box next to the project/package/file for

which you are creating the javadoc

3. In the "Destination" field browse to find the

desired destination (for example, the doc directory

of the current project).

4. Leave everything else as it is.

5. Click "Finish" and open "index.html"

25

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
26

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
27

CAUTION: all execution paths
 A return statement is required for a value-returning method.

The method shown below has a compilation error because the Java
compiler thinks it possible that this method does not return any value
if the condition is false in the last if statement.

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if
statement is evaluated.

 public static int sign(int n) {
 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else if (n < 0)

 return –1;

}

(a)

Should be

(b)

public static int sign(int n) {

 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else

 return –1;

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
28

Call Stacks

(a) The main
method is invoked.

Space required for

the main method

 k:

 j: 2

 i: 5

(b) The max
method is invoked.

Space required for

the max method

 num2: 2

 num1: 5

(d) The max method is

finished and the return

value is sent to k.

(e) The main
method is finished.

Stack is empty

Space required for

the main method

 k:

 j: 2

 i: 5

Space required for

the main method

 k: 5

 j: 2

 i: 5

(c) The max method
is being executed.

Space required for

the max method

 result: 5

 num2: 2

 num1: 5

 Space required for

the main method

 k:

 j: 2

 i: 5

Methods are executed using a stack data structure

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
29

Trace Call Stack

i is declared and initialized

The main method

is invoked.

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
30

Trace Call Stack

j is declared and initialized

The main method

is invoked.

j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
31

Trace Call Stack

Declare k

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
32

Trace Call Stack

Invoke max(i, j)

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
33

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
34

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
35

Trace Call Stack

(num1 > num2) is true

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
36

Trace Call Stack

Assign num1 to result

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
37

Trace Call Stack

Return result and assign it to k

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:5
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
38

Trace Call Stack

Execute print statement

The main method

is invoked.

Space required for the

main method

 k:5
j: 2

i: 5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Call-by-value
Method formal arguments are copies of the original

data.

Consequence?

methods cannot assign („=‟) new values to

primitive type formal arguments and affect the

original passed variables.

Why?

changing argument values changes the copy, not the

original.

39

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
40

The main method

is invoked

The values of num1 and num2 are

passed to n1 and n2. Executing swap

does not affect num1 and num2.

Space required for the

main method

num2: 2
num1: 1

The swap method

is invoked

Space required for the

main method

num2: 2
num1: 1

Space required for the

swap method
 temp:

n2: 2

n1: 1

The swap method

is finished

Space required for the

main method

num2: 2
num1: 1

The main method

is finished

Stack is empty

Call-by-value

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Method overloading is the ability to create multiple methods of the

same name with different implementations:

public class Overloading {

public static int max(int num1, int num2) {

if (num1 > num2)

return num1;

return num2;

}

public static double max(double num1, double num2) {

if (num1 > num2)

return num1;

return num2;

}

public static void main(String[] args) {

System.out.println(max(1, 2));

System.out.println(max(1.5, 2.3));

}

}
41

Overloading

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 Method overloading:

 The methods must differ either by the arity or types of their

parameters (e.g., doTask() and doTask(Object o))

 Method call matching uses a "best match" algorithm to cast the

actual parameters' types to the formal parameter types

 Sometimes there may be two or more possible matches

for an invocation of a method, but the compiler cannot

determine the most specific match.

This is referred to as ambiguous invocation.

 Ambiguous invocation is a compilation error.

42

Overloading & Ambiguous Invocation

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
43

Overloading & Ambiguous Invocation
public class AmbiguousOverloading {

public static double max(int num1, double num2) {

if (num1 > num2)

return num1;

else

return num2;

}

public static double max(double num1, int num2) {

if (num1 > num2)

return num1;

else

return num2;

}

public static void main(String[] args) {

System.out.println(max(1, 2)); // compiler error here

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Scope of Local Variables
 A local variable: a variable defined inside a method.

 Scope: the part of the program where the variable can be
referenced.
 In Java, the scope of a local variable starts from its declaration

and continues to the end of the block that contains the variable.

 A nested block cannot redefine a local variable:
public static void correctMethod() {

int x = 1;

int y = 1;

for (int i = 1; i < 10; i++) {

int x = 0; // Compilation error

x += i;

}

}44

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Stepwise Refinement
 The concept of method abstraction can be applied to the process of

developing programs.

 When writing a large program, you can use the “divide and conquer” strategy,

also known as stepwise refinement, to decompose it into subproblems

 The subproblems can be further decomposed into smaller, more

manageable problems.

 For example, consider a PrintCalendar program:

45

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Design Diagram

46

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Design Diagram

47

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getNumOfDaysInMonth getMonthName

isLeapYear

48

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Implementation: Top-Down

• The top-down approach is to implement one method in

the structure chart at a time from the top to the bottom
• Stubs can be used for the methods waiting to be implemented

• A stub is a simple but incomplete version of a method.

/** A stub for getStartDay may look like this */

public static int getStartDay(int year, int month) {

return 1; // A dummy value

}

• The use of stubs enables you to test invoking the method

from a caller.

• Implement the main method first and then use a stub for

the printMonth method.
• Then implement the methods one by one starting from the top

49

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Implementation: Bottom-Up

• Bottom-up approach is to implement one method in

the structure chart at a time from the bottom to the top.
• For each method implemented, write a test program to test

only that method

• Both top-down and bottom-up methods are fine.
• Both approaches implement the methods incrementally

and help to isolate programming errors and makes

debugging easy.

• Most of the time, they are used together

50

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Benefits of Stepwise Refinement

• Simpler Program

• Reusing Methods

• Easier Developing, Debugging, and Testing

• Better Facilitating Teamwork

51

