Computers playing Jeopardy!
Lecture 1

Instructor: Paul Fodor
Stony Brook University
Course Description

- “IBM Watson is a computer system capable of answering rich natural language questions and estimating its confidence in those answers at a level of the best humans at the task. On Feb. 14-16, 2011, in an televised event, Watson triumphed over the best human players of all time on the American quiz show, Jeopardy!. In this course we will discuss the main principles of natural language processing, computer representation of knowledge and discuss how Watson solved some of its answers (right and wrong).”
Course Focus

- Unstructured Information Managing Architecture UIMA (in Java)
- Natural Language Processing (NLP)
- Knowledge Representation (KR) in Prolog
Instructor Information

- Dr. Paul Fodor
 1437 Computer Science Building

- Office hours: Wednesdays & Fridays 9:00AM-10:30AM
 - I am also available by appointment

- Email: pfodor (at) cs (dot) stonybrook (dot) edu

- Please include “HON 111” in the email subject and your name in your email correspondence
General Information

• Meeting Information:
 • Lectures: Mondays 9:00AM - 10:50AM, 7-weeks option, Computer Science Building 2116.

• Course Web page:
 http://www.cs.stonybrook.edu/~pfodor/courses/hon111.html
 • Blackboard will also be used for assignments, grades and course material.
Textbook

- No textbook is required.
- We will use material from:
Coursework

• **Grading Schema:**
 - Students will be evaluated on the basis of homework and lab work, participation in discussion of lecture materials, and interaction with faculty and other students.
 - Because of the variety of offerings, it is not possible to specify precise breakdowns of the value of each type for all sections.

 • *Class Participation:* Students are expected to contribute their own ideas and to ask questions during class.
 • *Class Attendance:* Students are expected to attend all of the class sessions for this seminar.
 • *Assignments:* there will be short homeworks and class assignments.
 • *Required Reading:* before each class there will be required reading relevant to that class.
Academic Integrity

- You can discuss general assignment concepts with other students.
- You MAY NOT share assignments, source code or other answers:
 - Assignments are subject to manual and automated similarity checking.
- If you cheat, you MAY be brought up on academic dishonesty charges without warning - we follow the university policy:
 - http://www.stonybrook.edu/uaa/academicjudiciary
Please

- Please be on time,
- Please show respect for your classmates,
- Please turn off (or use vibrate for) your cellphones.
- On-topic questions are welcome.
Real Language is Real Hard

• **Chess**
 • A finite, mathematically well-defined search space
 • Limited number of moves and states
 • Grounded in *explicit, unambiguous* mathematical rules

• **Human Language**
 • Ambiguous, contextual and implicit
 • Grounded only in *human cognition*
 • Seemingly infinite number of ways to express the same meaning
The Best Human Performance: Our Analysis Reveals the Winner’s Cloud

Each dot represents an actual historical human Jeopardy! game

Top human players are remarkably good.

Computers?

More Confident

Less Confident

2007 QA Computer System

Winning Human Performance

Grand Champion Human Performance
DeepQA: Incremental Progress in Precision and Confidence
6/2007-2011

Precision

% Answered

(c) Paul Fodor (CS Stony Brook)
DeepQA: The Technology Behind Watson
Massively Parallel Probabilistic Evidence-Based Architecture

Generates and scores many hypotheses using a combination of 1000’s Natural Language Processing, Information Retrieval, Machine Learning and Reasoning Algorithms. These gather, evaluate, weigh and balance different types of evidence to deliver the answer with the best support it can find.

(c) Paul Fodor (CS Stony Brook)
IN 1698, THIS COMET DISCOVERER TOOK A SHIP CALLED THE PARAMOUR PINK ON THE FIRST PURELY SCIENTIFIC SEA VOYAGE

Keywords: 1698, comet, paramour, pink, ...
AnswerType(comet discoverer)
Date(1698)
Took(discoverer, ship)
Called(ship, Paramour Pink)

Evidence Retrieval
Evidence Scoring
Merging & Ranking

1) Edmond Halley (0.85)
2) Christiaan Huygens (0.20)
3) Peter Sellers (0.05)
Apache UIMA

- Open-source framework and tools for building NLP applications

Key Concepts
- **Common Analysis Structure (CAS):** Container for Data Structures in user-defined data model (which can be defined in UML)
- **Annotator:** Pluggable component (Java or C++, among others) that reads and writes a CAS
- **Aggregate Analysis Engine:** Collection of Annotators
Watson in UIMA

Aggregate Analysis Engine: Question/Topic Analysis
- Tokenizer
- NED
- Deep Parser
- Predicate Argument Structure
- Shallow SRD
- Focus and LAT Detection
- Anaphora Resolution
- Decomposition and Classification
- Deep SRD

Watson Top-Level Aggregate Analysis Engine
- Question/Topic Analysis
- Question Decomposition
- Hypothesis Generation
- Hypothesis and Evidence Scoring
- Synthesis
- Final Merging & Ranking

(c) Paul Fodor (CS Stony Brook)
Natural Language Processing In Watson

Text (Question or Evidence)

- Tokenization
- Deep Parsing
- Predicate Argument Structure
- Named Entity Recognition

Rule-Based and Statistical Pattern Matching

Predicate Argument Structure Graph

- Relations
- Co-Reference Resolution
- Question Focus
- Lexical Answer Types (LATs)
- Question Classification

(c) Paul Fodor (CS Stony Brook)
POETS & POETRY: He was a bank clerk in the Yukon before he published "Songs of a Sourdough" in 1907
"Songs of a Sourdough" is a poetry book by Robert W. Service.
Unstructured Information Management Architecture (UIMA)

- Platform independent standard for interoperable text and multi-modal analytics

UIMA Annotation

Document text:
“...seminar in GN-K35 on October 24, 2007”
Our work in IBM Watson - UIMA CAS Prolog Interface Architecture

QParse 2 Analysis Engine

Focus, Answer-type, Modifier Annotation Types

Focus

Modifiers

Answer-type Rules

Prolog

CAS Facts

retrievePrologAnnotations(Cas)

casToProlog(Cas)

XSG Parser,
Entity,
Relation,
Predicate-
Argument-
Structure
Annotators

UIMA CAS Focus&Answer-type Annotator

Passage
Search,
Selection,
Answer
Extraction,
Ranking

UIMA Pipeline

(c) Paul Fodor (CS Stony Brook)
Focus Computation rules

- The focus is the “node“ that refers to the unspecified answer
 - “What is the name of the airport in Dallas?”
 - Focus = “airport“
 - “What is the population of Iceland?”
 - Focus = “population“
- The focus abstracts different syntactical constructs:
 1) What X …
 2) What is the X that…
 3) Which of the X …
 4) What is the name of the X that…
 5) Name the X that…
 …
- Applications:
 - Answer-type detection
 - Logical form answer-selection
Example QParse2 Focus Detection Rules

- “How much/many” rule:
- Pattern: HOW_MANY/MUCH X VERB …?
- Examples:
 “How many hexagons are on a soccer ball?”
 “How much does the capitol dome weigh?”
 “How much folic acid should an expectant mother get daily?”

\[
\text{focus(QuestionRoot, [Determiner]):-}
\text{getDescendantNodes(QuestionRoot,Determiner),}
\text{lemmaForm(Determiner,DeterminerString),}
\text{howMuchMany(DeterminerString),!}.
\]

 % "how much/many", "this much",…
Example QParse2 Focus Detection Rules

• “What is X …” rule:
 • Pattern: WHAT IS X …?
 • Example:
 “What is the democratic party symbol?”
 “What is the longest river in the world?”

focus(QuestionRoot, [Pred]):-
 getDescendantNodes(QuestionRoot, Verb),
 lemmaForm(Verb, "be"),
 subj(Verb, Subj),
 lemmaForm(Subj, SubjString),
 whatWord(SubjString), % e.g., "what", "which“ ("this", "these“)
 pred(Verb, Pred),!.
Answer-type Computation Rules

- Heuristics to compute the type of the answer

 Focus lexicalization (lexical chains using Prolog WordNet followed by a mapping to our taxonomy)

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>What American revolutionary general turned over West Point to the British?</td>
<td>[com.ibm.hutt.MilitaryLeader]</td>
</tr>
</tbody>
</table>

Table lookup for the verb:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>com.ibm.hutt.TypeOfInjury]</td>
</tr>
</tbody>
</table>

Table lookup for the focus:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How far is it from the pitcher’s mound to home plate?</td>
<td>[com.ibm.hutt.Length]</td>
</tr>
<tr>
<td>When was Lyndon B Johnson president?</td>
<td>[com.ibm.hutt.Year]</td>
</tr>
</tbody>
</table>

Table lookup for the focus (noun) + the verb:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>What instrument measures radioactivity?</td>
<td>[com.ibm.hutt.Tool]</td>
</tr>
</tbody>
</table>
Answer-type Computation Rules

- Cascading rules in order of generality
- First rule that fires returns the most specific answer-type for the question

Look at the focus + verb:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How much did Marilyn Monroe weigh?</td>
<td>[com.ibm.hutt.Weight]</td>
</tr>
<tr>
<td>How much did the first Barbie cost?</td>
<td>[com.ibm.hutt.Money]</td>
</tr>
</tbody>
</table>

Look at the focus + noun:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many Earth days does it take for Mars to orbit the sun?</td>
<td>[com.ibm.hutt.Duration]</td>
</tr>
</tbody>
</table>

Look only at the focus:

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many moons does Venus have?</td>
<td>[com.ibm.hutt.WholeNumber]</td>
</tr>
<tr>
<td>How much calcium is in broccoli?</td>
<td>[com.ibm.hutt.Number]</td>
</tr>
</tbody>
</table>

Priority decreases down the chain
Example QParse 2 Answer-type Detection Rules

- Time rule (e.g. when):
 Pattern: WHEN VERB OBJ; OBJ VERB THEN
 Example: *When* was the US capitol *built*

  ```prolog
  answerType => ["com.ibm.hutt.Year"]
  ```

  ```prolog
  answerType(_QuestionRoot,FocusList,timeAnswerType,ATList):-
  member(Mod,FocusList),
  lemmaForm(Mod,ModString),
  wh_time(ModString), % "when", "then"
  whadv(Verb,Mod),
  lemmaForm(Verb,VerbString),
  timeTableLookup(VerbString,ATList),!.
  ```
“How … VERB” rule:

Pattern: How … VERB?

Example: “How did Virginia Woolf die?”

```prolog
answerType => ["com.ibm.hutt.Disease",
              "com.ibm.hutt.MannerOfKilling",
              "com.ibm.hutt.TypeOfInjury"]

answerType(_QuestionRoot,FocusList,howVerb1,ATList):-
    member(Mod,FocusList),
    lemmaForm(Mod,"how"),
    whadv(Verb,Mod),
    lemmaForm(Verb,VerbString),
    howVerbTableLookup(VerbString,ATList), !.
```
QParse2 Evaluation

- 370 correct matches with the standard (89.5%)

343 exact answer-type (83%):

<table>
<thead>
<tr>
<th>Question</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who created the literary character Phineas Fogg?</td>
<td>[com.ibm.hutt.ContentCreator]</td>
</tr>
<tr>
<td>What is the name of the airport in Dallas Ft Worth?</td>
<td>[com.ibm.hutt.Facility]</td>
</tr>
<tr>
<td>What city is Disneyland in?</td>
<td>[com.ibm.hutt.City]</td>
</tr>
<tr>
<td>What color belt is first in karate?</td>
<td>[com.ibm.hutt.Color]</td>
</tr>
</tbody>
</table>

27 of the correct matches were NounPhrase (6.5%): one cannot determine the type (unless he already knows the answer of the question)

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>What did Peter Minuit buy for the equivalent of 2400?</td>
</tr>
<tr>
<td>What is the gift for the 20th anniversary?</td>
</tr>
<tr>
<td>What did Ozzy Osbourne bite the head off of?</td>
</tr>
</tbody>
</table>

No type in our taxonomy

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the word which means one hiring his relatives?</td>
</tr>
<tr>
<td>What is a word spelled the same backward and forward called?</td>
</tr>
</tbody>
</table>

(c) Paul Fodor (CS Stony Brook)
QParse2 Evaluation

- 3 results had a subset of the manually annotated answer types

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>What flavor filling did the original Twinkies have?</td>
<td>[com.ibm.hutt.Food com.ibm.hutt.Material]</td>
<td>[com.ibm.hutt.Material]</td>
</tr>
</tbody>
</table>

- 17 results had extra types than (a superset of) the manually annotated answer types

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>How long before bankruptcy is removed from a credit report?</td>
<td>[com.ibm.hutt.Duration]</td>
<td>[com.ibm.hutt.Duration, com.ibm.hutt.Length]</td>
</tr>
<tr>
<td>How long is a quarter in an NBA game?</td>
<td>[com.ibm.hutt.Duration]</td>
<td>[com.ibm.hutt.Duration, com.ibm.hutt.Length]</td>
</tr>
</tbody>
</table>

- 6 results had a super-type of the manually annotated answer types

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>When did International Volunteers Day begin?</td>
<td>[com.ibm.hutt.Year]</td>
<td>[com.ibm.hutt.Date-Time]</td>
</tr>
</tbody>
</table>

(c) Paul Fodor (CS Stony Brook)
QParse2 Evaluation

- 23 results different than the standard manual annotation:
 - Need for more answer-type detection rules

<table>
<thead>
<tr>
<th>Question</th>
<th>Standard Answer Type</th>
<th>QParse 2 AnswerType</th>
</tr>
</thead>
<tbody>
<tr>
<td>What did Caesar say before he died?</td>
<td>[com.ibm.hutt.Qotation]</td>
<td>[com.ibm.hutt.NounPhrase]</td>
</tr>
<tr>
<td>What 20th century American president died at Warm Springs, Georgia?</td>
<td>[com.ibm.hutt.President]</td>
<td>[com.ibm.hutt.Date]</td>
</tr>
</tbody>
</table>

- WordNet word sense disambiguation algorithm

- Wrong Parse
Results!