
CSE 114, Computer Science 1

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

1

Elementary Programming

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 In a program, the variables store data

 There are 2 types of variables in Java (and most other

modern programming languages):

Primitive type variables store single pieces of data:

int i = 1;

char letter = 'A';

Object or reference type variables store multiple pieces

of data (ex: a String is a sequence of potentially

multiple characters):

String text = "ABCDEFG";

2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 All Java variables must have a declared type

A variable’s type determines:

 what kind of value the variable can hold

 how much memory to reserve for that variable

char letter;

int i;

double area;

String s;

Object o;

3

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Java’s Primitive Types
 Integers (whole numbers)

 byte–1 byte (-128 to 127)

 short –2 bytes (-32768 to 32767)

 int–4 bytes (-2147483648 to 2147483647) – default (4321)

 long–8 bytes (-9223372036854775808 to

9223372036854775807)

 Real Numbers

 float–4 bytes (3.14159f)

 double–8 bytes - default (3.141592)

 char–2 bytes

 stores a single character (Unicode 2)

 boolean–stores true or false (uses 1-bit or byte)
4

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
A variable gets a value in an assignment statement:

Variable = some_value or

an expression ;

5

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 A variable must be declared before being assigned

values:

public void methodWithGoodDeclaration(){

double salary; //GOOD

salary = 20000.0; //GOOD

System.out.println("Salary is " + salary);

}

public void methodWithBadDeclaration(){

salary = 20000.0; // ERROR

double salary; // ERROR

System.out.println("Salary is " + salary);

}

6

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 Variables can be declared and initialized at once:

char yesChar = 'y';

String word = "Hello!";

double avg = 0.0, stdDev = 0.0;

int i, j=0, k;

char initial3 = 'T';

boolean completed = false;

7

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 Local variable must be initialized before being referenced:

public void methodWithGoodReference(){

double salary = 20000.0; // GOOD

double raise = salary * 0.05; // 5% raise

System.out.println("Raise is " + raise);

}

public void methodWithBadReference(){

double salary; // Salary has no value.

double raise = salary * 0.05;

// COMPILER ERROR: salary has no value

System.out.println("Raise is " + raise);

}
8

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 A variable should only be declared once:

public void methodWithGoodDeclaration(){

double salary = 20000.0;

System.out.println("Salary is " + salary);

salary = 60000.0;

System.out.println("Salary is " + salary);

}

public void methodWithBadDeclaration(){

double salary = 50000.0;

System.out.println("Salary is " + salary);

double salary = 60000.0; // Second declaration

System.out.println("Salary is " + salary);

} //COMPILER ERROR
9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables

10

 Variables can only be used inside the block { …} or scope

that they themselves are declared

public void methodWithGoodScope(){

double x = 5.0;

if (x > 0.0)

System.out.println("x is " + x);

} // x is in scope here.

public void methodWithBadScope(){

double y = 100.0;

if (y > 0.0) {

double x = 5.0;

}

System.out.println("x " + x); // x is not in scope

} // COMPILER ERROR

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 The Assignment Statement

variable = expression;

What does it do?

Solves/evaluates expression first!

Assigns resulting value to the variable!

 Exercise: What’s the output?

int x = 5;

x = x + x + x + 10;

System.out.print(x); ?

11

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
Assignment Compatibility:

The variable and expression should be the same type

 if not, you may get a compiler error.

Examples:

int sumGrades, gradeX, gradeY;

gradeX = 1;

sumGrades = 1473;

sumGrades = 1472 + 1;

sumGrades = 1472 + gradeX;

sumGrades = true; // ILLEGAL IN JAVA

// COMPILER ERROR12

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 What about mixing numeric types?

 Are these assignment statements ok?

int x = 5;

long y = x;

double z = y;

 What about these?

double a = 6.5;

long b = a;

int c = b;

 byte < short < int < long < float < double

 No assigning big types to little types OR real

types to integer types
13

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Variables
 Type Casting as a type override

temporarily change a data type to another type

(type_name), example: (int)

Examples:

double myReal = 10.0;

int badInt = myReal; // Error

int goodInt = (int)myReal;//Good

no type casting is allowed to/from boolean

14

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators
+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo/Remainder (integer operands only)

int x = 5;

int y = 10;

int z = 2;

int num1 = (x + y) * z;

System.out.println(num1); ?

15

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators
+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo/Remainder (integer operands only)

int x = 5;

int y = 10;

int z = 2;

int num1 = (x + y) * z;

System.out.println(num1); 30

16

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

 Multiplication (*) has higher precedence over addition (+)

int x = 5;

int y = 10;

int z = 2;

int num1 = x + y * z;

System.out.println(num1);

 My Advice: avoid rules of precedence

 whenever in doubt, go with explicit use of parentheses.

int r2d2c3po = 3 * 4 + 5 / 6;

int r2d2c3po2 = (3 * (4 + 5))/ 6;

17

?

?

?

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Division

Integer division:

8/3 = 2

Double division:

8.0/3.0 = 2.666666666666667

8.0/3 = 2.666666666666667

8/3.0 = 2.666666666666667

18

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators
 Division operator (evaluate full expression first, then

assignment):

double average = 100.0/8.0; //12.5

average = 100.0/8; //12.5

average = 100/8; //12.0

int sumGrades = 100/8; //12

sumGrades = 100.0/8.0; //ERROR

sumGrades = (int)100.0/8.0; //ERROR

sumGrades = (int)(100.0/8.0); //12

int fifty_percent = 50/100; //0

double fiftyPercent = 50/100; //0.0

fiftyPercent = 50/100.0; //0.519

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

The modulo/remainder % operator

Produces division remainders

int remainder = 100 % 8;

System.out.println(remainder); ?

20

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

The modulo/remainder % operator

Produces division remainders

int remainder = 100 % 8;

System.out.println(remainder); 4

21

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

++ Increment by one

-- Decrement by one

+= Increment by specified amount

-= Decrement by specified amount

*= Multiply by specified amount

/= Divide by specified amount

int x = 5, y = 15, z = 25;

x = x + 1;

y++;

z += 1;

System.out.println(x); ?

System.out.println(y); ?

System.out.println(z); ?22

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

++ Increment by one

-- Decrement by one

+= Increment by specified amount

-= Decrement by specified amount

*= Multiply by specified amount

/= Divide by specified amount

int x = 5, y = 15, z = 25;

x = x + 1;

y++;

z += 1;

System.out.println(x); 6

System.out.println(y); ?

System.out.println(z); ?23

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

++ Increment by one

-- Decrement by one

+= Increment by specified amount

-= Decrement by specified amount

*= Multiply by specified amount

/= Divide by specified amount

int x = 5, y = 15, z = 25;

x = x + 1;

y++;

z += 1;

System.out.println(x); 6

System.out.println(y); 16

System.out.println(z); ?24

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Arithmetic Operators

++ Increment by one

-- Decrement by one

+= Increment by specified amount

-= Decrement by specified amount

*= Multiply by specified amount

/= Divide by specified amount

int x = 5, y = 15, z = 25;

x = x + 1;

y++;

z += 1;

System.out.println(x); 6

System.out.println(y); 16

System.out.println(z); 2625

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Increment and Decrement

Operators

26

int i = 10;

int newNum = 10 * i++;

int i = 10;

int newNum = 10 * i;

i = i + 1;

Same effect as

int i = 10;

int newNum = 10 * (++i);

int i = 10;

i = i + 1;

int newNum = 10 * i;

Same effect as

newNum is 100

i is 11

i is 11

newNum is 110

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Scientific Notation
Floating-point literals can also be

specified in scientific notation:

E (or e) represents an exponent and it

can be either in lowercase or

uppercase

Examples
1.23456e+2 = 1.23456e2 = 123.456

1.23456e-2 = 0.0123456

27

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Scientific Notation
Floating-point literals can also be

specified in scientific notation:

E (or e) represents an exponent and it

can be either in lowercase or

uppercase

Examples
1.23456e+2 = 1.23456e2 = 123.456

1.23456e-2 = 0.0123456

28

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Scientific Notation
 Double values as 64-bit “double-precision” values, according to

the IEEE 754 standard

(https://en.wikipedia.org/wiki/IEEE_754-2008_revision):

 Floating point numbers are represented internally as binary

(base-2) fractions.

 Most decimal fractions cannot be represented exactly as binary

fractions, so in most cases the internal representation of a

floating-point number is an approximation of the actual value.

 In practice, the difference between the actual value and the

represented value is very small and should not usually cause

significant problems.

29

https://en.wikipedia.org/wiki/IEEE_754-2008_revision

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Classes

30

A program is defined by using one or more classes

public class ClassName {

public static void main(String[] args) {

// ClassName PROGRAM’S POINT OF ENTRY

// THIS PROGRAM’S INSTRUCTIONS

// START HERE

}

}

A class is also a template or blueprint for objects (later)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Methods

31

A method is a sequence of statements that performs a

sequence of operations

public static int sum(int a, int b) {

return a + b;

}

It is used by invoking a statement with arguments:

System.out.println(sum(5,6));

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The main Method

32

 The main method provides the control of program flow.

public class ClassName {

public static void main(String[] args) {

...

}

}

 ClassName is executable because it has a main method

 we can compile and then run it

Not all classes require main methods
 only those classes that initiate program execution require a main method

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

HelloWorldApp.java

/**

* HelloWorldApp is a Java application

* that simply displays "Hello World!“ in the

* Java console.

*/

public class HelloWorldApp {

public static void main(String[] args) {

System.out.println("Hello, World!");

// Statement above displays "Hello, World!"

}

}

33

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
34

Computing the Area of a Circle:

public class ComputeArea {

public static void main(String[] args) {

double radius; // Declare radius

double area; // Declare area

// Assign a radius

radius = 20; // New value is radius

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle" +

+ " of radius " + radius + " is " + area);

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

Trace a Program Execution

35

no valueradius

allocate memory

for radius

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

Trace a Program Execution

36

no valueradius

memory

no valuearea

allocate memory

for area

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

Trace a Program Execution

37

20radius

no valuearea

assign 20 to radius

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace a Program Execution

38

20radius

memory

1256.636area

compute area and assign it

to variable area

public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

39

20radius

memory

1256.636area

print a message to the

console

Trace a Program Execution

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

import java.util.Scanner;

public class ChangeMaker {

public static void main(String[] args) {

int change, rem, qs, ds, ns, ps;

System.out.print("Input change amount (1-99): ");

Scanner input = new Scanner(System.in);

change = input.nextInt();

qs = change / 25;

rem = change % 25;

ds = rem / 10;

rem = rem % 10;

ns = rem / 5;

rem = rem % 5;

ps = rem;

System.out.print(qs + " quarters,"

+ ds + " dimes,");

System.out.println(ns + " nickels and"

+ ps + " pennies");

}

}

ChangeMaker.java

40

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Reading Input from the Console

41

1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the methods next(), nextByte(), nextShort(),

nextInt(), nextLong(), nextFloat(),

nextDouble(), or nextBoolean() to obtain a String,
byte, short, int, long, float, double, or boolean
value. For example,

System.out.print("Enter a double value: ");

Scanner input = new Scanner(System.in);

double d = input.nextDouble();

Scanner is in the Java package java.util

- start your program with:
import java.util.Scanner;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Packages
 To make types easier to find and use, to avoid naming conflicts, and to

control access, programmers bundle groups of related types into

packages.

 The types that are part of the Java platform are members of various

packages that bundle classes by function: fundamental classes are

in java.lang, classes for reading and writing (input and output) are

in java.io, and so on.

 You can put your types in packages too.

 To create a package, you choose a name for the package and put

a package statement with that name at the top of every source file that

contains the types (e.g., classes, interfaces). In file Circle.java:

package edu.stonybrook.cse114;

public class Circle {

...

}42

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Packages
To use a public package member from outside its

package, you must do one of the following:

Refer to the member by its fully qualified name

java.util.Scanner input =

new java.util.Scanner(System.in);

 Import the package member

import java.util.Scanner;

 Import the entire package

import java.util.*;

43

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Packages
 Packages appear to be hierarchical, but they are not.

 Importing java.awt.* imports all of the types in the java.awt package,

but it does not import java.awt.color, java.awt.font, or any

other java.awt.xxxx packages.

 If you plan to use the classes and other types in java.awt.color as well

as those in java.awt, you must import both packages with all their files:

import java.awt.*;

import java.awt.color.*;

Setting the CLASSPATH System Variable

 In Windows: set CLASSPATH=C:\users\george\java\classes

 In Unix-based OS:

%CLASSPATH=/home/george/java/classes;

export CLASSPATH

44

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Constants

45

final datatype CONSTANTNAME = VALUE;

 Examples:

final double PI = 3.14159;

final int SIZE = 3;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Character Data Type

46

char letter = 'A'; (ASCII)

char numChar = '4'; (ASCII)

char letter = '\u0041'; (Unicode)

char numChar = '\u0034'; (Unicode)

Four hexadecimal digits.

The increment and decrement operators can also be used on char

variables to get the next or preceding Unicode character.

- the following statements display character b:

char ch = 'a';

System.out.println(++ch);

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Unicode Format

47

Java characters use Unicode UTF-16

16-bit encoding

Unicode takes two bytes, preceded by \u, expressed in

four hexadecimal numbers that run from '\u0000' to

'\uFFFF'.

Unicode can represent 65535 + 1 characters.

Unicode \u03b1 \u03b2 \u03b3 for three Greek

letters

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Escape Sequences for Special Characters

48

Description Escape Sequence Unicode

Tab \t \u0009

Linefeed \n \u000A

Backslash \\ \u005C

Single Quote \' \u0027

Double Quote \" \u0022

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Casting between char and

Numeric Types

49

int i = 'a'; // Same as int i = (int)'a';

char c = 97; // Same as char c = (char)97;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Software Development Process = Design,

Programming Style and Documentation
 Design = generalized steps of software engineering:

1. Understand and define the problem

2. Determine the required input and output

3. Design an algorithm to solve the problem by computer

4. Implement (code) the solution

5. Debug and test the software

6. Maintain and update the software

 Programming Style and Documentation

 Appropriate Comments

 Naming Conventions

 Proper Indentation and Spacing Lines

 Block Styles
50

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

ChangeMaker

51

Problem:

you have to give someone change

what coins do you give that person?

Requirements:

takes user input

displays the change breakdown as output

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
52

1. Understand and Define the Problem

 ask user for input

US coins (quarter, dime, nickel, penny)

max change: 99¢

display coin output

 What’s involved?

 interview users

What are their expectations?

What data do they need to access?

write a requirements analysis report

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
53

2. Determine Input and Output

Typed input by user: amount of change requested (an

integer between 1 and 99)

Printed output:

 Number of quarters given

 Number of dimes given

 Number of nickels given

 Number of pennies given

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
54

3. Design an algorithm

How many quarters?

 subtract the number of quarters X 25 from the total

How many dimes?

 subtract the number of dimes X 10 from remaining total

How many nickels?

 subtract the number of nickels X 5 from remaining total

How many pennies?

 the remaining total

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
55

3. Design an algorithm (cont.)
 Pseudocode:Use div and mod (remainder operator)

User Inputs originalAmount

numQuarters=originalAmount div 25

remainder =originalAmount mod 25

numDimes =remainder div 10

remainder =remainder mod 10

numNickels = remainder div 5

remainder =remainder mod 5

numPennies =remainder

Output numQuarters

Output numDimes

Output numNickels

Output numPennies

ChangeMaker

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

import java.util.Scanner;

public class ChangeMaker {

public static void main(String[] args) {

int change, rem, qs, ds, ns, ps;

System.out.print("Input change amount (1-99): ");

Scanner input = new Scanner(System.in);

change = input.nextInt();

qs = change / 25;

rem = change % 25;

ds = rem / 10;

rem = rem % 10;

ns = rem / 5;

rem = rem % 5;

ps = rem;

System.out.print(qs + " quarters," + ds + " dimes,");

System.out.println(ns + " nickels and" + ps + " pennies");

}

}

56

4. Implement (code) the solution

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
57

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining amount

int numberOfPennies = remainingAmount;

1156remainingAmount

remainingAmount

initialized

Suppose amount is 11.56

5. Debug and test the software

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

58

1156remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

numberOfOneDollars

assigned

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining amount

int numberOfPennies = remainingAmount;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

59

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

remainingAmount

updated

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining amount

int numberOfPennies = remainingAmount;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

60

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfOneQuarters

numberOfOneQuarters

assigned

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining amount

int numberOfPennies = remainingAmount;

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Trace / Debug

61

6remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfQuarters

remainingAmount

updated

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining amount

int numberOfPennies = remainingAmount;

