
CSE532CSE532
Supplemental material on Java

CSE 532, Theory of Database Systems
Ston Brook Uni ersitStony Brook University

http://www.cs.stonybrook.edu/~cse532

Supplemental Java material
Recommended textbook for Java programming: Introduction To
Java Programming, Comprehensive Version, Author: Daniel Liang,
Publisher: Pearson , Edition: 8th, 2010. , ,
 Learn how to load a driver, connect to a database, execute statements,
and process result sets using JDBC (§37.4)
 Prepared statements to execute precompiled SQL statements (§37.5)Prepared statements to execute precompiled SQL statements (§37.5)
 Use callable statements to execute stored SQL procedures and
functions (§37.6)
 Explore database metadata using the DatabaseMetaData and Explore database metadata using the DatabaseMetaData and
ResultSetMetaData interfaces (§37.7).

 Create a universal SQL client for accessing local or remote
d t b (§38 2)database (§38.2).
 Execute SQL statements in a batch mode (§38.3).
 Process updateable and scrollable result sets (§38.4).

(c) Pearson and P.Fodor (CS Stony Brook)

p (§)
 Use RowSet (§38.5).

2

Supplemental Java material
 Java Servlets (§39).
 Deploy servlets on application servers such as Tomcat (§39.3).
 Describe the servlets API (§39 4) Describe the servlets API (§39.4).
 Create simple servlets (§39.5).
 Create and process HTML forms (§39.6).
 Develop servlets to access databases (§39.7).
 Use hidden fields, cookies, and HttpSession to track sessions(§39.8)

JavaServer Pages (JSP) (§40)JavaServer Pages (JSP) (§40).
 How a JSP page is processed (§40.3).
 Use JSP constructs to code JSP script (§40.4).
 Use predefined variables and directives in JSP (§§40.5-40.6).
 Use JavaBeans components in JSP (§40.7-40.9).
 Develop database applications using JSP (§40 7-40 9)

(c) Pearson and P.Fodor (CS Stony Brook)

Develop database applications using JSP (§40.7 40.9).

3

Supplemental Java material
 JavaServer Faces (JSF) (§41).
 Create JSF UI components (e.g., Static Text, Text Field, Button,
Drop Down List List Box Radio Button Group Check Box Group Drop Down List, List Box, Radio Button Group, Check Box Group,
Text Area, Table) (§41.3).
 Use JSF containers Grid Panel, Group Panel, and Layout Panel to
group components (§41 4)group components (§41.4).
 Bind data with JSF UI components (§41.5).
Validate input using Message components (§41.6).

(c) Pearson and P.Fodor (CS Stony Brook)
4

Why Java for Database Programming
and Web development?and Web development?

 First Java is platform independent You can develop platform-First, Java is platform independent. You can develop platform
independent database applications using SQL and Java for any
relational database systems. y

 Second, the support for accessing database systems from Java is
built into Java API, so you can create database applications using
all Java code with a common interface.

 Third, Java is taught in almost every university either as the first
programming language or as the second programming language.

(c) Pearson and P.Fodor (CS Stony Brook)
5

The Architecture of JDBC

Java Applications/
Applets

JDBC API

DB2 JDBC
Driver

JDBC-ODBC
Bridge Driver

DB2 ODBC
Driver

Microsoft
ODBC Driver

Local or remote
DB2 DB

Microsoft Access
Database

(c) Pearson and P.Fodor (CS Stony Brook)
6

The JDBC Interfaces

Dri er Loading driversDriver

Connection Connection

Loading drivers

Establishing
connections

Statement Statement Statement Statement

Creating and
executing
statements

ResultSet ResultSet ResultSet ResultSet

statements

Processing
ResultSet

(c) Pearson and P.Fodor (CS Stony Brook)
7

Developing JDBC Programs

Loading
drivers

E bli hi

Statement to load a driver:
Class.forName("JDBCDriverClass");

Establishing
connections

Creating and

A driver is a class. For example:

Database Driver Class Source
Access s n jdbc odbc JdbcOdbcDri er Alread in JDKexecuting

statements

Processing

Access sun.jdbc.odbc.JdbcOdbcDriver Already in JDK
MySQL com.mysql.jdbc.Driver Website
Oracle oracle.jdbc.driver.OracleDriver Website

g
ResultSet The JDBC-ODBC driver for Access is bundled in JDK.

MySQL driver class is in mysqljdbc.jar
Oracle driver class is in classes12.jarj

To use the MySQL and Oracle drivers, you have to add mysqljdbc.jar and
classes12.jar in the classpath using the following DOS command on
Windows:

(c) Pearson and P.Fodor (CS Stony Brook)
8

Windows:
classpath=%classpath%;c:\book\mysqljdbc.jar;c:\book\classes12.jar

Importing JDBC DB2 Driver into Eclipse
 To use JDBC in your application, you must first download

and install a DB2 JDBC driver: db2jcc.jar
 htt // f ld /d jdb d i db2 9 0 ht l http://www.aquafold.com/docs-jdbcdrivers-db2-9-0.html

 Once downloaded, you must import the driver into Eclipse:
put the driver's folder in your CLASSPATH variable or add put the driver s folder in your CLASSPATH variable or add
the jar file to your project (Properties->Java Build Paths)
 To import db2jcc.jar, click on the Window menu in Eclipse and

select Preferences. In the resulting dialog box, choose Java then
Buid Path then User Libraries. Click on New and define a
library name, e.g., DB2LIBS. Then click Add JARs, navigate to y , g , J , g
the folder that contains db2jcc.jar and add the driver to the
library.

 Al dd db2j j t t t' lib f ld t bl th l t

(c) Pearson and P.Fodor (CS Stony Brook)

 Also add db2jcc.jar to tomcat's lib folder to enable the servlet
to access the database.

9

Importing JDBC DB2 Driver into Eclipse
 To use JDBC in your application, you must first download

and install a DB2 JDBC driver: db2jcc.jar
 htt // f ld /d jdb d i db2 9 0 ht l http://www.aquafold.com/docs-jdbcdrivers-db2-9-0.html

 Once downloaded, you must import the driver into Eclipse:
put the driver's folder in your CLASSPATH variable or add put the driver s folder in your CLASSPATH variable or add
the jar file to your project (Properties->Java Build Paths)
 To import db2jcc.jar, click on the Window menu in Eclipse and

select Preferences. In the resulting dialog box, choose Java then
Buid Path then User Libraries. Click on New and define a
library name, e.g., DB2LIBS. Then click Add JARs, navigate to y , g , J , g
the folder that contains db2jcc.jar and add the driver to the
library.

 Al dd db2j j t t t' lib f ld t bl th l t

(c) Pearson and P.Fodor (CS Stony Brook)

 Also add db2jcc.jar to tomcat's lib folder to enable the servlet
to access the database.

10

Tomcat plugin in Eclipse
 To run your application, you would need to install Tomcat on

your machine.
 htt //t t h http://tomcat.apache.org

 The easiest way to debug and run your application is to install
the Eclipse Tomcat plugin:the Eclipse Tomcat plugin:
 http://marketplace.eclipse.org/content/mongrel

(c) Pearson and P.Fodor (CS Stony Brook)
11

Other DB2 links
S B k DB2  Stony Brook DB2 server:
 http://www.cs.sunysb.edu/facilities/windowslab/services/db2.html

 DB2 Express Server (needed if you want to set up a database on your own p (y p y
machine):

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=swg-db2expressc

l d l DB2 Client (you need it to connect to DB2 remotely):
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-idsrc11

 Data studio: http://ibm.com/db2/express/download.html - Look under "Get free
tools.“
 Using Data Studio:

http://publib.boulder.ibm.com/infocenter/idm/v2r2/index.jsp?topic=/com.ibm.datatools.ds.nav.doc/topics/cprodov
er ds htmler_ds.html

 DB2 University Training courses: http://www.db2university.com/courses

 DB2 9r7 Database Reference: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

l k b f h l f f h h

(c) Pearson and P.Fodor (CS Stony Brook)

Click on Database Reference in the left frame, then SQL, then Statements. For
user-defined data types (UDTs), see CREATE TYPE (both row and structured).

12

Other DB2 links
DB2 A li i D l ' G id V i 7  DB2 Application Developer's Guide. Version 7: http://www.database-

books.us/db2_0002.php - see Chapter 12 and 21.

 The Developer Handbook: http://www.redbooks.ibm.com/redbooks/pdfs/sg247301.pdf

Chapter 2 (XML) and Chapter 5 (Java+XML)

 Extremely pureXML in DB2 10 for z/OS:
htt // db k ib / db k / df / 247915 df Chapters 4 5 6 5(user defined http://www.redbooks.ibm.com/redbooks/pdfs/sg247915.pdf - Chapters 4, 5, 6.5(user-defined
functions), 7.

 Getting started with DB2 Express: http://public.dhe.ibm.com/software/dw/db2/express-

c/wiki/Getting_Started_with_DB2_Express_v9.7_p4.pdf Chapter 15 for XQuery

 More examples of using XQuery and JDBC:
 http://www.ibm.com/developerworks/data/library/techarticle/dm-0605saraccop p y

 http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.sql.do
c/doc/c0024467.htm

(c) Pearson and P.Fodor (CS Stony Brook)
13

Developing JDBC Programs

Loading drivers

Establishing
ti

Connection connection = DriverManager.getConnection(databaseURL);

Database URL Pattern
connections

Creating and
executing

Access jdbc:odbc:dataSource
MySQL jdbc:mysql://hostname/dbname
Oracle jdbc:oracle:thin:@hostname:port#:oracleDBSID

statements

Processing
ResultSet

Examples:
For Access:

Connection connection = DriverManager.getConnection

See Supplement IV.D for
creating an ODBC data source

Connection connection DriverManager.getConnection
("jdbc:odbc:ExampleMDBDataSource");

For MySQL:
C i i D i M C iConnection connection = DriverManager.getConnection
("jdbc:mysql://localhost/test");

For Oracle:

(c) Pearson and P.Fodor (CS Stony Brook)
14

For Oracle:
Connection connection = DriverManager.getConnection
("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl", "scott", "tiger");

Developing JDBC Programs

Loading drivers

Establishing
connections

Creating statement:
Statement statement = connection.createStatement();

connections

Creating and
executing

Executing statement (for update, delete, insert):
statement.executeUpdate

("create table Temp (col1 char(5), col2 char(5))");
statements

Processing
ResultSet

Executing statement (for select):
// Select the columns from the Student table
R ltS t ltS t t t t t QResultSet ResultSet resultSet = statement.executeQuery
("select firstName, mi, lastName from Student where lastName "
+ " = 'Smith'");

(c) Pearson and P.Fodor (CS Stony Brook)
15

Developing JDBC Programs

Loading
drivers

Establishing

Executing statement (for select):
// Select the columns from the Student table
ResultSet resultSet = stmt.executeQuery

Establishing
connections

Creating and
i

("select firstName, mi, lastName from Student where lastName "
+ " = 'Smith'");

P i R l S (f l)executing
statements

Processing

Processing ResultSet (for select):
// Iterate through the result and print the student names
while (resultSet.next())
System out println(resultSet getString(1) + " " + resultSet getString(2)g

ResultSet
System.out.println(resultSet.getString(1) + " " + resultSet.getString(2)
+ ". " + resultSet.getString(3));

(c) Pearson and P.Fodor (CS Stony Brook)
16

import java.sql.*;
public class SimpleJdbc {
public static void main(String[] args)

throws SQLException, ClassNotFoundException {

Simple
JDBC throws SQLException, ClassNotFoundException {

// Load the JDBC driver
Class.forName("com.mysql.jdbc.Driver");
System.out.println("Driver loaded");

//

JDBC
Example

// Establish a connection
Connection connection = DriverManager.getConnection
("jdbc:mysql://localhost/test");

System.out.println("Database connected");

// Create a statement
Statement statement = connection.createStatement();

// Execute a statement
ResultSet resultSet = statement.executeQuery
("select firstName, mi, lastName from Student where lastName "
+ " = 'Smith'");

// Iterate through the result and print the student names// Iterate through the result and print the student names
while (resultSet.next())
System.out.println(resultSet.getString(1) + "\t" +
resultSet.getString(2) + "\t" + resultSet.getString(3));

(c) Pearson and P.Fodor (CS Stony Brook)
17

// Close the connection
connection.close();

}
}

Processing Statements
 Once a connection to a particular database is established, it
can be used to send SQL statements from your program to the can be used to send SQL statements from your program to the
database.

 JDBC provides the Statement PreparedStatement and  JDBC provides the Statement, PreparedStatement, and
CallableStatement interfaces to facilitate sending statements to
a database for execution and receiving execution results from
the database.

(c) Pearson and P.Fodor (CS Stony Brook)
18

Processing Statements Diagram

(c) Pearson and P.Fodor (CS Stony Brook)
19

The execute, executeQuery, and
executeUpdate MethodsexecuteUpdate Methods
The methods for executing SQL statements are execute,
executeQuery, and executeUpdate – each one accepts a string Q y p p g
containing a SQL statement as an argument (it is passed to the
database for execution).

 The execute method should be used if the execution produces
multiple result sets, multiple update counts, or a combination of
result sets and update counts.

The executeQuery method should be used if the execution
produces a single result set (such as in the case of a SQL select
statement) statement).

The executeUpdate method should be used if the statement
results in a single update count or no update count, such as a SQL

(c) Pearson and P.Fodor (CS Stony Brook)

g p p , Q
INSERT, DELETE, UPDATE, or DDL statement

20

PreparedStatement
 The PreparedStatement interface is designed to execute
dynamic SQL statements and SQL-stored procedures with IN y Q Q p
parameters.

 These SQL statements and stored procedures are precompiled
f ff h dl dfor efficient use when repeatedly executed.

Statement pstmt = connection.prepareStatement

("insert into Student (firstName, mi, lastName) +

values (?, ?, ?)");

(c) Pearson and P.Fodor (CS Stony Brook)
21

Retrieving Database Metadata

 Database metadata is the information that describes database
itself. itself.
 JDBC provides the DatabaseMetaData interface for obtaining
database wide information and the ResultSetMetaData interface
f b h f h f lfor obtaining the information on the specific ResultSet.
The DatabaseMetaData interface provides more than 100
methods for getting database metadata concerning the database as g g g
a whole.
These methods can be divided into three groups: for retrieving general
information for finding database capabilities and for getting object information, for finding database capabilities, and for getting object
descriptions.

(c) Pearson and P.Fodor (CS Stony Brook)
22

DatabaseMetaData dbMetaData = connection.getMetaData();

System.out.println("database URL: " + dbMetaData.getURL());
System.out.println("database username: " +

dbMetaData.getUserName());
System.out.println("database product name: " +

dbM t D t tD t b P d tN ())dbMetaData.getDatabaseProductName());
System.out.println("database product version: " +

dbMetaData.getDatabaseProductVersion());
System.out.println("JDBC driver name: " +

dbMetaData getDriverName());dbMetaData.getDriverName());
System.out.println("JDBC driver version: " +

dbMetaData.getDriverVersion());
System.out.println("JDBC driver major version: " +

new Integer(dbMetaData.getDriverMajorVersion()));new Integer(dbMetaData.getDriverMajorVersion()));
System.out.println("JDBC driver minor version: " +

new Integer(dbMetaData.getDriverMinorVersion()));
System.out.println("Max number of connections: " +

new Integer(dbMetaData.getMaxConnections()));g (g ()))
System.out.println("MaxTableNameLentgh: " +

new Integer(dbMetaData.getMaxTableNameLength()));
System.out.println("MaxColumnsInTable: " +

new Integer(dbMetaData.getMaxColumnsInTable()));

(c) Pearson and P.Fodor (CS Stony Brook)
23

connection.close();

Batch Updates
To improve performance, JDBC 2 introduced the batch update for
processing nonselect SQL commands (a batch update consists of a sequence
of nonselect SQL commands): these commands are collected in a batch and
submitted to the database all together.

Statement statement = conn.createStatement();

// Add SQL d t th b t h// Add SQL commands to the batch
statement.addBatch("create table T (C1 integer, C2 varchar(15))");
statement.addBatch("insert into T values (100, 'Smith')");
statement.addBatch("insert into T values (200, 'Jones')");

// Execute the batch
int count[] = statement.executeBatch();

The executeBatch() method returns an array
of counts, each of which counts the number
of the rows affected by the SQL command.
The first count returns 0 because it is a DDL

(c) Pearson and P.Fodor (CS Stony Brook)
24

command. The rest of the commands return
1 because only one row is affected.

Scrollable and Updateable Result Set

A result set maintains a cursor pointing to its current row of data
and data can be accessed sequentially:q y
 Initially the cursor is positioned before the first row.
 JDBC1: The next() method moves the cursor forward to the next row
(k ti l f d di) (known as sequential forward reading).

 JDBC 2: you can scroll the rows both forward and backward and move
the cursor to a desired location using the first, last, next, previous,
absolute, or relative methods.

Additionally, you can insert, delete, or update a row in the result set and have the
changes automatically reflected in the database.

(c) Pearson and P.Fodor (CS Stony Brook)
25

Creating Scrollable Statements

To obtain a scrollable or updateable result set, you must first create a
statement with an appropriate type and concurrency mode. For a static
statement, use: TYPE FORWARD ONLY, :

Statement statement = connection.createStatement

(int resultSetType, int resultSetConcurrency);

F d

TYPE_FORWARD_ONLY
TYPE_SCROLL_INSENSITIVE
TYPE_SCROLL_SENSITIVE

For a prepared statement, use
PreparedStatement statement = connection.prepareStatement

(String sql, int resultSetType, int resultSetConcurrency);

The resulting set is scrollable:
ResultSet resultSet = statement e ecuteQuer (uer)

CONCUR_READ_ONLY
CONCUR_UPDATABLE

ResultSet resultSet = statement.executeQuery(query);

(c) Pearson and P.Fodor (CS Stony Brook)
26

RowSet: JdbcRowSet and CachedRowSet
 d d f h b d l f d b  JDBC 2 introduced a new RowSet interface that can be used to simplify database

programming: the RowSet interface extends java.sql.ResultSet with additional capabilities
that allow a RowSet instance to be configured to connect to a JDBC url, username,
password, set a SQL command, execute the command, and retrieve the execution result.

 «interface»
java sql ResultSetjava.sql.ResultSet

«interface»
javax.sql.RowSet

«interface»
javax.sql.rowset.JdbcRowSet

«interface»
javax.sql.rowset.CachedRowSet

(c) Pearson and P.Fodor (CS Stony Brook)
27

com.sun.rowset.JdbcRowSetImpl com.sun.rowset.CachedRowSetImpl

SQL BLOB and CLOB Types
Database can store not only numbers and strings, but also images. SQL3 introduced a
new data type BLOB (Binary Large OBject) for storing binary data, which can be used to
store images.

BLOB

Another new SQL3 type is CLOB (Character Large OBject) for storing a large text in
the character format.

JDBC 2 introduced the interfaces java.sql.Blob and java.sql.Clob to support mapping

CLOB

for these new SQL types. JBDC 2 also added new methods, such as getBlob,
setBinaryStream, getClob, setBlob, and setClob, in the interfaces ResultSet and
PreparedStatement to access SQL BLOB, and CLOB values.

To store an image into a cell in a table, the corresponding column for the cell must be of
the BLOB type. For example, the following SQL statement creates a table whose type yp p g yp
for the flag column is BLOB.

create table Country(name varchar(30), flag blob,
description varchar(255));

(c) Pearson and P.Fodor (CS Stony Brook)
28

Storing and Retrieving Images in JDBC
To insert a record with images to a table, define a prepared statement like this one:

PreparedStatement pstmt = connection.prepareStatement(

"insert into Country values(?, ?, ?)");

Images are usually stored in files. You may first get an instance of InputStream for an
image file and then use the setBinaryStream method to associate the input stream with a
cell in the table, as follows:

// Store image to the table cell

File file = new File(imageFilenames[i]);

InputStream inputImage = new FileInputStream(file);
Store
image

pstmt.setBinaryStream(2, inputImage, (int)(file.length()));

To retrieve an image from a table, use the getBlob method, as shown below:
// Store image to the table cellRetrieve g

Blob blob = rs.getBlob(1);

ImageIcon imageIcon = new ImageIcon(

blob.getBytes(1, (int)blob.length()));

image

(c) Pearson and P.Fodor (CS Stony Brook)
29

g y g

Java Servlets

 Servlet technology is primarily designed for use with the
HTTP protocol of the Web HTTP protocol of the Web.

 Servlets are Java programs that run on a Web server.

 Java servlets can be used to process client requests or  Java servlets can be used to process client requests or
produce dynamic Web pages.

(c) Pearson and P.Fodor (CS Stony Brook)
30

HTTP d HTMLHTTP and HTML

Web Server Host

Host Machine File System

Web Browser Web Server
http://www.webserverhost.com/index.html

 /htdocs/index.html

HTML Page

(c) Pearson and P.Fodor (CS Stony Brook)
31

From CGI to Java Servlets
The Common Gateway Interface, or CGI, was proposed to
generate dynamic Web contents.

The interface provides a standard framework for Web servers
to interact with external programs, known as the CGI
programs. programs.

 Java servlets are Java programs that function like CGI programs:
they are executed upon the request from Web browser. y p q

All the servlets run inside a servlet container (server or engine).

A ser let container is a single process that runs a JVM that creates a A servlet container is a single process that runs a JVM that creates a
thread to handle each servlet (all the threads share the same memory
allocated to the JVM).

(c) Pearson and P.Fodor (CS Stony Brook)
32

How Does CGI Work?

Web Server Host

W b B Web Server
Send a request URL

Host Machine File System

/htdocs/index htmlWeb Browser Web Server

HTML Page returned

 /htdocs/index.html
 /cgi-bin/getBalance.cgi

Spawn CGI
Process

Generate
Response

Execute CGI
Program

Process Response

Get CGI Code

(c) Pearson and P.Fodor (CS Stony Brook)
33

The GET and POST Methods

The two most common HTTP requests (methods) are: GET
and POST. and POST.

The Web browser issues a request using a URL or an HTML
form to trigger the Web server to execute a CGI program. gg p g

When issuing a CGI request directly from a URL, the GET
method is used with a “query string”: the URLq y g

(c) Pearson and P.Fodor (CS Stony Brook)
34

Query String

The URL query string consists of the location of the CGI
program parameters and their values program, parameters and their values.

http://www.webserverhost.com/cgi-bin/getBalance.cgi

?accountId=scott+smith&password=tiger?accountId scott+smith&password tiger

The ? symbol separates the program from the parameters.

The parameter name and value are associated using the = symbol.

The parameter pairs are separated using the & symbol.

The + symbol denotes a space character.

(c) Pearson and P.Fodor (CS Stony Brook)
35

HTML Forms
HTML forms
enable you to

b it d t t thsubmit data to the
Web server in a
convenient formconvenient form.
The form can
contain text fields, ,
text area, check
boxes, combo
boxes, lists, radio
buttons, and
buttons

(c) Pearson and P.Fodor (CS Stony Brook)
36

buttons.

Creating and Running Servlets

 To run Java servlets, you need a servlet container.
 Many servlet containers are available. y
 Tomcat, developed by Apache, is a standard reference implementation

for Java servlet 2.2 and Java Server Pages 1.1.

(c) Pearson and P.Fodor (CS Stony Brook)
37

The Servlet API
• The servlet API provides the interfaces and classes that support
servlets grouped into two packages: javax.servlet, and
javax.servlet.http.javax.servlet.http.

ServletConfig

Servlet HttpServlet GenericServlet

HttpServletRequest ServletRequest

HttpServletResponseServletResponse

(c) Pearson and P.Fodor (CS Stony Brook)
38

javax.servlet.* javax.servlet.http.*

The Servlet Interface
/**Invoked for every servlet constructed*/
public void init(ServletConfig p0) throws ServletException;

/**Invoked to respond to incoming requests*/
public void service(ServletRequest p0, ServletResponse p1)
th S l tE ti IOE tithrows ServletException, IOException;

/**Invoked to release resource by the servlet*/
public void destroy();

/**Return information about the servlet*// Return information about the servlet /
public String getServletInfo();

/**Return configuration objects of the servlet*/

(c) Pearson and P.Fodor (CS Stony Brook)
39

/**Return configuration objects of the servlet*/
public ServletConfig getServletConfig();

Servlet Life-Cycle

1. The init method is called when the servlet is first created, and is
ll d i l h l i d dnot called again as long as the servlet is not destroyed.

2. The service method is invoked each time the server receives a
request for the servlet The server spawns a new thread and invokesrequest for the servlet. The server spawns a new thread and invokes
service.

3 The destroy method is invoked once all threads within the3. The destroy method is invoked once all threads within the
servlet's service method have exited or after a timeout period has
passed. This method releases resources for the servlet.

(c) Pearson and P.Fodor (CS Stony Brook)
40

The HTTPServlet Class

 The HttpServlet class defines a servlet for the HTTP protocol.

 It e tends GenericSer let and implements the ser ice method as a  It extends GenericServlet and implements the service method as a
dispatcher of HTTP requests.

 The HTTP requests are processed in the following methods: doGet, q p g ,
doPost, doDelete, doPut, doOptions, and doTrace:

protected void doXxx(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, java.io.IOException

(c) Pearson and P.Fodor (CS Stony Brook)
41

The HTTPServlet Class

 Every doXxx method in the HttpServlet class has an
argument of the HttpServletRequest type which is an argument of the HttpServletRequest type, which is an
object that contains HTTP request information including
parameter name and values, attributes, and an input p p
stream.

 Every doXxx method in the HttpServlet class has an
argument of the HttpServletResponse type, which is an
object that assists a servlet in sending a response to the
li client.

(c) Pearson and P.Fodor (CS Stony Brook)
42

Creating Servlets

 The servlet engine controls the servlets using the init,
doGet doPost destroy and other methods By default doGet, doPost, destroy, and other methods. By default,
the doGet and doPost methods do nothing.

 To handle the GET request you need to override the  To handle the GET request, you need to override the
doGet method; to handle the POST request, you need
to override the doPost method.

(c) Pearson and P.Fodor (CS Stony Brook)
43

(c) Pearson and P.Fodor (CS Stony Brook)
44

(c) Pearson and P.Fodor (CS Stony Brook)
45

(c) Pearson and P.Fodor (CS Stony Brook)
46

(c) Pearson and P.Fodor (CS Stony Brook)
47

(c) Pearson and P.Fodor (CS Stony Brook)
48

Example: Obtaining Current Time
Based on Locale and Time ZoneBased on Locale and Time Zone

(c) Pearson and P.Fodor (CS Stony Brook)
49

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import java.text.*;

public class TimeForm extends HttpServlet {

private static final String CONTENT_TYPE = "text/html";

private Locale[] allLocale = Locale.getAvailableLocales();

private String[] allTimeZone = TimeZone getAvailableIDs();private String[] allTimeZone TimeZone.getAvailableIDs();

/** Process the HTTP Get request */

public void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

response.setContentType(CONTENT_TYPE);

PrintWriter out = response.getWriter();

out.println("<h3>Choose locale and time zone</h3>");

t i tl ("<f th d \" t\" ti " +out.println("<form method=\"post\" action=" +

"/liangweb/TimeForm>");

out.println("Locale <select size=\"1\" name=\"locale\">");

// Fill in all locales

(c) Pearson and P.Fodor (CS Stony Brook)

//

for (int i = 0; i < allLocale.length; i++) {

50

out.println("<option value=\"" + i +"\">" +

allLocale[i].getDisplayName() + "</option>");

}

out.println("</select>");

// Fill in all time zones

out.println("<p>Time Zone<select size=\"1\" name=\"timezone\">");

for (int i = 0; i < allTimeZone.length; i++) {

out.println("<option value=\"" + allTimeZone[i] +"\">" +

allTimeZone[i] + "</option>");

}}

out.println("</select>");

out.println("<p><input type=\"submit\" value=\"Submit\" >");

out.println("<input type=\"reset\" value=\"Reset\"></p>");

out.println("</form>");

out.close(); // Close stream

}

/** P th HTTP P t t *//** Process the HTTP Post request */

public void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

response.setContentType(CONTENT TYPE);

(c) Pearson and P.Fodor (CS Stony Brook)

p yp (_);

PrintWriter out = response.getWriter();

out.println("<html>"); ...51

Database Programming Using Servlets

 Many dynamic Web applications use databases to store
and manage data and manage data.

 Servlets can connect to any relational database via JDBC.
C ti l t t d t b i diff t f Connecting a servlet to a database is no different from
connecting a Java application or applet to a database.

 If you know Java servlets and JDBC, you can combine
them together to develop interesting and practical Web
based interactive projects immediately based interactive projects immediately.

(c) Pearson and P.Fodor (CS Stony Brook)
52

Example: Registering Student into a Database

(c) Pearson and P.Fodor (CS Stony Brook)
53

<html> <!-- SimpleRegistration.html -->
<head><title>Simple Registration without Confirmation</title></head>
<body>
<form method = "post" action = "/liangweb/SimpleRegistration"><form method post action /liangweb/SimpleRegistration >
<p>Last Name *

<input type = "text" name = "lastName">
First Name *
<input type = "text" name = "firstName">
MI i t t "t t" " i" i "3"MI <input type = "text" name = "mi" size = "3">

</p>
<p>Telephone <input type = "text" name = "telephone" size = "20">

Email <input type = "text" name = "email" size = "28">
</p>p
<p>Street <input type = "text" name = "street" size = "50">
</p>
<p>City <input type = "text" name = "city" size = "23">

State
<select size = "1" name = "state"><select size = "1" name = "state">
<option value = "GA">Georgia-GA</option>
<option value = "OK">Oklahoma-OK</option>
<option value = "IN">Indiana-IN</option>

</select>
Zip <input type = "text" name = "zip" size = "9">

</p>
<p><input type = "submit" name = "Submit" value = "Submit">

<input type = "reset" value = "Reset">
</p>

(c) Pearson and P.Fodor (CS Stony Brook)
54

</p>
</form>
<p>* required fields</p>

</body>
</html>

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;import java.sql. ;
public class SimpleRegistration extends HttpServlet {

// Use a prepared statement to store a student into the database
private PreparedStatement pstmt;
/** Initialize global variables */
bli id i it() th S l tE ti {public void init() throws ServletException {
initializeJdbc();

}
/** Process the HTTP Post request */
public void doPost(HttpServletRequest request, HttpServletResponsep (p q q , p p

response) throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
// Obtain parameters from the client
String lastName = request getParameter("lastName");String lastName = request.getParameter("lastName");
String firstName = request.getParameter("firstName");
String mi = request.getParameter("mi");
String phone = request.getParameter("telephone");
String email = request.getParameter("email");
String address = request.getParameter("street");
String city = request.getParameter("city");
String state = request.getParameter("state");
String zip = request.getParameter("zip");
try {

(c) Pearson and P.Fodor (CS Stony Brook)
55

try {
if (lastName.length() == 0 || firstName.length() == 0) {
out.println("Last Name and First Name are required");
return; // End the method

}

storeStudent(lastName, firstName, mi, phone, email, address,
city, state, zip);

out.println(firstName + " " + lastName +
" is now registered in the database"); } is now registered in the database); }

catch(Exception ex) {
out.println("Error: " + ex.getMessage());

}
finally {

t l () // Cl tout.close(); // Close stream
}

}
/** Initialize database connection */
private void initializeJdbc() {p () {
try {
// Declare driver and connection string
String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String connectionString = "jdbc:odbc:exampleMDBDataSource";
// For MySQL// For MySQL
// String driver = "com.mysql.jdbc.Driver";
// String connectionString = "jdbc:mysql://localhost/test";
// For Oracle
// String driver = "oracle.jdbc.driver.OracleDriver";
// String connectionString = "jdbc:oracle:" +
// "thin:scott/tiger@liang.armstrong.edu:1521:orcl";
// Load the driver
Class.forName(driver);
// Connect to the sample database

(c) Pearson and P.Fodor (CS Stony Brook)
56

// Connect to the sample database
Connection conn = DriverManager.getConnection
(connectionString);

// Create a Statement
pstmt = conn.prepareStatement("insert into Address " +
"(lastName, firstName, mi, telephone, email, street, city, "
+ "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");+ state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?));

}
catch (Exception ex) {
ex.printStackTrace();

}
}}
/** Store a student record to the database */
private void storeStudent(String lastName, String firstName,

String mi, String phone, String email, String address,
String city, String state, String zip) throws SQLException {g y, g , g p) Q p {

pstmt.setString(1, lastName);
pstmt.setString(2, firstName);
pstmt.setString(3, mi);
pstmt.setString(4, phone);
pstmt setString(5 email);pstmt.setString(5, email);
pstmt.setString(6, address);
pstmt.setString(7, city);
pstmt.setString(8, state);
pstmt.setString(9, zip);
pstmt.executeUpdate();

}
}

(c) Pearson and P.Fodor (CS Stony Brook)
57

Session Tracking

 Web servers use Hyper-Text Transport Protocol
(HTTP) (HTTP).

 HTTP is a stateless protocol!

 The HTTP Web server cannot associate requests from a  The HTTP Web server cannot associate requests from a
client together.
 Each request is treated independently by the Web server. q p y y
 This protocol works fine for simple Web browsing, where each

request typically results in an HTML file or a text file being sent
b k t th li t back to the client.

(c) Pearson and P.Fodor (CS Stony Brook)
58

What is a Session ?

 A session can be defined as a series of related
interactions between a single client and the Web server interactions between a single client and the Web server
over a period of time. To track data among requests in a
session is known as session tracking.g

 Session Tracking Techniques
 Using hidden values, using cookies, and using the session

tracking tools from servlet API.

(c) Pearson and P.Fodor (CS Stony Brook)
59

Session Tracking Using Hidden Values

 You can track session by passing data from the servlet to
the client as hidden value in a dynamically generated the client as hidden value in a dynamically generated
HTML form by including a field like this:

<i t t =”hidd ” =”l tN ” l =”S ith”><input type=”hidden” name=”lastName” value=”Smith”>

 So the next request will submit the data back to the
servlet.

 The servlet retrieves this hidden value just like any other
parameter value using the getParameter method.

(c) Pearson and P.Fodor (CS Stony Brook)
60

Example: Using Hidden Values in the
Registration formRegistration form
 The client first submits the form using the GET method

and the server collects the data in the form displays the and the server collects the data in the form, displays the
data to the client, and asks the client for confirmation.

 The client confirms it by submitting the request with the The client confirms it by submitting the request with the
hidden values using the POST method.

 Finally, the servlet writes the data to a database. y,

(c) Pearson and P.Fodor (CS Stony Brook)
61

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
public class Registration extends HttpServlet {
private PreparedStatement pstmt;
public void init() throws ServletException {
initializeJdbc();

}
public void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
// Obtain data from the form//
String lastName = request.getParameter("lastName");
String firstName = request.getParameter("firstName"); ...
// Ask for confirmation
out.println("You entered the following data");
out.println("<p>Last name: " + lastName); ...p (p);
// Set the action for processing the answers
out.println("<p><form method=\"post\" action=" +
"/liangweb/Registration>");

// Set hidden values
out.println("<p><input type=\"hidden\" " +out.println(<p><input type \ hidden\ +
"value=" + lastName + " name=\"lastName\">");

...
out.println("<p><input type=\"submit\" value=\"Confirm\" >");
out.println("</form>");

(c) Pearson and P.Fodor (CS Stony Brook)
62

out.close(); // Close stream
}

Session Tracking Using Cookies

 You can track sessions using cookies.

 Cookies are small text files that store sets of name=value pairs on Cookies are small text files that store sets of name value pairs on
the disk in the client’s computer.

 Cookies are sent from the server through the instructions in the
header of the HTTP response.

 The instructions tell the browser to create a cookie with a given
name and its associated value If the browser already has the cookie name and its associated value. If the browser already has the cookie
with the key name, the value will be updated.

 The browser will then send the cookie with any request submitted
to the same server.

 Cookies can have expiration dates set, after which the cookies will
t b t t th

(c) Pearson and P.Fodor (CS Stony Brook)

not be sent to the server.

63

Session Tracking Using the Servlet API

 The problems of session tracking with hidden data and
cookies are that data are not secured and difficult to deal cookies are that data are not secured and difficult to deal
with large set of data.

 J l t API id i t ki t l hi h  Java servlet API provides a session tracking tool, which
enables tracking of a large set of data.

D b d bj  Data can be stored as objects.

 Data are kept on the server side so they are secure.

(c) Pearson and P.Fodor (CS Stony Brook)
64

The HttpSession Class

 The Java servlet API for session tracking:

 Create a session object using the getSession method in the
HttpServletRequest interface:

Htt S i i = t tS i (t)HttpSession session = request.getSession(true);

 This obtains the session or creates a new session if the client does not have
a session on the server.

 The HttpSession class provides the methods for reading and
storing data to the session, and for manipulating the session.

(c) Pearson and P.Fodor (CS Stony Brook)
65

Java Server Pages (JSP)
<!-- CurrentTime.jsp -->

<HTML>

<HEAD>

<TITLE>

C TiCurrentTime

</TITLE>

</HEAD></HEAD>

<BODY>

Current time is <%= new java.util.Date() %>j ()

</BODY>

</HTML>

(c) Pearson and P.Fodor (CS Stony Brook)
66

How Is a JSP Processed?

Web Server Host

W b S
Send a request URL

Host Machine File System

/ l / S il j

URL Example
 http://www.server.com:8080/servlet/JSPFile

Web Browser Web Server

HTML Page returned

 /servlet/JSPFile.jsp

Process Generate Generated Get JSP

Servlet
Engine

Servlet Response

Get Servlet JSP
Translator

Servlatesfile

(c) Pearson and P.Fodor (CS Stony Brook)
67

JSP Constructs
Th h f i i iThere are three types of scripting constructs you can use to insert
Java code into the resultant servlet. They are expressions, scriptlets,
and declarations.

expression A JSP expression is used to insert a Java
expression directly into the output. It has the

scriptlet

declaration

expression directly into the output. It has the
following form:

<%= Java-expression %>declaration % Java expression %

The expression is evaluated, converted into a
string and sent to the output stream of thestring, and sent to the output stream of the
servlet.

(c) Pearson and P.Fodor (CS Stony Brook)
68

JSP Constructs
Th h f i i iThere are three types of scripting constructs you can use to insert
Java code into the resultant servlet. They are expressions, scriptlets,
and declarations.

expression A JSP scriptlet enables you to insert a Java
statement into the servlet’s jspService method,

scriptlet

declaration

statement into the servlet s jspService method,
which is invoked by the service method. A JSP
scriptlet has the following form:

declaration

<% Java statement %>

(c) Pearson and P.Fodor (CS Stony Brook)
69

JSP Constructs
Th h f i i iThere are three types of scripting constructs you can use to insert
Java code into the resultant servlet. They are expressions, scriptlets,
and declarations.

expression A JSP declaration is for declaring methods or
fields into the servlet. It has the following form:

scriptlet

declaration

fields into the servlet. It has the following form:

<%! Java method or field declaration %>
declaration

(c) Pearson and P.Fodor (CS Stony Brook)
70

JSP Comment

HTML comments have the following form:

<!-- HTML Comment -->

If you don’t want the comment appear in the
resultant HTML file, use the following comment
in JSP:

<%-- JSP Comment --%><%-- JSP Comment --%>

(c) Pearson and P.Fodor (CS Stony Brook)
71

Computing Factorials<HTML>

<HEAD>

<TITLE>

Factorial

</TITLE>

</HEAD>

<BODY>

JSP scriptlet
<BODY>

<% for (int i = 0; i <= 10; i++) { %>

Factorial of <%= i %> is

<%= computeFactorial(i) %>

<% } %>

<%! private long computeFactorial(int n) {

JSP expression
p g p () {

if (n == 0)

return 1;

else

return n * computeFactorial(n - 1);

}

%>

(c) Pearson and P.Fodor (CS Stony Brook)
72

</BODY>

</HTML>

JSP declaration

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Represents the client’s request which is an
response
out
session

Represents the client s request, which is an
instance of HttpServletRequest. You can use it
to access request parameters, HTTP headers

session
application
config

such as cookies, hostname, etc.

pagecontext
page

(c) Pearson and P.Fodor (CS Stony Brook)
73

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Represents the servlet’s response which is an
response

out
session

Represents the servlet s response, which is an
instance of HttpServletResponse. You can use it
to set response type and send output to the

session
application
config

client.

pagecontext
page

(c) Pearson and P.Fodor (CS Stony Brook)
74

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Represents the character output stream which
response
out

session

Represents the character output stream, which
is an instance of PrintWriter obtained from
response.getWriter(). You can use it to send

session
application
config

character content to the client.

pagecontext
page

(c) Pearson and P.Fodor (CS Stony Brook)
75

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Represents the HttpSession object associated
response
out
session

Represents the HttpSession object associated
with the request, obtained from
request.getSession().session

application
config
pagecontext
page

(c) Pearson and P.Fodor (CS Stony Brook)
76

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Represents the ServletContext object for
response
out
session

Represents the ServletContext object for
storing persistent data for all clients. The
difference between session and application is session

application

config

that session is tied to one client, but application
is for all clients to share persistent data.

pagecontext
page

(c) Pearson and P.Fodor (CS Stony Brook)
77

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Represents the ServletConfig object for the
response
out
session

Represents the ServletConfig object for the
page.

session
application
config

pagecontext
page

(c) Pearson and P.Fodor (CS Stony Brook)
78

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Represents the PageContext object
response
out
session

Represents the PageContext object.
PageContext is a new class introduced in JSP to
give a central point of access to many page session

application
config

attributes.

pagecontext

page

(c) Pearson and P.Fodor (CS Stony Brook)
79

JSP Predefined Variables
Y i bl i JSP F i JSP id i hYou can use variables in JSP. For convenience, JSP provides eight
predefined variables from the servlet environment that can be used
with JSP expressions and scriptlets. These variables are also known p p
as JSP implicit objects.

request Page is an alternative to this
response
out
session

Page is an alternative to this.

session
application
config
pagecontext
page

(c) Pearson and P.Fodor (CS Stony Brook)
80

Computing Loan
<!-- ComputeLoan.html -->

<html>

<head>

Write an HTML page that prompts
the user to enter loan amount,
annual interest rate, and number of

<title>ComputeLoan</title>

</head>

<body>

Compute Loan Payment
years. Clicking the Compute Loan
Payment button invokes a JSP to
compute and display the monthly
and total loan payment.

Compute Loan Payment

<form method="get" action="ComputeLoan.jsp">

<p>Loan Amount

<input type="text" name="loanAmount">

Annual Interest Rate

<input type="text" name="annualInterestRate">

Number of Years <input type="text" name="numberOfYears" p yp
size="3"></p>

<p><input type="submit" name="Submit" value="Compute Loan
Payment">

<input type="reset" value="Reset"></p>

</form>

</body>

</html>

(c) Pearson and P.Fodor (CS Stony Brook)
81

<!-- ComputeLoan.jsp -->

<html>

<head>
Predefined<title>ComputeLoan</title>

</head>

<body>

<% double loanAmount = Double parseDouble(

Predefined
variable

<% double loanAmount = Double.parseDouble(

request.getParameter("loanAmount"));

double annualInterestRate = Double.parseDouble(

request.getParameter("annualInterestRate"));

double numberOfYears = Integer.parseInt(

request.getParameter("numberOfYears"));

double monthlyInterestRate = annualInterestRate / 1200;

double monthlyPayment = loanAmount * monthlyInterestRate /y y y /

(1 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));

double totalPayment = monthlyPayment * numberOfYears * 12; %>

Loan Amount: <%= loanAmount %>

Annual Interest Rate: <%= annualInterestRate %>

Number of Years: <%= numberOfYears %>

Monthly Payment: <%= monthlyPayment %>

Total Payment: <%= totalPayment %>

(c) Pearson and P.Fodor (CS Stony Brook)
82

</body>

</html>

JSP Directives

 A JSP directive is a statement that gives the JSP engine
information about the JSP page. information about the JSP page.

<%@ directive attribute="value" %>, or

<%@ directive attribute1="value1"

attribute2="value2"

...

attributen="vlauen" %>

 For example, if your JSP page uses a Java class from a package
other than the ja a lang package ou ha e to use a directi e other than the java.lang package, you have to use a directive
to import this package.

(c) Pearson and P.Fodor (CS Stony Brook)
83

Three JSP Directives
Three possible directives are the following: page, include, and tablib.

page page lets you provide information for the page,
include
tablib

p g y p p g ,
such as importing classes and setting up content
type. The page directive can appear anywhere in
h filthe JSP file.

(c) Pearson and P.Fodor (CS Stony Brook)
84

Three JSP Directives
Three possible directives are the following: page, include, and tablib.

page include lets you insert a file to the servlet when
include
tablib

y
the page is translated to a servlet. The include
directive must be placed where you want the file

b i dto be inserted.

(c) Pearson and P.Fodor (CS Stony Brook)
85

Three JSP Directives
Three possible directives are the following: page, include, and tablib.

page tablib lets you define custom tags.
include
tablib

(c) Pearson and P.Fodor (CS Stony Brook)
86

Attributes for page Directives

import

contentType
session

Specifies one or more packages to be imported
for this page. For example, the directive <%@

i t "j til * j t t *" %>sess o
buffer
autoFlush
isThreadSafe

page import="java.util.*, java.text.*" %>
imports java.util.* and java.text.*.

isThreadSafe
errorPage
isErrorPage

(c) Pearson and P.Fodor (CS Stony Brook)
87

Attributes for page Directives

import
contentType

session

Specifies the MIME type for the resultant JSP
page. By default, the content type is text/html
f JSP Th d f lt t t t f l t isess o

buffer
autoFlush
isThreadSafe

for JSP. The default content type for servlets is
text/plain.

isThreadSafe
errorPage
isErrorPage

(c) Pearson and P.Fodor (CS Stony Brook)
88

Attributes for page Directives

import
contentType
session

Specifies a boolean value to indicate whether the
page is part of the session. By default, session is
tbuffer

autoFlush
isThreadSafe

true.

isThreadSafe
errorPage
isErrorPage

(c) Pearson and P.Fodor (CS Stony Brook)
89

Attributes for page Directives

import
contentType
session

Specifies the output stream buffer size. By
default, it is 8KB. For example, the directive
<%@ b ff "10KB" %> ifi th t thbuffer

autoFlush
isThreadSafe

<%@ page buffer="10KB" %> specifies that the
output buffer size is 10KB. The directive <%@
page buffer="none" %> specifies that a buffer isisThreadSafe

errorPage
isErrorPage

page buffer none %> specifies that a buffer is
not used.

(c) Pearson and P.Fodor (CS Stony Brook)
90

Attributes for page Directives

import
contentType
session

Specifies a boolean value to indicate whether the
output buffer should be automatically flushed

h it i f ll h th ti h ld bbuffer
autoFlush

isThreadSafe

when it is full or whether an exception should be
raised when the buffer overflows. By default,
this attribute is true In this case the bufferisThreadSafe

errorPage
isErrorPage

this attribute is true. In this case, the buffer
attribute cannot be none.

(c) Pearson and P.Fodor (CS Stony Brook)
91

Attributes for page Directives

import
contentType
session

Specifies a boolean value to indicate whether the
page can be accessed simultaneously without
d t ti B d f lt it i t If it i tbuffer

autoFlush
isThreadSafe

data corruption. By default, it is true. If it is set
to false, the JSP page will be translated to a
servlet that implements the SingleThreadModelisThreadSafe

errorPage
isErrorPage

servlet that implements the SingleThreadModel
interface.

(c) Pearson and P.Fodor (CS Stony Brook)
92

Attributes for page Directives

import
contentType
session

errorPage specifies a JSP page that is processed
when an exception occurs in the current page.
F l th di ti <%@buffer

autoFlush
isThreadSafe

For example, the directive <%@ page
errorPage="HandleError.jsp" %> specifies that
HandleError jsp is processed when an exceptionisThreadSafe

errorPage

isErrorPage

HandleError.jsp is processed when an exception
occurs.

· isErrorPage specifies a boolean value to
indicate whether the page can be used as an error
page. By default, this attribute is false.

(c) Pearson and P.Fodor (CS Stony Brook)
93

Example: Computing
Loan Using the Loan
Class

<!-- ComputeLoan.jsp -->

<html>

<head>

Class

Use the Loan class to simplify
ComputeLoan. You can create an

<title>ComputeLoan Using the Loan Class</title>

</head>

<body>

<%@ page import = "chapter40 Loan" %> p
object of Loan class and use its
monthlyPayment() and
totalPayment() methods to compute
the monthly payment and total

<%@ page import = chapter40.Loan %>

<% double loanAmount = Double.parseDouble(

request.getParameter("loanAmount"));

double annualInterestRate = Double.parseDouble(y p y
payment.request.getParameter("annualInterestRate"));

int numberOfYears = Integer.parseInt(

request.getParameter("numberOfYears"));

Loan loan = new Loan(annualInterestRate, numberOfYears, Import a class. The class must be (, ,
loanAmount);

%>

Loan Amount: <%= loanAmount %>

Annual Interest Rate: <%= annualInterestRate %>

p
placed in a package (e.g. package
chapter40).

Annual Interest Rate: <% annualInterestRate %>

Number of Years: <%= numberOfYears %>

Monthly Payment: <%= loan.monthlyPayment() %>

Total Payment: <%= loan.totalPayment() %>

(c) Pearson and P.Fodor (CS Stony Brook)
94

</body>

</html>

JavaBeans Component in JSP

 A class is a JavaBeans component if it has the following
three features:three features:

 The class is public.

 The class has a public constructor with no arguments.

 The class is serializable. (This requirement is not The class is serializable. (This requirement is not
necessary in JSP.)

(c) Pearson and P.Fodor (CS Stony Brook)
95

Using JavaBeans in JSP

 To create an instance for a JavaBeans component, use the
following syntax:following syntax:

<jsp:useBean id="objectName"
=" Att ib t “ l ="Cl N " />scope="scopeAttribute“ class="ClassName" />

 This syntax is equivalent to

<% ClassName objectName = new ClassName() %>

 except that the scope attribute specifies the scope of the object except that the scope attribute specifies the scope of the object.

(c) Pearson and P.Fodor (CS Stony Brook)
96

Scope Attributes

application

session
page

Specifies that the object is bound to the
application. The object can be shared by all

i f th li tip ge
request sessions of the application.

(c) Pearson and P.Fodor (CS Stony Brook)
97

Scope Attributes

application
session

page

Specifies that the object is bound to the client’s
session. Recall that a client’s session is

t ti ll t d b t W b bp ge
request automatically created between a Web browser

and Web server. When a client from the same
browser accesses two servlets or two JSP pagesbrowser accesses two servlets or two JSP pages
on the same server, the session is the same.

(c) Pearson and P.Fodor (CS Stony Brook)
98

Scope Attributes

application
session
page

The default scope, which specifies that the
object is bound to the page.

p g

request

(c) Pearson and P.Fodor (CS Stony Brook)
99

Scope Attributes

application
session
page

Specifies that the object is bound to the client’s
request.

p g
request

(c) Pearson and P.Fodor (CS Stony Brook)
100

How Does JSP Find an Object

 When <jsp:useBean id="objectName"
scope="scopeAttribute" class="ClassName" /> is scope scopeAttribute class ClassName /> is
processed, the JSP engine first searches for the object of
the class with the same id and scope. p

 If found, the preexisting bean is used; otherwise, a new
bean is createdbean is created.

(c) Pearson and P.Fodor (CS Stony Brook)
101

Another Syntax for Creating a Bean
Here is another syntax for creating a bean using the
following statement:

<jsp:useBean id="objectName" scope="scopeAttribute“
class="ClassName" >

some statements

</jsp: seBean></jsp:useBean>

The statements are executed when the bean is created. If the
bean with the same id and className already exists, the
statements are not executed.

(c) Pearson and P.Fodor (CS Stony Brook)
102

Example: Testing Bean Scope
This example creates a JavaBeans component named Count and uses
it to count the number of visits to a page.

<%@ page import = "chapter40.Count" %>
<jsp:useBean id = "count" scope = "application” class = "chapter40.Count">
</jsp:useBean>
<html>

<head>
<title>TestBeanScope</title>

</head>
<bod ><body>

<h3>Testing Bean Scope in JSP (Application)</h3>
<% count.increaseCount(); %>
You are visitor number <%= count.getCount() %>

From host: <%= request.getRemoteHost() %>
and session: <%= session.getId() %>

(c) Pearson and P.Fodor (CS Stony Brook)
103

and session: <% session.getId() %>
</body>

</html>

<!-- TestBeanScope.jsp -->

<%@ page import = "chapter40.Count" %>

<jsp:useBean id="count" scope="application" class="chapter40.Count">

</jsp:useBean>

<HTML>

package chapter40;

<HTML>

<HEAD>

<TITLE>TestBeanScope</TITLE>

</HEAD>

public class Count {

private int count = 0;

/** R t t t */<BODY>

<H3>

Testing Bean Scope in JSP (Application)

</H3>

/** Return count property */

public int getCount() {

return count;

}

<% count.increaseCount(); %>

You are visitor number <%= count.getCount() %>

From host: <%= request.getRemoteHost() %>

/** Increase count */

public void increaseCount() {

count++;

(c) Pearson and P.Fodor (CS Stony Brook)
104

and session: <%= session.getId() %>

</BODY>

</HTML>

count++;

}

}

Getting and Setting Properties
By convention, a JavaBeans component provides the
get and set methods for reading and modifying its
private properties. You can get the property in JSP
using the following syntax:

<jsp:getProperty name="bean“ Idproperty=“age" />

This is equivalent to

<%= beanId getAge() %><%= beanId.getAge() %>

(c) Pearson and P.Fodor (CS Stony Brook)
105

Getting and Setting Properties, cont.
You can set the property in JSP using the following
syntax:

<jsp:setProperty name="beanId“ property=“age“
value=“30" />value= 30 />

This is equivalent to

<% beanId.setAge(30); %>

(c) Pearson and P.Fodor (CS Stony Brook)
106

Associating Properties with Input Parameters

Often properties are associated with input
parameters. Suppose you want to get the value of the
input parameter named score and set it to the
JavaBeans property named score. You may write the
following code:

<% double score = Double parseDouble(<% double score = Double.parseDouble(

request.getParameter("score")); %>

<jsp:setProperty name="beanId" property="score"

(c) Pearson and P.Fodor (CS Stony Brook)
107

value="<%= score %>" />

Associating Properties with Input Parameters

This is cumbersome. JSP provides a convenient
syntax that can be used to simplify it as follows:

<jsp:setProperty name="beanId" property="score"<jsp:setProperty name beanId property score

param="score" />

Instead of using the value attribute, you use the
param attribute to name an input parameter Theparam attribute to name an input parameter. The
value of this parameter is set to the property.

(c) Pearson and P.Fodor (CS Stony Brook)
108

Associating All Properties

Often the bean property and the parameter have the
same name. You can use the following convenientsame name. You can use the following convenient
statement to associate all the bean properties in
beanId with the parameters that match the propertybeanId with the parameters that match the property
names.

j "b d" "*" /<jsp:setProperty name="beanId" property="*" />

(c) Pearson and P.Fodor (CS Stony Brook)
109

Example: Computing Loan Using JavaBeans

Use JavaBeans to simplify Example 40.3 by associating the bean properties with
the input parameters.
<!-- ComputeLoan.jsp -->

<html>

<head>

<title>ComputeLoan Using the Loan Class</title>

</head>

Associating the bean
properties with the
input parameters.</head>

<body>

<%@ page import = "chapter40.Loan" %>

<jsp:useBean id="loan" class="chapter40.Loan"></jsp:useBean>

input parameters.

<jsp:setProperty name="loan" property="*" />

Loan Amount: <%= loan.getLoanAmount() %>

Annual Interest Rate: <%= loan.getAnnualInterestRate() %>

Number of Years: <%= loan.getNumOfYears() %>
g ()

Monthly Payment: <%= loan.monthlyPayment() %>

Total Payment: <%= loan.totalPayment() %>

</body>

/

(c) Pearson and P.Fodor (CS Stony Brook)
110

</html>

Example: Computing Factorials Using JavaBeans
C t J B t d F t i lB d it t t thCreate a JavaBeans component named FactorialBean and use it to compute the
factorial of an input number in a JSP page named FactorialBean.jsp.

(c) Pearson and P.Fodor (CS Stony Brook)
111

<!-- FactorialBean.jsp -->

<%@ page import = "chapter40.FactorialBean" %>

<jsp:useBean id="factorialBeanId" class="chapter40.FactorialBean" >

</jsp:useBean>

A i ti th b<jsp:setProperty name="factorialBeanId" property="*" />

<HTML>

<HEAD>

<TITLE>

Associating the bean
properties with the
input parameters.

FactorialBean

</TITLE>

</HEAD>

<BODY>BODY

<H3>

Compute Factorial Using a Bean

</H3>

<FORM method="post"><FORM method= post >

Enter new value: <INPUT NAME="number">

<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Compute Factorial">

<INPUT TYPE="RESET" VALUE="Reset">

<P>Factorial of<P>Factorial of

<jsp:getProperty name="factorialBeanId" property="number" /> is

<%@ page import="java.text.*" %>

<% NumberFormat format = NumberFormat.getNumberInstance(); %>

% f f (f i l d i l()) %

Getting number

(c) Pearson and P.Fodor (CS Stony Brook)
112

<%= format.format(factorialBeanId.getFactorial()) %>

</FORM>

</BODY>

</HTML>

package chatper40;

public class FactorialBean {

private int number;

/** Return number property */

public int getNumber() {

return number;return number;

}

/** Set number property */

public void setNumber(int newValue) {

number = newValue;

}

/** Obtain factorial */

public long getFactorial() {

long factorial = 1;

for (int i = 1; i <= number; i++)

factorial *= i;factorial *= i;

return factorial;

}

}

(c) Pearson and P.Fodor (CS Stony Brook)
113

DESIGN GUIDE
Mixing a lot of Java code with HTML in a JSP page makes the code
difficult to read and to maintain. You should move the Java code to a
.java file as much as you can..java file as much as you can.

(c) Pearson and P.Fodor (CS Stony Brook)
114

<!-- NewFactorialBean.jsp -->
<%@ page import = "chapter40.NewFactorialBean" %>
<jsp:useBean id = "factorialBeanId"
class = "chapter40.NewFactorialBean" scope = "page" >p p p g

</jsp:useBean>
<jsp:setProperty name = "factorialBeanId" property = "*" />
<html>
<head>
<title>
FactorialBean

</title>
</head>

NewFactorialBean
<body>
<h3>Compute Factorial Using a Bean</h3>
<form method = "post">
Enter new value: <input name = "number" />

p
<input type = "submit" name = "Submit"
value = "Compute Factorial" />

<input type = "reset" value = "Reset" />

Factorial of
<jsp:getProperty name = "factorialBeanId"
property = "number" /> is

<%= NewFactorialBean.format(factorialBeanId.getFactorial()) %>
</form>

(c) Pearson and P.Fodor (CS Stony Brook)
115

</body>
</html>

<!-- DisplayTime.jsp -->
<%@page pageEncoding = "GB18030"%>
<%@ page import = "chapter40 TimeBean" %><%@ page import = chapter40.TimeBean %>
<jsp:useBean id = "timeBeanId"
class = "chapter40.TimeBean" scope = "application" >

</jsp:useBean>
<jsp:setProperty name = "timeBeanId" property = "*" />
<html>
<head>
<title><title>
Display Time

</title>
</head>

b d

Getting TimeBean
<body>
<h3>Choose locale and time zone</h3>
Current time is
<%=

timeBeanId.currentTimeString(timeBeanId.getLocaleIndex(),
timeBeanId.getTimeZoneIndex()) %>

</body>
<html>

(c) Pearson and P.Fodor (CS Stony Brook)
116

<html>

Forwarding Requests from JavaServer Pages
W b li ti d l d i JSP ll i t f li k dWeb applications developed using JSP generally consist of many pages linked
together. JSP provides a forwarding tag in the following syntax that can be used to
forward a page to another page.

<jsp:forward page="destination" />

(c) Pearson and P.Fodor (CS Stony Brook)
117

Example: Browsing Database Tables
Thi l t JSP d t b li ti th t b t bl WhThis example creates a JSP database application that browses tables. When you
start the application, the first page prompts the user to enter the JDBC driver, URL,
username, and password for a database. After you login to the database, you can
select a table to browse Upon clicking the Browse Table Content button the tableselect a table to browse. Upon clicking the Browse Table Content button, the table
content is displayed.

(c) Pearson and P.Fodor (CS Stony Brook)
118

<!-- DBLogin.html -->

<html>

<head>

<title><title>

DBLogin

</title>

</head>

<body><body>

<form method = "post” action = "/DBLoginInitialization.jsp">

JDBC Driver

<select name = "driver" size = "1">

<option>sun.jdbc.odbc.JdbcOdbcDriver</option>p j p

<option>oracle.jdbc.driver.OracleDriver</option>

</select>

JDBC URL

<select name = "url" size = "1">

<option>jdbc:odbc:ExampleMDBDataSource</option>

<option>jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl</option>

<option>jdbc:oracle:thin:@localhost:1521:test</option>

</select>

Username <input name = "username" />

Password <input name = "password" />

<input type = "submit" name = "Submit" value = "Login" />

<input type = "reset" value = "Reset" />

(c) Pearson and P.Fodor (CS Stony Brook)

</form>

</body>

</html>119

package chapter40;

import java.sql.*;

public class DBBean {

private Connection connection = null;private Connection connection = null;

private String username;

private String password;

private String driver;

private String url;private String url;

/** Initialize database connection */

public void initializeJdbc() {

try {

System.out.println("Driver is " + driver);y p

Class.forName(driver);

// Connect to the sample database

connection = DriverManager.getConnection(url, username,

password);

}

catch (Exception ex) {

ex.printStackTrace();

}

}

/** Get tables in the database */

public String[] getTables() {

String[] tables = null;

(c) Pearson and P.Fodor (CS Stony Brook)

try {

DatabaseMetaData dbMetaData = connection.getMetaData();

ResultSet rsTables = dbMetaData.getTables(null, null, null,

new String[] {"TABLE"});
120

int size = 0;

while (rsTables.next()) size++;

rsTables = dbMetaData.getTables(null, null, null,

new String[] {"TABLE"});new String[] {"TABLE"});

tables = new String[size];

int i = 0;

while (rsTables.next())

tables[i++] = rsTables.getString("TABLE NAME");tables[i++] rsTables.getString(TABLE_NAME);

}

catch (Exception ex) {

ex.printStackTrace();

}

return tables;

}

/** Return connection property */

public Connection getConnection() {

return connection;

}

public void setUsername(String newUsername) {

username = newUsername;

}

public String getUsername() {

return username;

}

(c) Pearson and P.Fodor (CS Stony Brook)

public void setPassword(String newPassword) {

password = newPassword;

} ...

}
121

<!-- DBLoginInitialization.jsp -->

<%@ page import = "chapter35.DBBean" %>

<jsp:useBean id = "dBBeanId" scope = "session"

class = "chapter35 DBBean">class = "chapter35.DBBean">

</jsp:useBean>

<jsp:setProperty name = "dBBeanId" property = "*" />

<html>

<head><head>

<title>DBLoginInitialization</title>

</head>

<body>

<%-- Connect to the database --%>

<% dBBeanId.initializeJdbc(); %>

<% if (dBBeanId.getConnection() == null) { %>

Error: Login failed. Try again.

<% }

else {%>

<jsp:forward page = "Table.jsp" />

<% } %>

</body>

</html>

(c) Pearson and P.Fodor (CS Stony Brook)
122

Java Server Faces (JSF)

 JSF supports visual Web development.

b f l h You can create a Web user interface using a tool without
writing any code.

 JSF completely separates Web UI from Java code so the
application developed using JSF is easy to debug and
maintainmaintain.

(c) Pearson and P.Fodor (CS Stony Brook)
123

Visual Web Design Using NetBeans

Create a Web project with
Visual Web JavaServer
FacesFaces.

(c) Pearson and P.Fodor (CS Stony Brook)
124

Creating UI in the Design Pane

(c) Pearson and P.Fodor (CS Stony Brook)
125

Creating UI in the Design Pane

Drop a Static Text and set its properties

(c) Pearson and P.Fodor (CS Stony Brook)
126

Creating UI in the Design Pane

Write the code in the Java tab.

(c) Pearson and P.Fodor (CS Stony Brook)
127

Examining the JSP File

Click the JSP tab to see the JSP file. Whenever you add, remove, or change the
UI components in the Design pane, the contents in the JSP are also updated. It
is possible to modify the JSP file directly, but it is not recommended for the

M dif i h JSP fil i k l ld h i jnew users. Modifying the JSP file mistakenly could corrupt the entire project.
You can completely ignore the JSP file when using this tool.

(c) Pearson and P.Fodor (CS Stony Brook)
128

JSF UI Components

(c) Pearson and P.Fodor (CS Stony Brook)
129

JSF UI Components

(c) Pearson and P.Fodor (CS Stony Brook)
130

JSF UI Containers

(c) Pearson and P.Fodor (CS Stony Brook)
131

JSF UI Containers

(c) Pearson and P.Fodor (CS Stony Brook)
132

Binding Data with UI Components

(c) Pearson and P.Fodor (CS Stony Brook)
133

Creating a New Database Connection

(c) Pearson and P.Fodor (CS Stony Brook)
134

Creating a New Database Connection

(c) Pearson and P.Fodor (CS Stony Brook)
135

Designing UI

(c) Pearson and P.Fodor (CS Stony Brook)
136

Modifying Query

(c) Pearson and P.Fodor (CS Stony Brook)
137

Modifying Query

(c) Pearson and P.Fodor (CS Stony Brook)
138

Changing Table Layout

(c) Pearson and P.Fodor (CS Stony Brook)
139

Session Tracking

(c) Pearson and P.Fodor (CS Stony Brook)
140

Session Bean

(c) Pearson and P.Fodor (CS Stony Brook)
141

Validating Input

(c) Pearson and P.Fodor (CS Stony Brook)
142

