Definite Logic Programs: Derivation and Proof Trees

CSE 595 – Semantic Web
Instructor: Dr. Paul Fodor
Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html
Refutation in Predicate Logic

```prolog
parent(pam, bob). parent(tom, bob).
parent(tom, liz). ...
anc(X,Y) :- parent(X,Y).
anc(X,Y) :- parent(X,Z), anc(Z,Y).
```

- **Goal G:** For what values of \(Q \) is \(\neg \text{anc}(\text{tom},Q) \) a logical consequence of the above program?

- **Negate the goal G:** i.e. \(\neg G \equiv \forall Q \neg \text{anc}(\text{tom}, Q) \).

- **Consider the clauses in the program \(P \cup \neg G \)** and apply refutation
 - Note that a program clause written as \(p(A,B) :\neg q(A,C) \text{, } r(B,C) \) can be rewritten as: \(\forall A,B,C \ (p(A,B) \lor \neg q(A,C) \lor \neg r(B,C)) \)
 - i.e., l.h.s. literal is **positive**, while all r.h.s. literals are **negative**
 - Note also that all variables are universally quantified in a clause!

Note on syntax: we use :- , ?- and \(\leftarrow \) for IMPLICATION
Refutation: An Example

\texttt{parent(pam, bob).}
\texttt{parent(tom, bob).}
\texttt{parent(tom, liz).}
\texttt{parent(bob, ann).}
\texttt{parent(bob, pat).}
\texttt{parent(pat, jim).}

\texttt{anc(X,Y) :-}
\texttt{parent(X,Y).}
\texttt{anc(X,Y) :-}
\texttt{parent(X,Z),}
\texttt{anc(Z,Y).}
Refutation: An Example

\texttt{parent(pam, bob).}
\texttt{parent(tom, bob).}
\texttt{parent(tom, liz).}
\texttt{parent(bob, ann).}
\texttt{parent(bob, pat).}
\texttt{parent(pat, jim).}

\texttt{anc(X,Y) :- parent(X,Y).}
\texttt{anc(X,Y) :- parent(X,Z), anc(Z,Y).}

\texttt{Q=ann}

\begin{itemize}
 \item \texttt{parent(tom, Q)}
 \begin{itemize}
 \item \texttt{anc(X,Y) \leftarrow parent(X,Z), anc(Z,Y)}
 \item \texttt{parent(tom,Z'), anc(Z', Q)}
 \item \texttt{parent(tom, bob) \leftarrow parent(tom, Z').}
 \end{itemize}
 \item \texttt{anc(bob, Q)}
 \begin{itemize}
 \item \texttt{anc(X,Y) \leftarrow parent(X,Y)}
 \item \texttt{parent(bob, ann) \leftarrow parent(bob, Q)}
 \item \texttt{Q=ann}
 \end{itemize}
\end{itemize}
Unification

• Operation done to “match” the goal atom with the head of a clause in the program.

• Forms the basis for the *matching* operation we used for Prolog evaluation:

 • $f(a, Y)$ and $f(X, b)$ unify when $X=a$ and $Y=b$
 • $f(a, X)$ and $f(X, b)$ do not unify
 • $f(a, X) = f(X, b)$ fails in Prolog
Substitutions

• A substitution is a mapping between variables and values (terms)
• Denoted by \{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\} such that
 • \(x_i \neq t_i\), and
 • \(x_i\) and \(x_j\) are distinct variables when \(i \neq j\).
• The empty substitution is denoted by \{\} (or \(\varepsilon\)).
• A substitution is said to be a renaming if it is of the form \{x_1/y_1, x_2/y_2, \ldots, x_n/y_n\} and
 \(y_1, y_2, \ldots, y_n\) is a permutation of \(x_1, x_2, \ldots, x_n\).
 • Example: \{x/y, y/x\} is a renaming substitution.
Substitutions and Terms

• Application of a substitution:
 • $x^\theta = t$ if $x/t \in \theta$.
 • $x^\theta = x$ if $x/t \notin \theta$ for any term t.
• Application of a substitution $\{x_1/t_1, \ldots, x_n/t_n\}$ to a term/formula F:
 • is a term/formula obtained by simultaneously replacing every free occurrence of x_i in F by t_i.
 • Denoted by F^θ [and F^θ is said to be an instance of F]

• Example:
 $p(f(X,Z), f(Y,a)) \{X/g(Y), Y/Z, Z/a\} = p(f(g(Y),a), f(Z,a))$
Composition of Substitutions

- Composition of substitutions $\theta = \{X_1/s_1, \ldots, X_m/s_m\}$ and $\sigma = \{Y_1/t_1, \ldots, Y_n/t_n\}$:
 - First form the set $\{X_1/s_1\sigma, \ldots, X_m/s_m\sigma, Y_1/t_1, \ldots, Y_n/t_n\}$
 - Remove from the set $X_i/s_i\sigma$ if $s_i\sigma = X_i$
 - Remove from the set Y_j/t_j if Y_j is identical to some variable X_i
 - Example: Let $\theta = \sigma = \{X/g(Y), Y/Z, Z/a\}$. Then $\theta\sigma = \{X/g(Y), Y/Z, Z/a\}\{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$
 - More examples: Let $\theta = \{X/f(Y)\}$ and $\sigma = \{Y/a\}$
 - $\theta\sigma = \{X/f(a), Y/a\}$
 - $\sigma\theta = \{Y/a, X/f(Y)\}$
 - Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$
Idempotence

• A substitution θ is idempotent iff $\theta \theta = \theta$.

• Examples:
 • $\{X/g(Y), Y/Z, Z/a\}$ is not idempotent since
 $\{X/g(Y), Y/Z, Z/a\} \{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$
 • $\{X/g(Z), Y/a, Z/a\}$ is not idempotent either since
 $\{X/g(Z), Y/a, Z/a\} \{X/g(Z), Y/a, Z/a\} = \{X/g(a), Y/a, Z/a\}$
 • $\{X/g(a), Y/a, Z/a\}$ is idempotent

• For a substitution $\theta = \{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\}$,
 • $\text{Dom}(\theta) = \{x_1, x_2, \ldots, x_n\}$
 • $\text{Range}(\theta) = \text{set of all variables in } t_1, t_2, \ldots, t_n$

• A substitution θ is idempotent iff $\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset$
Unifiers

- A substitution θ is a **unifier of** two terms s and t if $s\theta$ is identical to $t\theta$
- θ is a unifier of a set of equations $\{s_1 = t_1, \ldots, s_n = t_n\}$, if for all $i, s_i\theta = t_i\theta$
- A substitution θ is **more general** than σ (written as $\theta \geq \sigma$) if there is a substitution ω such that $\sigma = \theta\omega$
- A substitution θ is a **most general unifier (mgu)** of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \geq \sigma$

- Example: Consider two terms $f(g(X), Y, a)$ and $f(Z, W, X)$.
 - $\theta_1 = \{X/a, Y/b, Z/g(a), W/b\}$ is a unifier
 - $\theta_2 = \{X/a, Y/W, Z/g(a)\}$ is also a unifier
 - θ_2 is more general than θ_1
 - $\theta_1 = \theta_2\omega$ where $\omega = \{W/b\}$
 - θ_2 is also the most general unifier of the 2 terms
Equations and Unifiers

- A set of equations \(E \) is in **solved form** if it is of the form

\[\{ x_1 = t_1, \ldots, x_n = t_n \} \text{ iff no } x_i \text{ appears in any } t_j.\]

- Given a set of equations \(E = \{ x_1 = t_1, \ldots, x_n = t_n \} \), the substitution \(\{ x_1 / t_1, \ldots, x_n / t_n \} \) is an idempotent mgu of \(E \).

- Two sets of equations \(E_1 \) and \(E_2 \) are said to be **equivalent** iff they have the same set of unifiers.

- To find the mgu of two terms \(s \) and \(t \), try to find a set of equations in solved form that is equivalent to \(\{ s = t \} \).

If there is no equivalent solved form, there is no mgu.
A Simple Unification Algorithm

Given a set of equations E:

repeat
 select $s = t \in E$;
 case $s = t$ of
 1. $f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$:
 replace the equation by $s_i = t_i$ for all i
 2. $f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m)$, $f \neq g$ or $n \neq m$:
 halt with failure
 3. $X = X$: remove the equation
 4. $t = X$: where t is not a variable, X is a variable
 replace equation by $X = t$
 5. $X = t$: where $X \neq t$ and X occurs more than once in E:
 if X is a proper subterm of t
 then halt with failure \hspace{1cm} (5a)
 else replace all other X in E by t \hspace{1cm} (5b)
 until no action is possible for any equation in E
return E
A Simple Unification Algorithm

Example: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

\[
\{ f(X, g(Y)) = f(g(Z), Z) \} \Rightarrow \\
\Rightarrow \{ X = g(Z), g(Y) = Z \} \quad \text{case 1} \\
\Rightarrow \{ X = g(Z), Z = g(Y) \} \quad \text{case 4} \\
\Rightarrow \{ X = g(g(Y)), Z = g(Y) \} \quad \text{case 5b}
\]
Example: Find the mgu of \(f(X, g(X)) \) and \(f(Z, Z) \)

\[
\{ f(X, g(X)) = f(Z, Z) \} \Rightarrow
\]
\[
\Rightarrow \{ X = Z, g(X) = Z \} \quad \text{case 1}
\]
\[
\Rightarrow \{ X = Z, g(Z) = Z \} \quad \text{case 5b}
\]
\[
\Rightarrow \{ X = Z, Z = g(Z) \} \quad \text{case 4}
\]
\[
\Rightarrow \text{fail} \quad \text{case 5a}
\]
A Simple Unification Algorithm

Example: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$\{ f(X, g(X), b) = f(a, g(Z), Z) \} \Rightarrow$

$\Rightarrow \{ X = a, \; g(X) = g(Z), \; b = Z \}$
$\Rightarrow \{ X = a, \; g(a) = g(Z), \; b = Z \}$
$\Rightarrow \{ X = a, \; a = Z, \; b = Z \}$
$\Rightarrow \{ X = a, \; Z = a, \; b = Z \}$
$\Rightarrow \{ X = a, \; Z = a, \; b = a \}$
$\Rightarrow \text{fail}$
Complexity of the unification algorithm

Consider the set of equations:
\[E = \{ g(X_1, \ldots, X_n) = g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1})) \} \]

- By applying case 1 of the algorithm, we get
 \[\{ X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), X_3 = f(X_2, X_2), \ldots, X_n = f(X_{n-1}, X_{n-1}) \} \]
- If terms are kept as trees, the final value for \(X_n \) is a tree of size \(O(2^n) \).
- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take \(O(2^n) \) time.
 - There are linear-time unification algorithms that share structures (terms as DAGs).
- \(X = t \) is the most common case for unification in Prolog.
 - The fastest algorithms are linear in \(t \).
 - Prolog cuts corners by omitting case 5a (the occur check), thereby doing \(X = t \) in constant time.
Most General Unifiers

• Note that mgu stands for a/one most general unifier.
 • There may be more than one mgu.
 • E.g. \(f(X) = f(Y) \) has two mgus:
 • \(\{X / Y\} \) (by our simple algorithm)
 • \(\{Y / X\} \) (by definition of mgu)
 • If \(\theta \) is an mgu of \(s \) and \(t \), and \(\omega \) is a renaming, then \(\theta \omega \) is a mgu of \(s \) and \(t \).
 • If \(\theta \) and \(\sigma \) are mgus of \(s \) and \(t \), then there is a renaming \(\omega \) such that \(\theta = \sigma \omega \).
• MGU is unique up to renaming!
SLD Resolution

Selective Linear Definite clause (SLD) Resolution:

\[\leftarrow A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_m \quad B_0 \leftarrow B_1, \ldots, B_n \]

\[\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_n, A_{i+1}, \ldots, A_m)\theta \]

where:

1. \(A_j \) are atomic formulas
2. \(B_0 \leftarrow B_1, \ldots, B_n \) is a (renamed) definite clause in the program
3. \(\theta = \text{mgu}(A_i, B_0) \)
 - \(A_i \) is called the **selected** atom
 - Given a goal \(\leftarrow A_1, \ldots, A_n \) a function called the **selection function** or computation rule selects \(A_i \)
SLD Resolution (cont.)

• When the resolution rule is applied, from a goal G and a clause C, we get a new goal G'
• We then say that G' is derived directly from G and C:

\[\models_{C} G \rightsquigarrow G' \]

• An SLD Derivation is a sequence:

\[G_0 \rightsquigarrow G_1 \cdots \rightsquigarrow G_i \rightsquigarrow G_{i+1} \cdots \]
Refutation & SLD Derivation

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

\[\text{anc}(\text{tom}, \text{Q}) \]
\[\text{anc}(X,Y) \]
\[\text{parent}(X,Y) \]
\[\text{parent}(\text{tom}, \text{Q}) \]
\[\text{parent}(\text{tom}, \text{bob}) \]
\[\text{anc}(\text{tom}, \text{Q}) \]
\[\leadsto \text{parent}(\text{tom}, \text{Q}) \]
\[\leadsto \square \]
Refutation & SLD Derivation

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[\text{anc}(X,Y) \leftarrow \text{parent}(X,Z), \text{anc}(Z,Y)\]
\[\text{anc}(X,Y) \leftarrow \text{parent}(X,Y)\]
\[\text{anc}(X,Y) \leftarrow \text{parent}(X,Z), \text{anc}(Z,Y)\]

\[\text{Q} = \text{ann}\]
Computed Answer Substitution

- Let $\theta_0, \theta_1, \ldots, \theta_{n-1}$ be the sequence of mgus used in derivation

$$G_0 \xrightarrow{C_0} G_1 \cdots G_{n-1} \xrightarrow{C_{n-1}} G_n$$

Then $\theta = \theta_0 \theta_1 \cdots \theta_{n-1}$ is the *computed substitution* of the derivation.

- Example:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Clause Used</th>
<th>mgu</th>
</tr>
</thead>
</table>
| $\text{anc}(\text{tom}, Q)$ | $\text{anc}(X', Y')$:-
 parent(X', Z'), $\text{anc}(Z', Y')$ | $\theta_0 = \{X'/\text{tom}, Y'/Q\}$ |
| $\text{parent}(\text{tom}, Z'),$
 $\text{anc}(Z', Q)$ | $\text{parent}(\text{tom}, \text{bob})$. $\text{anc}(X'', Y'')$:-
 parent(X'', Y'') | $\theta_1 = \{Z'/\text{bob}\}$ |
| $\text{anc}(\text{bob}, Q)$ | $\text{parent}(\text{bob}, Q)$ | $\theta_2 = \{X''/\text{bob}, Y''/Q\}$ |
| $\text{parent}(\text{bob}, Q)$ | $\text{parent}(\text{bob}, \text{ann})$. | $\theta_3 = \{Q/\text{ann}\}$ |

- Computed substitution for the above derivation is

$$\theta_0 \theta_1 \theta_2 \theta_3 = \{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\}$$
Computed Answer Substitution

- A finite derivation of the form
 \[G_0 \xrightarrow{c_0} G_1 \cdots G_{n-1} \xrightarrow{c_{n-1}} G_n \]
 where \(G_n = \square \) (i.e., an empty goal) is an **SLD refutation** of \(G_0 \)
- The computed substitution of an SLD refutation of \(G \), restricted to variables of \(G \), is a **computed answer substitution** for \(G \).
- Example (contd.): The computed answer substitution for the previous SLD refutation is
 \[\{ X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann \} \]
 restricted to \(Q \):
 \[\{ Q/ann \} \]
Failed SLD Derivation

• A derivation of a goal clause \(G_0\) whose last element is not empty, and cannot be resolved with any clause of the program.

• Example: consider the following program:

 grandfather(X,Z) :- father(X,Y), parent(Y,Z).
 parent(X,Y) :- father(X,Y).
 parent(X,Y) :- mother(X,Y).
 father(a,b).
 mother(b,c).

• A failed SLD derivation of \(\text{grandfather}(a,Q)\) is:

 \[\sim \rightarrow \text{father}(a,Y'), \text{parent}(Y',Q)\]
 \[\sim \rightarrow \text{parent}(b,Q)\]
 \[\sim \rightarrow \text{father}(b,Q)\]
OLD Resolution

- Prolog follows OLD resolution = SLD with left-to-right literal selection.
- Prolog searches for OLD proofs by expanding the resolution tree depth first.
 - This depth-first expansion is close to how procedural programs are evaluated:
 - Consider a goal G_1, G_2, \ldots, G_n as a “procedure stack” with G_1, the selected literal on top.
 - Call G_1.
 - If and when G_1 returns, continue with the rest of the computation: call G_2, and upon its return call G_3, etc. until nothing is left
 - Note: G_2 is “opened up” only when G_1 returns, not after executing only some part of G_1.
SLD Tree

- A tree where every path is an SLD derivation

grandfather(X, Z) :-
 father(X, Y), parent(Y, Z).

parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).

father(a, b).
mother(b, c).

← grandfather(a, Q)
 ← father(a, Z'), parent(Z', Q)
 ← parent(b, Q)
 ← father(b, Q) ← mother(b, Q)
Soundness of SLD resolution

- Let P be a definite program, R be a computation rule, and θ be a computed answer substitution for a goal G.

Then $\forall G \theta$ is a logical consequence of P.

- Proof is by induction on the number of resolution steps used in the refutation of G.
 - Base case uses the following lemma:
 - Let F be a formula and F' be an instance of F, i.e., $F' = F\theta$ for some substitution θ.
 Then $(\forall F) \models (\forall F')$.

(c) Paul Fodor (CS Stony Brook) and Elsevier