Definite Logic Programs: Models

CSE 595 – Semantic Web
Instructor: Dr. Paul Fodor
Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html
Logical Consequences of Formulae

• Recall: F is a logical consequence of P (i.e. $P \models F$) iff

 Every model of P is also a model of F.

• Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?

 • Solution: choose one "canonical" model I such that

 $I \models P$ and $I \models F \implies P \models F$
Definite Clauses

- A formula of the form $p(t_1, t_2, …, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be atomic.
- If A is an atomic formula then
 - A is said to be a positive literal
 - $\neg A$ is said to be a negative literal
- A formula of the form $\forall (L_1 \lor L_2 \lor … \lor L_n)$ where each L_i is a literal (negative or positive) is called a clause.
- A clause $\forall (L_1 \lor L_2 \lor … \lor L_n)$ where exactly one literal is positive is called a definite clause (also called Horn clause).
 - A definite clause is usually written as:
 - $\forall (A_0 \lor \neg A_1 \lor … \lor \neg A_n)$
 - or equivalently as $A_0 \leftarrow A_1, A_2, …, A_n$.
- A definite program is a set of definite clauses.
Herbrand Universe

- Given an alphabet A, the set of all ground terms constructed from the constant and function symbols of A is called the Herbrand Universe of A (denoted by U_A).

- Consider the program:

 $$p(\text{zero}).$$
 $$p(s(s(X))) \leftarrow p(X).$$

- The Herbrand Universe of the program's alphabet is: $U_A = \{\text{zero, s(zero), s(s(zero)), ...}\}$
Herbrand Universe: Example

• Consider the "relations" program:

parent(pam, bob). parent(bob, ann).
parent(tom, bob). parent(bob, pat).
parent(tom, liz). parent(pat, jim).
grandparent(X,Y) :-
 parent(X,Z), parent(Z,Y).

• The Herbrand Universe of the program's alphabet is:

\[U_A = \{ \text{pam, bob, tom, liz, ann, pat, jim} \} \]
Herbrand Base

• Given an alphabet A, the set of all ground atomic formulas over A is called the Herbrand Base of A (denoted by B_A).

• Consider the program:

$$p(\text{zero}).$$
$$p(s(s(X))) \leftarrow p(X).$$

• The Herbrand Base of the program's alphabet is: $B_A = \{p(\text{zero}), p(s(\text{zero})), p(s(s(\text{zero}))), \ldots \}$
Consider the "relations" program:

\[
\begin{align*}
\text{parent}(\text{pam}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{ann}). \\
\text{parent}(\text{tom}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{pat}). \\
\text{parent}(\text{tom}, \text{liz}). & \quad \text{parent}(\text{pat}, \text{jim}). \\
\text{grandparent}(X,Y) :& - \\
\text{parent}(X,Z), & \text{parent}(Z,Y).
\end{align*}
\]

The Herbrand Base of the program's alphabet is:

\[
B_A = \{ \text{parent}(\text{pam}, \text{pam}), \text{parent}(\text{pam}, \text{bob}), \\
\text{parent}(\text{pam}, \text{tom}), \ldots, \text{parent}(\text{bob}, \text{pam}), \ldots, \\
\text{grandparent}(\text{pam}, \text{pam}), \ldots, \text{grandparent}(\text{bob}, \text{pam}), \\
\ldots \}.
\]
Herbrand Interpretations and Models

• A **Herbrand Interpretation** of a program P is an interpretation I such that:
 • The domain of the interpretation: $|I| = U_P$
 • For every constant c: $c_I = c$
 • For every function symbol f/n:
 $f_I(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$
 • For every predicate symbol p/n: $p_I \subseteq (U_P)^n$ (i.e. some subset of n-tuples of ground terms)

• A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

• All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
• Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
• We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.
• Example: Consider our numbers program, where
\{p(zero), p(s(s(zero))), p(s(s(s(s(zero)))))), \ldots\} represents the Herbrand model that treats
\lbrack p_I = \{zero, s(s(zero)), s(s(s(s(zero))))\}, \ldots \rbrack \}

as the meaning of p.
Sufficiency of Herbrand Models

- Let P be a definite program. If I' is a model of P then $I = \{ A \in Bp \mid I' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

Let I be a Herbrand interpretation.

Assume that I' is a model of P but I is not a model.

Then there is some ground instance of a clause in P:

$$A_0 : \neg A_1, \ldots, \neg A_n.$$

which is not true in I i.e., $I \models A_1, \ldots, I \models A_n$ but $I \not\models A_0$

By definition of I then, $I' \models A_1, \ldots, I' \models A_n$ but $I' \not\models A_0$

Thus, I' is not a model of P, which contradicts our earlier assumption.
Definite programs only

- Let P be a definite program. If I' is a model of P then
I=\{A \in Bp \mid I' \models A\} is a Herbrand model of P.

- This property holds only for definite programs!
 - Consider P = \{\neg p(a), \exists X. p(X)\}
 - There are two Herbrand interpretations: I_1 = \{p(a)\} and I_2 = {}
 - The first is not a model of P since I_1 \not\models \neg p(a).
 - The second is not a model of P since I_2 \not\models \exists X. p(X)
 - But there is a non-Herbrand model I:
 - | I | = N, the set of natural numbers
 - a_I = 0
 - p_I = “is odd”

(c) Paul Fodor (CS Stony Brook) and Elsevier
Properties of Herbrand Models

1) If M is a set of Herbrand Models of a definite program P, then $\cap M$ is also a Herbrand Model of P.

2) For every definite program P there is a unique least model M_p such that:
 - M_p is a Herbrand Model of P and,
 - for every Herbrand Model M, $M_p \subseteq M$.

3) For any definite program, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

4) $M_p = \text{the set of all ground logical consequences of } P$.

Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.

- Assume M is not a model.

- Then there is some clause $A_0 :\neg A_1, \ldots, A_n$ such that $M \models A_1, \ldots, M \models A_n$ but $M \not\models A_0$.

- Which means $A_0 \notin M_1$ or $A_0 \notin M_2$.

- But $A_1, \ldots, A_n \in M_1$ as well as M_2.

- Hence one of M_1 or M_2 is not a model.
Properties of Herbrand Models

• There is a unique least Herbrand model

• Let M_1 and M_2 are two incomparable minimal Herbrand models, i.e., $M = M_1 \cap M_2$ is also a Herbrand model (previous theorem), and $M \subseteq M_1$ and $M \subseteq M_2$

• Thus M_1 and M_2 are not minimal.
The **least Herbrand model** M_p of a definite program P is the set of all ground logical consequences of the program.

$$M_p = \{ A \in B_p \mid P \models A \}$$

First, $M_p \supseteq \{ A \in B_p \mid P \models A \}$:

- By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

- Second, $M_p \subseteq \{ A \in B_p \mid P \models A \}$:
 - If $M_p \models A$ then A is in every Herbrand model of P.
 - But assume there is some model $I' \models \neg A$.
 - By sufficiency of Herbrand models, there is some Herbrand model I such that $I \models \neg A$.
 - Hence A is not in some Herbrand model, and hence is not in M_p.
Finding the Least Herbrand Model

- **Immediate consequence operator:**
 - Given $I \subseteq Bp$, construct I' such that

 $I' = \{ A_0 \in Bp \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}$
 - I' is said to be the immediate consequence of I.
 - Written as $I' = Tp(I)$, Tp is called the immediate consequence operator.
 - Consider the sequence:

 $\emptyset, Tp(\emptyset), Tp(Tp(\emptyset)), \ldots, Tp^i(\emptyset), \ldots$
 - $Mp \supseteq Tp^i(\emptyset)$ for all i.
 - Let $Tp \uparrow \omega = \bigcup_{i=0,\infty} Tp^i(\emptyset)$
 - Then $Mp \subseteq Tp \uparrow \omega$
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

\[
M_1 = \emptyset
\]

\[
M_2 = T_P(M_1) = \{ \text{parent(pam,bob), parent(tom,bob), parent(tom,liz), parent(bob,ann), parent(bob,pat), parent(pat,jim)} \}
\]

\[
M_3 = T_P(M_2) = \{ \text{anc(pam,bob), anc(tom,bob), anc(tom,liz), anc(bob,ann), anc(bob,pat), anc(pat,jim)} \} \cup M_2
\]

\[
M_4 = T_P(M_3) = \{ \text{anc(pam,ann), anc(pam,pat), anc(tom,ann), anc(tom,pat), anc(bob,jim)} \} \cup M_3
\]

\[
M_5 = T_P(M_4) = \{ \text{anc(pam,jim), \{anc(tom,jim)\}} \} \cup M_4
\]

\[
M_6 = T_P(M_5) = M_5
\]
Computing Mp: Practical Considerations

- Computing the least Herbrand model, Mp, as the least fixed point of Tp:
 - terminates for *Datalog* programs (programs w/o function symbols)
 - may not terminate in general.
- For programs with function symbols, computing logical consequence by first computing Mp is *impractical*.
- Even for Datalog programs, computing least fixed point directly using the Tp operator is wasteful (known as *Naive* evaluation).
- Note that $T^p_i(\emptyset) \subseteq T^p_{i+1}(\emptyset)$.
- We can calculate $\Delta T^p_{i+1}(\emptyset) = T^p_{i+1}(\emptyset) - T^p_i(\emptyset)$ [The difference between the sets computed in two successive iterations] This strategy is known as *semi-naive* evaluation.