Object Databases

CSE 532, Theory of Database Systems
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse532

What’s in This Module?

® Motivation

* Conceptual model
® SQL:1999/2003 object extensions

e ODMG

® ODL — data definition language
* OQL — query language
e CORBA

(c) Pearson and P.Fodor (CS Stony Brook)

-

Problems with Flat Relations

Consider a relation

Person(SSN, Name, PhoneN, Child)

with:

FD: SSN = Name

Any person (identified by SSN) can have several phone numbers and
children

Children and phones of a person are not related to each other except

through that person

(c) Pearson and P.Fodor (CS Stony Brook)

An Instance of Person

SSN Name PhoneN Child
111-22-3333 Joe Public 222-33-4444
111-22-3333 Joe Public 222-33-4444
111-22-3333 Joe Public 333-44-5555
111-22-3333 Joe Public 333-44-5555
222.33-4444 Bob-Pubhc

222-33-4444 | Bob Public 212-987-1111 |555-66-7777
222-33-4444 | Bob Public 555-66-7777
222-33-4444 | Bob Public 212-987-1111

(c) Pearson and P.Fodor (CS Stony Brook)

-
Dependencies in Person

Join dependency (JD):
Person = (SSN,Name,PhoneN) ><I (SSN,Name,Child)
Functional dependency (FD):

SSN = Name

@ (c) Pearson and P.Fodor (CS Stony Brook)

p
Redundancies in Person

® Due to the]JD:
Every PhoneN is listed with every Child SSN
Hence Joe Public is twice associated with 222-33-4444
and with 516-123-4567
Similarly for Bob Public and other phones/children

® Due to the FD:

Joe Public is associated with the SSN 111-22-3333 four times (for each of
Joe’s child and phone)!

Similarly for Bob Public

@ (c) Pearson and P.Fodor (CS Stony Brook)

4 N
Dealing with Redundancies

® What to do? Normalize!

® Split Person according to the JD
® Then each resulting relation using the FD

® Obtain four relations (two are identical)

@ (c) Pearson and P.Fodor (CS Stony Brook) /

~

62-33-4444
8

/
Normalization removes redundancy:
Personl
SSN Name SSN Name
111-22-3333 | Joe Public 111-22-3333 | Joe Public
222-33-4444 | Bob Public 222-33-4444 | Bob Public
ChildOf Phone
SSN Child SSN PhoneN
111-22-3333 222-33-4444 111-22-3333 516-345-6789
111-22-3333 333-44-5555 111-22-3333 516-123-4567
222-33-4444 444-55-6666 202-33-4444 212-987-6543
555-66-7777 202-33-4444 212-135-7924

(c) Pearson and P.Fodor (CS Stony Brook)

L

But querying is still cumbersome:

Get the phone numbers of Joe’s grandchildren.

Against the original relation: three cumbersome joins

SELECT G.PhoneN

FROM Person P, Person C, Person G
WHERE P.Name = “‘Joe Public’ AND
P.Child = C.SSN AND C.Child = G.SSN

Against the decomposed relations is even worse: four joins
SELECT N.PhoneN

FROM Personl P, ChildOf C, ChildOf G, Phone N
WHERE P.Name = “‘Joe Public’ AND P.SSN = C.SSN AND
C.Child = G.SSN AND G.Child = N.SSN

(c) Pearson and P.Fodor (CS Stony Brook)

o

Objects Allow Simpler Design

Schema:
Person(SSN: String,
Name: String,
PhoneN: {String},
Child: {SSN})

Set data types J

No need to decompose in order to eliminate redundancy:
the set data type takes care of this.

Object 1: Object 2:
(111-22-3333, (222-33-4444,
“Joe Public”, “Bob Public”,
{516-345-6789, 516-123-4567}, {212-987-6543, 212-135-7924},
{222-33-4444, 333-44-5555} {444-55-6666, 555-66-7777}

))

(c) Pearson and P.Fodor (CS Stony Brook)

Objects Allow Simpler Queries

Schema (slightly changed):
Person(SSN: String,
Name: String,
PhoneN: {String},
Child: {Person})

Set of persons J

- Because the type of Child is the set of Person-objects, it makes sense
to continue querying the object attributes in a path expression

Object-based query:
SELECT P.Child.Child.PhoneN

FROM Person P
WHERE P.Name = ‘Joe Public’

- Much more natural!

(c) Pearson and P.Fodor (CS Stony Brook)

Path expression J

/

p
ISA (or Class) Hierarchy

Person(SSN, Name)
Student(SSN, Major)

Query: Get the names of all computer science majors

Relational formulation:

SELECT P.Name

FROM Person P, Student S
WHERE P.SSN = S.SSN and S.Major = ‘CS’
Object-based tormulation:

SELECT S.Name

FROM Student S
WHERE S.Major = ‘CS’

Student-objects are also Person-objects, so they inherit the attribute Name

@ (c) Pearson and P.Fodor (CS Stony Brook)

~
Object Methods in Queries

® Objects can have associated operations (methods), which can
be used in queries. For instance, the method
frameRange(from, to) might be a method in class Movie.
Then the following query makes sense:

SELECT M.frameRange(20000, 50000)
FROM Movie M
WHERE M.Name = “The Simpsons’

@ (c) Pearson and P.Fodor (CS Stony Brook)

The “Impedance” Mismatch

® One cannot write a complete application in SQL, so SQL
statements are embedded in a host language, like C or Java.

® SQL: Set-oriented, works with relations, uses high-level
operations over them.

* Host language: Record-oriented, does not understand relations
and high-level operations on them.

® SQL: Declarative.
e Host language: Procedural.

® Embedding SQL in a host language involves ugly adaptors
(cursors/iterators) — a direct consequence of the above mismatch
of properties between SQL and the host languages. It was dubbed

“im pedance”mismatch .

(c) Pearson and P.Fodor (CS Stony Brook)

Can the Impedance Mismatch be Bridged?

e This was the original idea behind object databases:

Use an object—oriented]anguage as a data manipu]ation]anguage.
Since data is stored in objects and the]anguage manipu]ates

objects, there will be no mismatch!

¢ Problems:
Object-oriented languages are procedural — the advantages of a high—level
query language, such s SQL, are lost

C++, Java, Smalltalk, etc., all have significantly different object modeling
capabilities. Which ones should the database use? Can a Java application
access data objects created by a C++ application?

Instead of one query language we end up with a bunch! (one for C++,
one for Java, etc.)

(c) Pearson and P.Fodor (CS Stony Brook)

4 ™
Is Impedance Mismatch Really a Problem?

® The jury is out
* Two main approaches/standards:
®* ODMG (Object Database Management Group):

Impedance mismatch is worse than the ozone hole!

e SQL:1999/2003:
Couldn’t care less — SQL rules!

* We will discuss both approaches.

@ (c) Pearson and P.Fodor (CS Stony Brook) /

4 ™
Object Databases vs. Relational Databases

® Relational: set of relations; relation = set of tuples
® Object: set of classes; class = set of objects
® Relational: tuple components are primitive (int, string)

® Object: object components can be complex types (sets, tuples,

other objects)

® Unique features of object databases:
® Inheritance hierarchy
® Object methods
® In some systems (ODMG), the host language and the data manipulation

language are the same

@ (c) Pearson and P.Fodor (CS Stony Brook) /

4 ™
The Conceptual Object Data Model (CODM)

® Plays the same role as the relational data model

® Provides a common view of the different approaches

(ODMG, SQL:1999/2003)
® Close to the ODMG model, but is not burdened with

confusing low-level details

@ (c) Pearson and P.Fodor (CS Stony Brook) /

Object Id (Oid)

* Every object has a unique Id: different objects have different
Ids

® [mmutable: does not change as the object changes

e Different from primary key!
® Like a key, identifies an object uniquely

® But key values can Change — oids cannot

(c) Pearson and P.Fodor (CS Stony Brook)

-

Objects and Values

* An object is a pair: (oid, value)

* Example: A Joe Public’s object
(#32, [SSN: 111-22-3333,
Name: “Joe Public”,
PhoneN: {“516-123-4567”, “516-345-67897},
Child: {#445,#73) |)

(c) Pearson and P.Fodor (CS Stony Brook)

Complex Values

® A value can be of one of the following forms:
® Primitive value: an integer (eg, 7), a string (“John”), a float (eg,
23.45), a Boolean (eg, false)
® Reference value: An oid of an object, e.g., #445
® Tuple value: [A;:v,,...,A :v]
° A, ...,A — distinct attribute names

V...,V — values

® Set value: {v,, ..., v }

V...,V — values

ooy n

® Complex value: reference, tuple, or set.

* Example: previous slide

(c) Pearson and P.Fodor (CS Stony Brook)

Classes

® Class: set of semantically similar objects (eg, people,
students, cars, motorcycles)

® A class has:

® Type: describes common structure of all objects in the class
(semantically similar objects are also structurally similar)

® Method signatures: declarations of the operations that can be
applied to all objects in the class.

® Extent: the set of all objects in the class

® (Classes are organized in a class hierarchy

® The extent (j a class contains the extent cj any cj its subclasses

(c) Pearson and P.Fodor (CS Stony Brook)

4 N
Complex Types: Intuition

® Data (relational or object) must be properly structured

® Complex data (objects) — complex types

Object: (#32, [SSN: 111-22-3333,
Name: “Joe Public”,
PhoneN: {“516-123-4567", “516-345-6789”},
Child: {#445,#73} |)
Its type: [SSN: String,
Name: String,
PhoneN: {String},
Child: {Person} |

@ (c) Pearson and P.Fodor (CS Stony Brook) /

-

L

Complex Types: Definition

® A type is one of the following:
® Basic types: String, Float, Integer, etc.
® Reference types: user defined class names, eg, Person, Automobile
® Tuple types: [A;: T,, ..., A : T]
° A, ...,A —distinct attribute names

o T,..., 1T — types

n

Eg, [SSN: String, Child: {Person}]
® Set types: {T}, where Tis a type
Eg, {String}, {Person}

® Complex type: reference, tuple, set

(c) Pearson and P.Fodor (CS Stony Brook)

Subtypes: Intuition

* A subtype has “more structure” than its supertype.

® Example: Student is a subtype of Person
Person: [SSN: String, Name: String,
Address: [StNum: Integer, StName: String]]
Student: [SSN: String, Name: String,
Address: [StNum: Integer, StName: String, Rm: Integer],
Majors: {String},
Enrolled: {Course}]

(c) Pearson and P.Fodor (CS Stony Brook)

Subtypes: Definition

® Tis a subtype of T' iff T# T and
° Reference types:

T.T are reference types and T is a subclass T’
® Tuple types:

T =[A;: T Ay Ty A Ty oy A T,

T'=[A;:T,,..,A:T,]

are tuple types and for each i=1,...,n, either T, = Ti’ or T, is asubtype of Til
® Set types:

T'={T,} and T'= {TO’} are set types and T, is a subtype of T,

(c) Pearson and P.Fodor (CS Stony Brook)

/

Domain of a Type

® domain(T) is the set of all objects that conform to type T.

Namely:
® domain(Integer) = set of all integers,
domain(String) = set of all strings, etc.

® domain(T), where T is reference type is the extent of T, ie, oids

of all objects in class T

® domain([A: T,, ..., A,: T.]) is the set of all tuple values of the form
[A: vy, ...,A :v]|, where each v, €domain(T))

® domain({T}) is the set of all finite sets of the form {w,, ..., w,_},
where each w, €domain(T)

(c) Pearson and P.Fodor (CS Stony Brook)

Database Schema

® For each class includes:

® ype
® Method signatures. E.g., the following signature could be in class
Course:

Boolean enroll(Student)
® The subclass re]ationsbip

® The integrity constraints (keys, foreign keys, etc.)

(c) Pearson and P.Fodor (CS Stony Brook)

Database Instance

® Set qf extents for each class in the schema

® Each object in the extent of a class must have the type of that class,
i.e., it must belong to the domain of the type

® Each object in the database must have unique oid

® The extents must satz’sﬁ/ the constraints of the database schema

(c) Pearson and P.Fodor (CS Stony Brook)

Object-Relational Data Model

e A straightforward subset of CODM: only tuple types at
the top level

® More precisely:

Set of classes, where each class has a tuple type (the types of the tuple

component can be anything)
Each tuple is an object of the form (oid, tuple-value)
® Pure relational data model:

Each class (relation) has a tuple type, but
The types of tuple components must be primitive

Oids are not explicitly part of the model — tuples are pure values

(c) Pearson and P.Fodor (CS Stony Brook)

Objects in SQL:1999/2003

®* Object-relational extension of SQL-92
¢ Includes the legacy relational model

® SQL:1999/2003 database = a finite set of relations

® relation = aset of tuples (extends legacy relations)
OR

a set of objects (completely new)
® object = (oid, tuple-value)
* tuple = tuple-value
® tuple-value = [Attr;: v, ..., Attr v]

® multiset-value = {v, ..., v_}

(c) Pearson and P.Fodor (CS Stony Brook)

-
SQL:1999 Tuple Values

® Tuple value: |Attr;:v,, ..., Attr :v_]
® Attr; are all distinct attributes

® Each v, is one of these:

Primitive value: a constant of type CHAR(...), INTEGER, FLOAT, etc.

Reference value: an object Id

Another tuple value

A collection value
MULTISET introduced in SQL:2003.
ARRAY- a fixed size array

@ (c) Pearson and P.Fodor (CS Stony Brook)

Row Types

® The same as the original (legacy) relational tuple type.
However:

® Row types can now be the types of the individual attributes in a
tuple
® In the legacy relational model, tuples could occur only as top-

level types

CREATETABLE PERSON (

Name CHAR(20),
Address ROW (Number INTEGER, Street CHAR(20), ZIP CHAR(5))

(c) Pearson and P.Fodor (CS Stony Brook)

Row Types (Contd.)

o Use path expressions to refer to the components of row types:

SELECT P.Name
FROM PERSON P
WHERE P.Address.ZIP = ‘11794’

° Update operations:

INSERT INTO PERSON(Name, Address)
VALUES (‘John Doe’, ROW (666, ‘Hollow Rd.’, ‘66666))

UPDATE PERSON
SET Address.ZIP = ‘66666’
WHERE Address. ZIP = ‘55555’

UPDATE PERSON
SET Address = ROW (21, ‘Main St’, ‘12345")
WHERE
Address = ROW (123, ‘Maple Dr., 54321’y AND Name = ‘]. Public’

(c) Pearson and P.Fodor (CS Stony Brook)

User Defined Types (UDT)

® UDTs allow specification of complex objects/tupes,

methods, and their implementation

* Like ROW types, UDTs can be types of individual

attributes in tuples

® UDTs can be much more complex than ROW types
(even disregarding the methods): the components of

UDTs do not need to be elementary types

(c) Pearson and P.Fodor (CS Stony Brook)

e
A UDT Example

CREATE TYPE PersonType AS (
Name CHAR(20),
Address ROW (Number INTEGER, Street CHAR(20), ZIP CHAR(5))

)

CREATETYPE StudentType UNDER PersonType AS (
Id INTEGER,
Status CHAR(2)

)
METHOD award_degree() RETURNS BOOLEAN;

CREATE METHOD award_degree() FOR StudentType
LANGUAGE C

File that holds the binary code

@ (c) Pearson and P.Fodor (CS Stony Brook)

Using UDTs in CREATE TABLE

® As an attribute type:

CREATE TABLE TRANSCRIPT (
Student StudentType,
CrsCode CHAR(6), "
Semester CHAR(6), |

Grade CHAR(1) - e,
) ~ Apreviously defined UDT

® Asatable type:

CREATE TABLE STUDENT OF StudentType;

Such a table is called typed table.

(c) Pearson and P.Fodor (CS Stony Brook)

Objects

® Only typed tables contain objects (ie, tuples with oids)

° Compare:

CREATE TABLE STUDENT OF StudentType;

and

CREATE TABLE STUDENT1 (
Name CHAR(20),
Address ROW (Number INTEGER, Street CHAR(20), ZIP CHARC(5)),
Id INTEGER,
Status CHAR(2)

)

® Both contain tuples of exactly the same structure

° Only the tuples in STUDENT — not STUDENT! — have oids

* Will see later how to reference objects, create them, etc.

(c) Pearson and P.Fodor (CS Stony Brook)

-

Querying UDTs

® Nothing special — just use path expressions

SELECT T.Student.Name, T.Grade
FROM TRANSCRIPT T
WHERE T.Student.Address. Street = ‘Main St.’

Note: T.Student has the type StudentType. The attribute Name is not
declared explicitly in StudentType, but is inherited from PersonType.

(c) Pearson and P.Fodor (CS Stony Brook)

/
Updating User-Defined Types

° Inserting a record into TRANSCRIPT:

INSERT INTO TRANSCRIPT (Student,Course,Semester,Grade)
VALUES (7772, ‘CS308’, 2000’, ‘A’)

The type of the Student attribute is StudentType. How does one
insert a value of this type (in place of ?7777)?

Further complication: the UDT StudentType is encapsulated, ie, it is
accessible only through public methods, which we did not define

Do it through the observer and mutator methods provided by the
DBMS automatically

@ (c) Pearson and P.Fodor (CS Stony Brook)

Observer Methods

® For each attribute 4 of type T in a UDT, an SQL:1999 DBMS is supposed to

supply an observer method, A: () = T, which returns the value of 4 (the notation
“()” means that the method takes no arguments)

® (Observer methods for StudentType:

Id: () = INTEGER

Name: () = CHAR(20)

Status: () = CHAR(2)

Address: () = ROW(INTEGER, CHAR(20), CHAR(5))

* For example, in
SELECT T.Student.Name, T.Grade
FROM TRANSCRIPT T
WHERE T.Student.Address. Street = ‘Main St.

Name and Address are observer methods, since T.Student is of type StudentType

Note: Grade is not an observer, because TRANSCRIPT is not part of a UDT,

but this is a Conceptual distinction — syntactically there is no difference

(c) Pearson and P.Fodor (CS Stony Brook)

/
Mutator Methods

* An SQL DBMS is supposed to supply, for each attribute

A of type T'in a UDT U a mutator method
AT U
For any object o of type U, it takes a value t of type T
and replaces the old value of 0.4 with ¢; it returns the
new value of the object. Thus, 0.4(z) is an object of type U

® Mutators for StudentType:
Id: INTEGER > StudentType
Name: CHAR(20) = StudentType
Address: ROW (INTEGER, CHAR(20), CHAR(5)) = StudentType

@ (c) Pearson and P.Fodor (CS Stony Brook)

StudentType object Add a value

Example: Inserting a UDT Value

INSERT INTO TRANSCRIPT(Student,Course,Semester, Grade)
VALUES (
NEW StudentType().Jd(111111111).Status(‘GS’).Name(* Joe Public’)
Address ROW (123, Main St”, ‘543217))

b

$2002’,

A Add a value

) for 1d

Add a value for the
Address attribute

Create a blank

for Status

. . s Pearsan and P.Fod Stony Brogk) .
CS5327.°S2002°, ‘A’ are I()Cl)‘lrtﬁist(ir{faen va flé)rs(%%rtgt’ﬁ/e r21(1):‘E)I'lbutes Course, Semester, Grade

/

-

Example: Changing a UDT Value

UPDATE TRANSCRIPT

SET Student = Student.Address (ROW (21, Maple St.’;12345")).Name(‘John Smith’),
Grade = ‘B’

Change Nam

Change Address

WHERE Student.Id = 111111111 AND CrsCode = ‘CS532° AND Semester = ‘S2002’

e Mutators are used to change the values of the attributes Address and

Name

(c) Pearson and P.Fodor (CS Stony Brook)

Referencing Objects

® Consider again

CREATE TABLE TRANSCRIPT (
Student StudentType,
CrsCode CHAR(6),

Semester CHAR(6),
Grade CHAR(1)

)
® Problem: TRANSCRIPT records for the same student refer to distinct
values of type StudentType (even though the contents of these values
may be the same) — a maintenance/ consistency problem

® Solution: use self-referencing column (next slide)
® Bad design, which distinguishes objects from their references

e Not truly object-oriented

@ (c) Pearson and P.Fodor (CS Stony Brook)

-

Self-Referencing Column

* Every typed table has a self-referencing column

° Normally invisible
* Contains explicit object Id for each tuple in the table

® Can be given an explicit name — the only way to enable

referencing of objects

CREATE TABLE STUDENT2 OF StudentType
REF IS stud_oid,

Self-referencing column

Self—referencing columns can be used in queries just like regular columns

Their values cannot be changed, however

(c) Pearson and P.Fodor (CS Stony Brook)

/ Reterence lypes and Self-Referencing
Columns

® To reference objects, use self-referencing columns + reference types:
REF(some-UDT)

CREATE TABLE TRANSCRIPT1 (
Student REE(S

CrsCode CHAR(6), P

Semester CHAR(6), Reference type

Grade CHAR(1) | Typed table where the
) ~ values are drawn from

® Two issues:

How does one query the attributes of a reference type

How does one provide values for the attributes of type REF(...)

* Remember: you can’t manufacture these values out of thin air — they are oids!

@ (c) Pearson and P.Fodor (CS Stony Brook)

-

Querying Reference Types

® Recall: student REF(StudentType) SCOPE STUDENT2 in TRANSCRIPTI.

How does one access, for example, student names?
SQL:1999 has the same misfeature as C/C++ has (and which Java and

OQL do not have): it distinguishes between objects and references to
objects. To pass through a boundary of REF(...) use “>” instead of “.”

SELECT T Student%Name T. Grade

FROM TRANSCRIPT1 T
WHERE

~ Not crossing REF()
boundary, use “.”

T.Student=> Address.Street = “Main St.”

Crossing REF(...) 1
boundary, use >

(c) Pearson and P.Fodor (CS Stony Brook)

Inserting REF Values

® How does one give values to REF attributes, like Student in
TRANSCRIPT1?
Use explicit self-referencing columns, like stud_oid in STUDENT?

o Example: Creating a TRANSCRIPT! record whose Student attribute

has an object reference to an object in STUDENT?:

INSERT INTO TRANSCRIPT1(Student,Course,Semester,Grade)
SELECT S.stud_oid, ‘HIS666’, ‘F1462°, ‘D’

... ~ Explicit self-referential

FROM STUDENT2 S
column of STUDENT2

WHERE S.ld=‘111111110

(c) Pearson and P.Fodor (CS Stony Brook)

-
Collection Data Types

® Set (multiset) data type was added in SQL:2003.

CREATETYPE StudentType UNDER PersonType AS (
Id INTEGER,

Status CHAR(2),

Enrolled REF(CourselType) MULTISET

)

A bunch of references to objects
of type CourseType

@ (c) Pearson and P.Fodor (CS Stony Brook)

4 ™
Querying Collection Types

® For each student, list the Id, address, and the courses in
which the student is enrolled (assume STUDENT is a table
of type StudentType):

SELECT S.Id, S.Address, C.Name

FROM STUDENT S, COURSE C Convertmultlset

WHERE C.CrsCode IN to table '
(SELECT E = CrsCode T

FROM UNNEST(S, Emoued) E)

® Note: E is bound to tuples in a 1-column table of object
references

@ (c) Pearson and P.Fodor (CS Stony Brook) /

The ODMG Standard

* ODMG 3.0 was released in 2000

® Includes the data model (more or less)
® ODL:The object definition language

® OQL: The object query language

* A transaction specification mechanism

® Language bindings: How to access an ODMG database from
C++, Smalltalk, and Java (expect C# to be added to the

mix)

(c) Pearson and P.Fodor (CS Stony Brook)

The Structure of an ODMG Application

Application Source Code
in Host Language (C++, Java, etc.)

|

Host Language

Binaries stored in DBMS

Compiler
i ODBMS ! Y \
: i Application
E : Object Code
1 : *)
i ekl 5 Object Code
! libraries ! Linker
i Method Implementation . Application
i E Binary Code

(c) Pearson and P.Fodor (CS Stony Brook)

Main ldea: Host Language = Data Language

® Objects in the host language are mapped directly to database
objects

® Some objects in the host program are persistent. Think of them as
“proxies” of the actual database objects. Changing such objects
(through an assignment to an instance variable or with a method
application) directly and transparently affects the corresponding
database object

® Accessing an object using its oid causes an “object fault” similar to
pagefaults in operating systems. This transparently brings the
object into the memory and the program works with it as if it
were a regular object defined, for example, in the host Java

pI’O gram

(c) Pearson and P.Fodor (CS Stony Brook)

~

Architecture of an ODMG DBMS

. Database
[Schema Specification in ODL Specifications [Source Code for Class Methods

~

(Embedded in C++, Java, etc.) in Host Language (C++, Java, ...)

‘L __________________

Host Language
Compiler

Y

Preprocessor ODBMS._~Software [Method Implementation

Object Code

;

ODBMS Object Code
Libraries Linker

Information Stored at the Server

Metadata J Y .
e Method Implementation
> Binaries Stored in DBMS J

Data Access

| Object Data

(c) Pearson and P.Fodor (CS Stony Brook)

SQL Databases vs. ODMG

® In SQL: Host program accesses the database by sending
SQL queries to it (using JDBC, ODBC, Embedded SQL,
etc.)

® In ODMG: Host program works with database objects
directly

® ODMG has the facility to send OQL queries to the
database, but this is viewed as evil: brings back the

impedance mismatch

(c) Pearson and P.Fodor (CS Stony Brook)

~
ODL: ODMG’s Object Definition Language

® Is rarely used, it at all!
® Relational databases: SQL is the only way to describe data to the DB

® ODMG databases: can do this directly in the host language
° Why bother to develop ODL then?

® Problem: Making database objects created by applications written
in different languages (C++, Java, Smalltalk) interoperable
® Object modeling capabilities of C++, Java, Smalltalk are very different.

® How can a Java application access database objects created with C++7?

® Hence: Need a reference data model, a common target to which to
map the language bindings of the different host languages

® ODMG says: Applications in language A can access objects created by
applications in language B if these objects map into a subset of ODL
supported by language A

(c) Pearson and P.Fodor (CS Stony Brook) /

ODMG Data Model

® (Classes + inheritance hierarchy + types

* Two kinds of classes: “ODMG classes” and “ODMG interfaces”,
similarly to Java
® An ODMG interface:
has no method code — only signatures

does not have its own objects — only the objects that belong to the interface’s

ODMG subclasses

cannot inherit from (be a subclass of) an ODMG class — only from another
ODMG interface (in fact, from multiple such interfaces)

e An ODMG class:
can have methods with code, own objects

can inherit from (be a subclass of) other ODMG classes or interfaces

* can have at most one immediate superclass (but multiple immediate super-interfaces)

(c) Pearson and P.Fodor (CS Stony Brook)

ODMG Data Model (Cont.)

* Distinguishes between objects and pure values (values are
called literals)

Both can have complex internal structure, but only objects have oids

(c) Pearson and P.Fodor (CS Stony Brook)

/ interface PersonInterface: Object { /'/ Object is the ODMG topmost interface
attribute String Name;

attribute String SSN; Exa m p I e

Integer Age();
;

class PERSON: Personlnterface / / inherits from ODMG interface
(extent PersonExt // note: extents have names
keys SSN, (Name, PhoneN)) : persistent;
{ attribute ADDRESS Address;
attribute Set<<String> PhoneN;
attribute enum SexType {m,f} Sex;
attribute date DateOfBirth;
relationship PERSON ' Spouse; /' / note: relationship vs. attribute
relationship Set<PERSONZ> Child;
void add_phone_number(in String phone); // method signature

;

struct ADDRESS { // aliteral type (for pure values)
String StNumber;
String StName;

@ (c) Pearson and P.Fodor (CS Stony Brook)

More on the ODMG Data Model

* Can specity keys (also foreign keys — later)

e (Class extents have their own names — this is what is used
1n queries
As if relation instances had their own names, distinct from the

corresponding tables

® Distinguishes between relationsbips and attributes

Attribute values are literals

Relationship values are objects

ODMG relationships have little to do with relationships in the E-R model

— do not confuse them!!

(c) Pearson and P.Fodor (CS Stony Brook)

-
Example (contd.)

class STUDENT extends PERSON ¢
(extent StudentExt)
attribute Set<<String> Major;
relationship Set<COURSE> Enrolled;

 STUDENT is a subclass of PERSON (both are classes, unlike
ADDRESS in the previous example)

® A class can have at most one immediate superclass

® No name over]oading: a method with a given name and
signature cannot be inherited from more than one place

(a superclass or super-interface)

@ (c) Pearson and P.Fodor (CS Stony Brook)

p
Referential Integrity

class STUDENT extends PERSON {
(extent StudentExt)
attribute Set<String> Major;
relationship Set<COURSE> Enrolled;
h
class COURSE: Object {
(extent CourseExt)
attribute Integer CrsCode;

attribute String Department;
relationship Set<STUDENT> Enrollment;

® Referential integrity: If JoePublic takes CS532, and CS532 € JoePublic.Enrolled, then
deleting the object for CS532 will delete it from the set JoePublic. Enrolled

e Still, the following is possible:
CS532 € JoePublic.Enrolled but JoePublic ¢ CS532.Enrollment

@ * Question: Can the DBMS automatically maintain consistency between
\ JoePublic. Enrolled and CS559"SER#B¢fredfify (CS Stony Brook)

Referential Integrity (Contd.)

Solution:

class STUDENT extends PERSON {
(extent StudentExt)
attribute Set<String> Major;
relationship Set<COURSE> Enrolled
inverse COURSE::Enrollment;
h
class COURSE: Object {
(extent CourseExt)
attribute Integer CrsCode;
attribute String Department;
relationship Set<STUDENT> Enrollment
inverse STUDENT ::Enrolled;

@ (c) Pearson and P.Fodor (CS Stony Brook)

OQL: The ODMG Query Language

® Declarative
® SQL-like, but better

® Can be used in the interactive mode

Very few vendors support interactive use

® Can be used as embedded language in a host language
This is how it is usually used

OQL brings back the impedance mismatch

(c) Pearson and P.Fodor (CS Stony Brook)

~

Example: Simple OQL Query

SELECT DISTINCT S.Address
FROM PersonExt S
WHERE S.Name = “Smith”

® Can hardly tell if this is OQL or SQL

® Note: Uses the name of the extent of class PERSON, not the

name of the class

(c) Pearson and P.Fodor (CS Stony Brook)

4 N
Example: A Query with Method Invocation

® Method in the SELECT clause:
SELECT M.frameRange(100, 1000)
FROM MOVIE M
WHERE M.Name = “The Simpsons”

® Method with a side effect:
SELECT S.add_phone_number(“555-12127)
FROM PersonExt S
WHERE S.SSN =%123-45-6789”

@ (c) Pearson and P.Fodor (CS Stony Brook) /

~
OQL Path Expressions

e Path expressions can be used with attributes:

SELECT DISTINCT S.Address.StName
FROM PersonExt S
WHERE S.Name = “Smith”

e As well as with relationships:

SELECT DISTINCT S.Spouse. Name
FROM PersonExt S
WHERE S.Name = “Smith” L

@ (c) Pearson and P.Fodor (CS Stony Brook)

Attribute

/
Path Expressions (Contd.)

® Must be type consistent: the type of each prefix of a path
expression must be consistent with the

method/attribute/relationship that follows

* For instance, is S is bound to a PERSON object, then

S.Address.StName and S.Spouse.Name are type consistent:
PERSON objects have attribute Address and relationship Spouse
S.Address is a literal of type ADDRESS; it has an attribute StName
S.Spouse is an object of type PERSON; it has a attribute Name, which is

inherited from Personlnterface

@ (c) Pearson and P.Fodor (CS Stony Brook)

/
Path Expressions (Contd.)

® Is P.Child.Child.PhoneN type consistent (P is bound to a

PERSON objects)?
o In some query languages, but not in OQL!

° Issue: Is P.Child a single set-object or a set of objects?

If it is a set of PERSON objects, we can apply Child to each such object and
P.Child.Child makes sense (as a set of grandchild PERSON objects)

If it is a single set-object of type Set<PERSON>, then P.Child.Child does
not make sense, because such objects do not have the Child relationship

® OQL uses the second option. Can we still get the phone numbers
of grandchildren? — Must flatten out the sets:

flatten(flatten(P.Child).Child).Phone
— A bad design decision. We will see in Chapter 17 that XML

query languages usce option 1.

@ (c) Pearson and P.Fodor (CS Stony Brook)

Nested Queries

* Asin SQL, nested OQL queries can occur in
® The FROM clause, for virtual ranges of variables
® The WHERE clause, for complex query conditions

* In OQL nested subqueries can occur in SELECT, too!
Do nested subqueries in SELECT make sense in SQL?

What does the next query do?

SELECT struct{ name: S.Name,
courses: (SELECT E
FROM S.Enrolled E
WHERE E.Department=“CS”)

j

FROM StudentExt S

(c) Pearson and P.Fodor (CS Stony Brook)

Aggregation and Grouping

® The usual aggregate functions avg, sum, count, min, max

® In general, do not need the GROUP BY operator, because we can
use nested queries in the SELECT clause.

e For example: Find all students a]ong with the number qf Computer Science courses

each student is enrolled in

SELECT name : S.Name
count: count(SELECT E.CrsCode
FROM S.Enrolled E
WHERE E.Department = “CS”)
FROM StudentExt S

(c) Pearson and P.Fodor (CS Stony Brook)

Aggregation and Grouping (Contd.)

e GROUP BY/HAVING exists, but does not increase the
expressive power (unlike SQL):
SELECT S.Name, count: count(E.CrsCode)
FROM StudentExt S, S.Enrolled E
WHERE E.Department = “CS”
GROUP BY S.SSN

Same effect, but the optimizer can use it as a hint.

(c) Pearson and P.Fodor (CS Stony Brook)

GROUP BY as an Optimizer Hint

SELECT
name : S.Name

count: count(SELECT E.CrsCode
FROM S.Enrolled E

WHERE E.Department = “CS”)
FROM StudentExt S

The query optimizer would compute the
inner query for each seStudentExt, so

s.Enrolled will be computed for each s.

If enrollment information is stored

separately (not as part of the STUDENT

Object), then given s, index is likely to be

used to find the corresponding courses.
Can be expensive, if the index is not

clustered

SELECT S.Name, count: count(E.CrsCode)
FROM StudentExt S, S.Enrolled E
WHERE E.Department = “CS”
GROUP BY S.SSN

The query optimizer can recognize that
it needs to find all courses for each
student. It can then sort the enrollment
file on student oids (thereby grouping
courses around students) and then
compute the result in one scan of that

sorted file.

(c) Pearson and P.Fodor (CS Stony Brook)

ODMG Language Bindings

® A set of interfaces and class definitions that allow host programs
to:
* Map host language classes to database classes in ODL

® Access objects in those database classes by direct manipulation of the mapped

host language objects
® Querying
® Some querying can be done by simply applying the methods supplied with

the database classes

® A more powerful method is to send OQL queries to the database using a

statement-level interface (which makes impedance mismatch)

(c) Pearson and P.Fodor (CS Stony Brook)

Java Bindings: Simple Example

public class STUDENT extends PERSON {
public DSet Major;

} Cant say “set of strings” —

. a Java limitation ;
e DSet class R LR

® part of ODMG Java binding, extends Java Set class
® defined because Java Set class cannot adequately replace ODL’s Set<<...>

STUDENT X;

add(') is a method of class DSet (a modified Java’s method). If X is
bound to a persistent STUDENT object, the above Java statement will
change that object in the database

(c) Pearson and P.Fodor (CS Stony Brook)

Language Bindings: Thorny Issues

® Host as a data manipulation language is a powertul idea, but:

e Some ODMG/ODL facilities do not exist in some or all host languages

® The result is the lack of syntactic and conceptual unity

® Some issues:

® Specification of persistence (which objects persist, ie, are automatically stored
in the database by the DBMS, and which are transient)
First, a class must be declared persistence capable (differently in different languages)

Second, to actually make an object of a persistence capable class persistent, different

facilities are used:
* In C++, aspecial form of new() is used

* In Java, the method makePersistent() (defined in the ODMG-]Java interface Database) is used

® Representation of relationships

¢ Java binding does not support them; C++ and Smalltalk bindings do

® Representation of literals

* Java & Smalltalk bindings do not support them; C++ does

(c) Pearson and P.Fodor (CS Stony Brook)

Java Bindings: Extended Example

® The OQLQuery class:

class OQLQuery {
public OQLQuery(String query); // the query constructor
public bind(Object parameter); // explained later
public Object execute(); / / executes queries

...... several more methods

® Constructor: OQLQuery(“SELECT ...”)

® Creates a query object

® The query string can have placeholders $1, $2, etc., like the "?’ placeholders
in Dynamic SQL, JDBC, ODBC. (Why?)

(c) Pearson and P.Fodor (CS Stony Brook)

-

Extended Example (Cont.)

® Courses taken exclusively by CS students in Spring 2002:

DSet students,courses;
String semester;
OQLQuery queryl, query2;
queryl = new OQLQuery(“SELECT S FROM STUDENT § *
+ “WHERE \”CS\” IN S.Major”);
students = (DSet) query]1.execute();
query2 = new 0QLQuery(“SELECT T FROM COURSE T *
+ “WHERE T.Enrollment.subsetOf($1) “
+ “AND T.Semester = $2);
semester = new String(“S2002”);
query2.bind(students); // bind $1 to the value of the variable students
query2.bind(semester); // bind $2 to the value of the variable semester

courses = (DSet) query?2.execute();

(c) Pearson and P.Fodor (CS Stony Brook)

/
Interface DCollection

* Allows queries (select) from collections of database

objects

® DSet inherits from DCollection, so, for example, the
methods of DCollection can be applied to variables

courses, students (previous slide)

public interface DCollection extends java.util.Collection {

public DCollection query(String condition);
public Object selectElement(String condition);
public Boolean existsElement(String condition);

public java.util.Iterator select(String condition);

@ (c) Pearson and P.Fodor (CS Stony Brook)

Extended Example (Cont.)

® query(condition) — selects a subcollection of objects that satisty
condition:
DSet seminars;

seminars = (DSet) courses.query(“this. Credits = 17);

* select(condition) — like query(), but creates an iterator; can now
scan the selected subcollection object-by-object:
java.util.Iterator seminarlter;

Course seminar;

seminarlter = (java.util.Iterator) courses.select(“this. Credits=1");

while (seminar=seminarlter.next()) {

(c) Pearson and P.Fodor (CS Stony Brook)

4 I
CORBA: Common Object Request Broker Architecture

® Distributed environment for clients to access objects on various

SETrVvEers

® Provides location transparency for distributed computational

resources

* Analogous to remote procedure call (RPC) and remote method

invocation in Java (RMI) in that all three can invoke remote code.

® But CORBA is more general and defines many more protocols
(eg, for object persistence, querying, etc.). In fact, RMI is
implemented using CORBA in Java 2

@ (c) Pearson and P.Fodor (CS Stony Brook) /

-
Interface Description Language (IDL)

® Specifies interfaces only (ie, classes without extents,

attributes, etc.)

* No constraints or collection types
// File Library.idl
module Library {
interface myLibrary{
string searchByKeywords(in string keywords);

string searchByAuthorTitle(in string author, in string title);

@ (c) Pearson and P.Fodor (CS Stony Brook)

Object Request Broker (ORB)

e Sits between clients and servers

e |dentifies the actual server for each method call and

dispatches the call to that server

® Objects can be implemented in ditterent languages and reside
on dissimilar OSs/machines, so ORB converts the calls
according to the concrete language/ OS/machine

conventions

(c) Pearson and P.Fodor (CS Stony Brook)

ORB Server Side

° Library.idl - IDL Compiler - Library-stubs.c, Library-skeleton.c

—> Method signatures to inte{face repository

® Server skeleton: Library-skeleton.c

Requests come to the server in OS/ language/ machine independent way

Server objects are implemented in some concrete language, deployed on a
concrete OS and machine

Server skeleton maps OS/ language/ machine independent requests to calls
understood by the concrete implementation of the objects on the server

® Object adaptor: How does ORB know which server can handle
which method calls? — Object adaptor, a part of ORB

When a server starts, it registers itself with the ORB object adaptor

Tells which method calls in which interfaces it can handle. (Recall that method
signature for all interfaces are recorded in the interface repository).

® Implementation repository: remembers which server implements
which methods/interfaces (the object adaptor stores this info

when a server registers)
(c) Pearson and P.Fodor (CS Stony Brook)

/
ORB Client Side

® Static invocation: used when the application knows which
exactly method/interface it needs to call to get the
needed service

® Dynamic invocation: an application might need to figure out what
method to call by querying the interface repository

For instance, an application that searches community libraries, where
each library provides different methods for searching with different
capabilities. For instance, some might allow search by title/author, while
others by keywords. Method names, argument semantics, even the

number of arguments might be different in each case

@ (c) Pearson and P.Fodor (CS Stony Brook)

/

o

Static Invocation

® (lient stub: Library—stubs.c

® For static invocation only, when the method/interface to call is known

* Converts OS/language/machine specific client’s method call into the
OS/language/machine independent format in which the request is delivered
over the network

This conversion is called marshalling of arguments

Needed because client and server can be deployed on different
OS/machine/ etc.

Consider: 32-bit machines vs. 64 bit, little-endian vs. big endian, different

representation for data structures (eg, strings)

e Recall: the machine—independent request is unmarshalled on the server side

by the server skeleton

e Conversion is done transparently for the programmer — the programmer

simply links the stub with the client program

(c) Pearson and P.Fodor (CS Stony Brook)

/

\gg

Dynamic Invocation

® Used when the exact method calls are not known

* Example: Library search service

Several community libraries provide CORBA objects for searching their

book holdings

New libraries can join (or be temporarily or permanently down)

Each library has its own legacy system, which is wrapped in CORBA objects.
While the wrappers might follow the same conventions, the search
capabilities of different libraries might be different (eg, by keywords, by
wildcards, by title, by author, by a combination thereof)

User fills out a Web form, unaware of what kind of search the different
libraries support

The user-side search application should
take advantage of newly joined libraries, even with different search
capabilities

continue to function even if some library servers are down

(c) Pearson and P.Fodor (CS Stony Brook)

/

Dynamic Invocation (Contd.)

* Example: IDL module with different search capabilities

module Library {
interface libraryl {
string searchByKeywords(in string keywords);
string searchByAuthorTitle(in string author, in string title);
h
interface library2 {
void searchByTitle(in string title, out string result);

void searchByWildcard(in string wildcard, out string result);

The client application:
Examines the fields in the form filled out by the user
Examines the interface repository —next slide

Decides which methods it can call with which arguments

Constructs the actyal, call 583 ghidesrook

Dynamic Invocation API

® Provides methods to query the integface repository

® Provides methods to construct machine—independent requests to

be passed along to the server by the ORB

® Once the application knows which method/interface to call with
which arguments, it constructs a request, which includes:
Object reference (which object to invoke)
Operation name (which method in which interface to call)
Argument descriptors (argument names, types, values)
Exception handling info
Additional “context” info, which is not part of the method arguments

® Note: The client stub is essentially a piece of code that uses the
dynamic invocation API to create the above requests. Thus:
With static invocation, the stub is created automatically by the IDL compiler

With dynamic invocation, the programmer has to manually write the code to create

@ and invoke the requests, because the requisite information is not available at

compile time
(c) Pearson and P.Fodor (CS Stony Brook) /

-

CORBA Architecture

Client
Application Server
| Methods
Interface Implementation
Repository Repository
Invocation T T eletc
N / request { .
object_reference; ™. “S~__
/ operation_name; Obic
argument_descriptors; “‘. Adaptc
-: exception_ handllng_lnfo, ;
\ context_object; -
Client-Side S T erver-Sid
ORB N ORB

' Request }

ORB Core

\VJ 1 LoV LTIV T i VUV (WU DLUIL Y DT uUUnNy

Interoperability within CORBA

® ORB allows objects to talk to each other if they are

registered with that ORB; can objects registered with
different ORBs talk to each other?

® General inter-ORB protocol (GIOP): message format for
requesting services from objects that live under the
control of a different ORB
* Often implemented using TCP/IP
® Internet inter-ORB protocol (IIOP) specifies how GIOP

messages are encoded for delivery viaTCP/IP

(c) Pearson and P.Fodor (CS Stony Brook)

Inter-ORB Architecture

Client Object
A
ORB 1 ORB 2
Y
GIOP GIOP
A
¥ |

lIOP [IOP

Internet (TCP/IP)

(c) Pearson and P.Fodor (CS Stony Brook)

a I
CORBA Services

e Rich infrastructure on top of basic CORBA

* Some services support database-like functions:
Persistence services — how to store CORBA objects in a database or some
other data store
Object query services — how to query persistent CORBA objects

Transaction services — how to make CORBA applications atomic (either

execute them to the end or undo all changes)

Concurrency control services — how to request/release locks. In this way,
applications can implement transaction isolation policies, such as two-

phase commit

@ (c) Pearson and P.Fodor (CS Stony Brook) /

o

Persistent State Services (PSS)

® PSS — a standard way for data stores (eg, databases, file
systems) to define interfaces that can be used by CORBA

clients to manipulate the objects in that data store

® On the server:

Objects are in storage homes (eg, classes)

Storage homes are grouped in data stores (eg, databases)

® On the client:

Persistent objects (from the data store) are represented using storage object

proxi es

Storage object proxies are organized into storage home proxies

* Clients manipulate storage object proxies directly, like

ODMG applications do

(c) Pearson and P.Fodor (CS Stony Brook)

CORBA Persistent State Services

O n

File System

@
)
@
Q
=
©
(o]
9]
=
Qo
o

Object Query Services (0QS)

* OQS makes it possible to query persistent CORBA objects
® Supports SQL and OQL

® Does two things:

® Query evaluator: Takes a query (from the client) and translated it into the
query appropriate for the data store at hand (eg, a file system does not
support SQL, so the query evaluator might have quite some work to do)

® Query collection service: Processes the query result.

Creates an object of type collection, which contain references to the objects in the

query result

Provides an iterator object to let the application to process each object in the result

one by one

(c) Pearson and P.Fodor (CS Stony Brook)

-

Object Query Services

Query Evaluator

DBMS

(c) Pearson and P.Fodor (CS Stony Brook)

Transaction and Concurrency Services

® Transactional services:

e Allow threads to become transactions. Provide

begin()
rollback()

commit()

® Implement two-phase commit protocol to ensure atomicity of
distributed transactions
® COHCUI"I"QHC)/ COHtTO] services:
* Allow transactional threads to request and release locks
® Implement two-phase locking

® Only supports — does not enforce — isolation. Other, non-

transactional CORBA applications can violate serializability

(c) Pearson and P.Fodor (CS Stony Brook)

