
CSE 114, Computer Science 1

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

1

Mathematical Functions,

Characters, and Strings

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Static methods
Remember the main method header?
public static void main(String[] args)

What does static mean?

associates a method with a particular class name

any method can call a static method either:

directly from within same class OR

using class name from outside class

Application Programming Interface (API) is

the list of all public members of a class
2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
3

The Math Class API
Class constants (always static):

PI

E

Class static methods:

Trigonometric methods

Exponent methods

Rounding methods

min, max, abs, and random methods

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
4

Trigonometric Methods

 sin(double a)

 cos(double a)

 tan(double a)

 acos(double a)

 asin(double a)

 atan(double a)

Radians

• Examples:
Math.sin(0) returns 0.0

Math.sin(Math.PI / 6)

returns 0.5

Math.sin(Math.PI / 2)

returns 1.0

Math.cos(0) returns 1.0

Math.cos(Math.PI / 6)

returns 0.866

Math.cos(Math.PI / 2)

returns 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
5

Exponent Methods
 exp(double a)

Returns e raised to the power of a.

 log(double a)

Returns the natural logarithm of a.

 log10(double a)

Returns the 10-based logarithm of a.

 pow(double a, double b)

Returns a raised to the power of b.

 sqrt(double a)

Returns the square root of a.

• Examples:
Math.exp(1) returns 2.71

Math.log(2.71)

returns 1.0

Math.pow(2, 3)

returns 8.0

Math.pow(3, 2)

returns 9.0

Math.pow(3.5, 2.5)

returns 22.91765

Math.sqrt(4) returns 2.0

Math.sqrt(10.5)

returns 3.24

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
6

Rounding Methods
 double ceil(double x)

x rounded up to its nearest integer. This integer is returned as a double
value.

 double floor(double x)

x is rounded down to its nearest integer. This integer is returned as a
double value.

 double rint(double x)

x is rounded to its nearest integer. If x is equally close to two integers,
the even one is returned as a double.

 int round(float x)

Return (int)Math.floor(x+0.5).

 long round(double x)

Return (long)Math.floor(x+0.5).

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
7

Rounding Methods Examples
Math.ceil(2.1) returns 3.0

Math.ceil(2.0) returns 2.0

Math.ceil(-2.0) returns –2.0

Math.ceil(-2.1) returns -2.0

Math.floor(2.1) returns 2.0

Math.floor(2.0) returns 2.0

Math.floor(-2.0) returns –2.0

Math.floor(-2.1) returns -3.0

Math.round(2.6f) returns 3

Math.round(2.0) returns 2 (long)

Math.round(-2.0f) returns -2

Math.round(-2.6) returns -3 (long)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
8

min, max, and abs

 max(a, b)and min(a, b)

Returns the maximum or

minimum of two parameters.

 abs(a)

Returns the absolute value of the

parameter.

 random()

Returns a random double

value

in the range [0.0, 1.0).

• Examples:
Math.max(2, 3)

returns 3

Math.max(2.5, 3)

returns 3.0

Math.min(2.5,3.6)

returns 2.5

Math.abs(-2)

returns 2

Math.abs(-2.1)

returns 2.1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
9

The random Method

Generates a random double value greater than or equal

to 0.0 and less than 1.0 (0 <= Math.random() < 1.0)

Examples:

(int)(Math.random() * 10)
Returns a random integer

between 0 and 9.

50 + (int)(Math.random() * 50)
Returns a random integer

between 50 and 99.

In general,

a + Math.random() * b

Returns a random number between

a and a + b, excluding a + b.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
10

Generating Random Characters

(char)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1))

 All numeric operators can be applied to the char operands

 The char operand is cast into a number if the other operand is

a number or a character.

 So, the preceding expression can be simplified as follows:

(char)('a' + Math.random() * ('z' - 'a' + 1))

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

ASCII Code for Commonly

Used Characters

Characters Code Value in Decimal Unicode Value

'0' to '9' 48 to 57 \u0030 to \u0039

'A' to 'Z' 65 to 90 \u0041 to \u005A

'a' to 'z' 97 to 122 \u0061 to \u007A

11

There is no need to remember them since we can do all

mathematical operations with characters:

(char)('a' + Math.random() * ('z' - 'a' + 1))

'0' <= c && c <= '9'

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comparing and Testing Characters

if ('A' <= ch && ch <= 'Z')

System.out.println(ch + " is an uppercase letter");

if ('a' <= ch && ch <= 'z')

System.out.println(ch + " is a lowercase letter");

if ('0' <= ch && ch <= '9')

System.out.println(ch + " is a numeric character");

12

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Methods in the Character Class

Method Description

isDigit(ch) Returns true if the specified character is a digit.

isLetter(ch) Returns true if the specified character is a letter.

isLetterOrDigit(ch) Returns true if the specified character is a letter or digit.

isLowerCase(ch) Returns true if the specified character is a lowercase letter.

isUpperCase(ch) Returns true if the specified character is an uppercase letter.

toLowerCase(ch) Returns the lowercase of the specified character.

toUpperCase(ch) Returns the uppercase of the specified character.

13

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The String Type

14

 The char type only represents one character:

char ch = 'a';

 To represent a string of characters, use the data type called String.
String is a predefined class in the Java library just like the System class

http://java.sun.com/javase/8/docs/api/java/lang/String.html

 The String type is NOT a primitive type.

The String type is a reference type.

 A String variable is a reference variable, an "address" which points

to an object storing the value or actual text

String message = "Welcome to Java";
: String

"Welcome to Java"

'a'

http://java.sun.com/javase/8/docs/api/java/lang/String.html

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

More about Strings

Each character is stored at an index:
String sentence = "A statement";

012345678910

The String class API has methods to process strings:
System.out.println("charAt(6) is " +

sentence.charAt(6));

System.out.println(sentence.toUpperCase());

System.out.println(sentence.substring(0,7) +

sentence.substring(10));

15

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Strings are immutable!
There are no methods to change them

once they have been created

any new assignment will assign a new

String reference to the old variable
String word = "Steven";

word = word.substring(0, 5);

the variable word is now a reference to a

new String that contains "Steve"
16

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
17

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

String Concatenation

18

 “+” is used for making a new string by concatenating

strings:
// Three strings are concatenated

String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2

String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B

String s1 = "Supplement" + 'B';

// s1 becomes SupplementB

String s2 = 1 + 2 + "ABC";

// s2 become "3ABC"

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Special Characters

 \n – newline

 \t – tab

 \" – quotation mark

 Example:

System.out.print(s + "\n");

19

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Reading a String from the Console

Scanner input = new Scanner(System.in);

System.out.print("Enter three words separated by spaces:");

String s1 = input.next();

String s2 = input.next();

String s3 = input.next();

System.out.println("s1 is " + s1);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

20

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Useful String functions

 charAt, equals, equalsIgnoreCase,

compareTo, startsWith, endsWith,

indexOf, lastIndexOf, replace,

substring, toLowerCase,

toUpperCase, trim

21

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comparing Strings

Don’t use ‘==’ to compare Strings

it compares their memory addresses and

not actual strings (character sequences)

Instead use the equals method supplied

by the String class:
s.equals(t)

 returns true if s and t have same letters and sequence

 false otherwise

22

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comparing Strings
String word1 = new String("Hello");

String word2 = new String("Hello");

if (word1 == word2){

System.out.println(true);

} else {

System.out.println(false);

}

false

Two different addresses

23

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comparing Strings
String word1 = new String("Hello");

String word2 = new String("Hello");

if (word1.equals(word2)){

System.out.println(true);

} else {

System.out.println(false);

}

true

compares the contents

"Hello" with "Hello"
24

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
25

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comparing Strings
String word1 = "Hello";

String word2 = "Hello";

if (word1 == word2){

System.out.println(true);

} else {

System.out.println(false);

}

true

 Interned Strings: Only one instance of

“Hello” is stored
 so word1 and word2 will have the same address

26

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comparing Strings
String word1 = "Hello";

String word2 = "Hello";

if (word1.equals(word2)){

System.out.println(true);

} else {

System.out.println(false);

}

true

27

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Comparing Strings

Method Description

Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1; it is case insensitive.

Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether

this string is greater than, equal to, or greater than s1.

Same as compareTo except that the comparison is case insensitive.

Returns true if this string starts with the specified prefix.

Returns true if this string ends with the specified suffix.

equals(s1)

equalsIgnoreCase(s1)

compareTo(s1)

compareToIgnoreCase(s1)

startsWith(prefix)

endsWith(suffix)

28

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Getting Characters from a String

String message = "Welcome to Java";

System.out.println(

"The first character in message is "

+ message.charAt(0));

29

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Reading a single Character

from the Console

Scanner input = new Scanner(System.in);

System.out.print("Enter a character: ");

String s = input.nextLine();

char ch = s.charAt(0);

System.out.print("The character entered is "+ch);

30

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Obtaining Substrings

Method Description

Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and

extends to the character at index endIndex – 1, as shown in Figure 9.6.

Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,

endIndex)

31

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Finding a Character or a

Substring in a String

Method Description

Returns the index of the first occurrence of ch in the string. Returns -1 if not

matched.

Returns the index of the first occurrence of ch after fromIndex in the string.

Returns -1 if not matched.

Returns the index of the first occurrence of string s in this string. Returns -1 if

not matched.

Returns the index of the first occurrence of string s in this string after

fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string. Returns -1 if not
matched.

Returns the index of the last occurrence of ch before fromIndex in this

string. Returns -1 if not matched.

Returns the index of the last occurrence of string s. Returns -1 if not matched.

Returns the index of the last occurrence of string s before fromIndex.

Returns -1 if not matched.

indexOf(ch)

indexOf(ch, fromIndex)

indexOf(s)

indexOf(s, fromIndex)

lastIndexOf(ch)

lastIndexOf(ch,

fromIndex)

lastIndexOf(s)

lastIndexOf(s,

fromIndex)

32

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Finding a Character or a

Substring in a String

int k = s.indexOf(' '); //3

String firstName = s.substring(0, k);

String lastName = s.substring(k + 1);
33

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Conversion between

Strings and Numbers
String intString = "15";

String doubleString = "56.77653";

int intValue =

Integer.parseInt(intString);

double doubleValue =

Double.parseDouble(doubleString);

String s2 = "" + intValue;

34

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
35

Formatting Output
The printf statement:

System.out.printf(format, items);

format is a string that may consist of

substrings and format specifiers

• A format specifier begins with a percent

sign and specifies how an item should be

displayed: a numeric value, character,

boolean value, or a string

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
36

Frequently-Used Specifiers
Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;

double amount = 45.567899;

System.out.printf("count is %d and amount is %.2f", count, amount);

Displays: count is 5 and amount is 45.56

items

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Bitwise operations in java

37

 To write programs at the machine-level, often you need to deal

with binary numbers directly and perform operations at the bit-

level

 Java provides the bitwise operators and shift operators

 The bit operators apply only to integer types (byte, short, int,

and long)

 All bitwise operators can form bitwise assignment operators,

such as =: |=, <<=, >>=, and >>>=

 Bitwise AND: &
 1010 & 1001 yields 1000

System.out.print(10&9); // 8
 The AND of two corresponding bits yields a 1 if both bits are 1, otherwise 0

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Bitwise operations in java

38

 Bitwise OR: |

 The OR of two corresponding bits yields a 1 if either bit is 1

 10101110 | 10010010 yields 10111110
class BitwiseOR {

public static void main(String[] args) {

int number1 = 12, number2 = 25, result;

result = number1 | number2;

System.out.println(result);

}

}

1100 | 12

11001 25

11101 = 29

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Bitwise operations in java

39

 Bitwise exclusive OR: ^

 1010 ^ 1001 yields 0011
 The XOR of two corresponding bits yields a 1 only if two bits are

different.

 One’s complement: ~
 ~1010 yields 0101

 The operator toggles each bit from 0 to 1 and from 1 to 0.

 Left shift: <<
 1010 << 2 yields101000

System.out.print(10 << 2); // 40
 The operator shifts bits in the first operand left by the number of

bits specified in the second operand, filling with 0s on the right.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Bitwise operations in java

40

 Right shift with sign extension: >>
 1010 >> 2 yields 10
System.out.print(10 >> 2); // 2

 The operator shifts bit in the first operand right by the number

of bits specified in the second operand, filling with the highest

(sign) bit on the left.

 Unsigned right shift with zero extension: >>>
System.out.print(-10 >>> 2); // 1073741821

 The operator shifts bit in the first operand right by the number of

bits specified in the second operand, filling with 0s on the left.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Constants in binary format

41

byte fourTimesThree = 0b1100;

byte data = 0b0000110011;

short number = 0b111111111111111;

int overflow = 0b10101010101010101010101010101011;

long bow = 0b101010101010101010101010101010111L;

 Just be careful not to overflow the numbers with too much data, or

else you'll get a compiler error:
byte data = 0b1100110011;

// Type mismatch: cannot convert from int to byte

 New feature in Java 7 known as numeric literals with underscores:
int overflow = 0b1010_1010_1010_1010_1010_1010_1010_1011;

long bow = 0b1__01010101__01010101__01010101__01010111L;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Constants in octal and

hexadecimal format

42

int x = 010; //octal = 8

int y = 0xf; //hexadecimal = 15

