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SQL and Relational Calculus

 Although relational algebra is useful in the analysis of query 
evaluation, SQL is actually based on a different query 
language: relational calculus

 There are two relational calculi:
 Tuple relational calculus (TRC)
 Domain relational calculus (DRC)
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Tuple Relational Calculus

 Form of query:

{T | Condition(T)}
 T is the target – a variable that ranges over tuples of values
 Condition is the body of the query
 Involves T (and possibly other variables)

 Evaluates to true or false if a specific tuple is substituted for  T

3



(c) Pearson and P.Fodor (CS Stony Brook)

Tuple Relational Calculus: Example

 When a concrete tuple has been substituted for T:
 Teaching(T) is true if T is in the relational instance of  Teaching
 T.Semester = ‘F2000’ is true if the semester attribute of T has 

value F2000
 Equivalent to:

{T | Teaching(T) AND T.Semester = ‘F2000’}

SELECT *
FROM Teaching T
WHERE T.Semester = ‘F2000’
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Relation Between SQL and TRC 

 Target  T  corresponds to SELECT list: the query result 
contains the entire tuple

 Body split between two clauses:
 Teaching(T) corresponds to FROM clause
 T.Semester = ‘F2000’ corresponds to WHERE clause

{T | Teaching(T) AND T.Semester = ‘F2000’}

SELECT *
FROM Teaching T
WHERE T.Semester = ‘F2000’
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Query Result

 The result of a TRC query with respect to a given database is 
the set of all choices of tuples for the variable T that make the 
query condition a true statement about the database
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Query Condition

 Atomic condition:
 P(T), where P is a relation name
 T.A operator S.B or T.A operator constant, where T and S are 

relation names, A and B are attributes and operator is a 
comparison operator (e.g., =, ,<, >, , etc)

 (General) condition:
 atomic condition
 If C1 and C2 are conditions then C1 AND C2 ,

C1 OR C2, and  NOT C1 are conditions
 If  R  is a relation name,  T a tuple variable, and  C(T) is a 

condition that uses  T,  then T  R (C(T))  and  T R (C(T)) 
are conditions
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Bound and Free Variables

 X is a free variable in the statement  C1:  “X is in CS305” 
(this might be represented more formally as C1(X) )
 The statement is neither true nor false in a particular state of 

the database until we assign a value to X

 X is a bound (or quantified) variable in the statement  C2: 
“there exists a student X such that X is in CS305” (this might 
be represented more formally as 

 X S  (C2(X))

where S is the set of all students)
 This statement can be assigned a truth value for any particular state of the 

database
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Bound and Free Variables in TRC Queries

 Bound variables are used to make assertions about tuples 
in database (used in conditions)

 Free variables designate the tuples to be returned by the 
query (used in targets)

{S | Student(S)  AND (T Transcript
(S.Id = T.StudId AND T.CrsCode = ‘CS305’)) }

 When a value is substituted for S the condition has value true or 
false

 There can be only one free variable in a condition (the 
one that appears in the target)
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Example 2

 Returns the set of all course tuples corresponding to all 
courses that have been taken by all students

{ E | Course(E)  AND
S  Student (

 T  Transcript (
T.StudId = S.Id AND
T. CrsCode = E.CrsCode

)
)

}
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TRC Syntax Extension
 We add syntactic sugar to TRC, which simplifies queries and 

make the syntax even closer to that of SQL:

{S.Name, T.CrsCode | Student (S) AND Transcript (T)
AND … }

instead of

{R | S Student (R.Name = S.Name)
AND T Transcript(R.CrsCode = T.CrsCode)

AND …}

where R is a new tuple variable with attributes Name and CrsCode
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Relation Between TRC and SQL (cont’d)

 List the names of all professors who have taught MGT123
 In TRC:

{P.Name | Professor(P) AND T Teaching
(P.Id = T.ProfId AND T.CrsCode = ‘MGT123’) }

 In SQL:

SELECT P.Name
FROM Professor P, TeachingT
WHERE   P.Id = T.ProfId AND T.CrsCode = ‘MGT123’

Core of SQL is merely a syntactic sugar on top of TRC
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What Happened to Quantifiers in SQL?

 SQL has no quantifiers: how come?  It uses conventions:
 Convention 1.   Universal quantifiers are not allowed (but SQL:1999 

introduced a limited form of explicit )
 Convention 2.   Make existential quantifiers implicit:  Any tuple variable that 

does not occur in SELECT is assumed to be implicitly quantified with  

 Compare:
{P.Name | Professor(P) AND T Teaching   … }

and
SELECT P.Name

FROM Professor P,  TeachingT
… … … 

Implicit

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Relation Between TRC and SQL (cont’d)

 SQL uses a subset of TRC with simplifying conventions 
for quantification

 Restricts the use of quantification and negation (so TRC 
is more general in this respect)

 SQL uses aggregates, which are absent in TRC (and 
relational algebra, for that matter).  But aggregates can 
be added

 SQL is extended with relational algebra operators 
(MINUS, UNION, JOIN, etc.)
 This is just more syntactic sugar, but it makes queries easier to 

write
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More on Quantification

 Adjacent existential quantifiers and adjacent universal 
quantifiers commute:
 T Transcript (T1 Teaching (…)) is same as T1 
Teaching (T Transcript (…))

 Adjacent existential and universal quantifiers do not
commute:
 T Transcript (T1 Teaching (…)) is different from
T1Teaching (T Transcript (…))
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More on Quantification (con’t)

 A quantifier defines the scope of the quantified variable 
(analogously to a begin/end block):
T  R1 (U(T) AND T  R2(V(T)))

is the same as:
T  R1 (U(T) AND  S  R2(V(S)))

 Universal domain: Assume a domain, U, which is a union 

of all other domains in the database. Then, instead of  T 

 U and  S  U we simply write T and T
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Views in TRC

 Problem: List students who took a course from every 
professor in the Computer Science Department

 Solution:
 First create view:  All CS professors

CSProf = {P.ProfId | Professor(P) AND P.DeptId = ‘CS’}

 Then use it

{S. Id | Student(S) AND

P  CSProf T Teaching R Transcript (
AND P. Id = T.ProfId AND S.Id = R.StudId AND

T.CrsCode = R.CrsCode AND T.Semester = R.Semester
)  }
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Queries with Implication

 Did not need views in the previous query, but doing it 
without a view has its pitfalls: need the implication 
(if-then):

{S. Id | Student(S) AND

P  Professor (
P.DeptId = ‘CS’   

T1 Teaching R Transcript (
P.Id = T1.ProfId AND S.Id = R.Id
AND T1.CrsCode = R.CrsCode
AND T1.Semester = R.Semester

)
)

}

 Why  P.DeptId = ‘CS’ … and not P.DeptId = ‘CS’ AND …  ?
 List students who took a course from every professor in the Computer Science 

Department!!!
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More complex SQL to TRC Conversion

 Using views, translation between complex SQL queries and 
TRC is direct:

SELECT R1.A, R2.C
FROM Rel1 R1,  Rel2 R2
WHERE condition1(R1, R2) AND

R1.B IN  (SELECT R3.E
FROM Rel3 R3, Rel4 R4
WHERE condition2(R2, R3, R4) )

versus:

{R1.A, R2.C | Rel1(R1) AND Rel2(R2) AND condition1(R1, R2)
AND R3 Temp (R1.B = R3.E AND R2.C = R3.C

AND R2.D = R3.D) }

Temp = {R3.E, R2.C, R2.D | Rel2(R2) AND Rel3(R3)
AND R4 Rel4 (condition2(R2, R3, R4) )}

TRC view
corresponds
to subquery
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Domain Relational Calculus (DRC)

 A domain variable is a variable whose value is drawn from the 
domain of an attribute  
 Contrast this with a tuple variable, whose value is an entire 

tuple
 Example: The domain of a domain variable Crs might be the set of 

all possible values of the CrsCode attribute in the relation 
Teaching
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Queries in DRC

 Form of DRC query:
{X1 , …, Xn | condition(X1 , …, Xn) }

 X1 , …, Xn is the target: a list of domain variables. 
 condition(X1 , …, Xn)  is similar to a condition in TRC; 

uses free variables X1 , …, Xn.
 However, quantification is over a domain
 X Teaching.CrsCode (… … …)

 i.e., there is  X  in Teaching.CrsCode, such that condition is true

 Example:  {Pid, Code | Teaching(Pid, Code, ‘F1997’)}
 This is similar to the TRC query:

{T | Teaching(T) AND T.Semester = ‘F1997’}
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Query Result

 The result of the DRC query
{X1 , …, Xn | condition(X1 , …, Xn) }

with respect to a given database is the set of  all tuples 
(x1,…,xn) such that, for  i = 1,…,n, if  xi is substituted for 
the free variable Xi , then condition(x1 , …, xn) is a true 
statement about the database
 Xi can be a constant,  c, in which case  xi = c
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Examples
 List names of all professors who taught MGT123:

{Name | Id Dept (Professor(Id, Name, Dept) AND

Sem (Teaching(Id, ‘MGT123’, Sem)) )}
 The universal domain is used to abbreviate the query
 Note the mixing of variables (Id, Sem) and constants (MGT123)

 List names of all professors who ever taught Ann

{Name | Pid Dept (
Professor(Pid, Name, Dept) AND
Crs Sem Grd Sid Add Stat (

Teaching(Pid, Crs, Sem) AND
Transcript(Sid, Crs, Sem, Grd) AND
Student(Sid, ‘Ann’, Addr, Stat)

)) } 

Lots of   – a
hallmark of DRC.
Conventions like
in SQL can be used 
to shorten queries 
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Relation Between Relational Algebra, 
TRC, and DRC
 Consider the query {T | NOT Q(T)}:  returns the set of 

all tuples not in relation Q
 If the attribute domains change, the result set changes as well
 This is referred to as a domain-dependent query

 Another example:  {T| S(R(S)) \/  Q(T)}
 It is domain-dependent

 Only domain-independent queries make sense, but 
checking domain-independence is undecidable
 But there are syntactic restrictions that guarantee domain-

independence
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 Relational algebra (but not DRC or TRC) queries are 
always domain-independent (proved by induction!)

 TRC, DRC, and relational algebra are equally expressive 
for domain-independent queries
 Proving that every domain-independent TRC/DRC query can 

be written in the algebra is somewhat hard
 We will show the other direction: that algebraic queries are 

expressible in TRC/DRC

25
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 Algebra:   Condition(R)
 TRC:        {T | R(T) AND Condition1}
 DRC:        {X1,…,Xn | R(X1,…,Xn) AND Condition2 }

 Let  Condition be  A=B AND C=‘Joe’.   Why Condition1 and 
Condition2?
 Because TRC, DRC, and the algebra have slightly different 

syntax: 
Condition1  is   T.A=T.B AND T.C=‘Joe’
Condition2  would be   A=B AND C=‘Joe’  

(possibly with different variable names)
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 Algebra:  A,B,C(R)

 TRC:       {T.A,T.B,T.C | R(T)}

 DRC:       {A,B,C | D E… R(A,B,C,D,E,…) }

 Algebra:  R S

 TRC:       {T.A.T.B,T.C,V.D,V,E | R(T) AND S(V) }

 DRC:       {A,B,C,D,E | R(A,B,C) AND S(D,E) }

27
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 Algebra:  R  S
 TRC:    {T | R(T) OR S(T)}

 DRC:   {A,B,C | R(A,B,C) OR S(A,B,C) }

 Algebra:  R – S

 TRC:    {T | R(T) AND  NOT S(T)}

 DRC:   {A,B,C | R(A,B,C) AND NOT S(A,B,C) }

28
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QBE: Query by Example

 Declarative query language, like SQL

 Based on DRC (rather than TRC)

 Visual

 Other visual query languages (MS Access, Paradox) are just 
incremental improvements
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QBE Examples

Professor Id Name DeptId

Professor Id Name DeptId

P._John MGT

P. MGT

Print all professors’ names in the MGT department

Same, but print all attributes

Operator “Print”
Targetlist “example”  

variable

• Literals that start with “_” are variables.
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Joins in QBE

Professor Id Name DeptId
_123 P._John

Teaching ProfId CrsCode Semester
_123 MGT123

• Names of professors who taught MGT123 in any semester
except Fall 2002

< > ‘F2002’

Simple conditions placed
directly in columns
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Condition Boxes
• Some conditions are too complex to be placed directly 

in table columns

Transcript StudId CrsCode Semester Grade
P. CS532 _Gr

Conditions

_Gr = ‘A’  OR _Gr = ‘B’

• Students who took CS532 & got A or B
32
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Aggregates, Updates, etc.

 Has aggregates (operators like AVG, COUNT), grouping 
operator, etc.

 Has update operators

 To create a new table (like SQL’s CREATE TABLE), simply 
construct a new template:

HasTaught Professor Student
I. 123456789 567891012
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A Complex Insert Using a Query

Teaching ProfId CrsCode Semester

HasTaught Professor Student
I. _12345 _5678

HasTaught Professor Student
P.

Transcript StudId CrsCode Semester Grade
_5678 _CS532 _S2002

_S2002_CS532_12345

q
u
e
r
y

query
target

u
p
d
a
t
e
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Connection to DRC

 Obvious: just a graphical representation of DRC

 Uses the same convention as SQL: existential quantifiers () 
are omitted

Transcript StudId CrsCode Semester Grade

_123 _CS532 F2002 A

Transcript(X, Y, ‘F2002’, ‘A’)
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Pitfalls: Negation
 List all professors who didn’t teach anything in S2002:

Professor Id Name DeptId
_123 P.

Teaching ProfId CrsCode Semester

_123 S2002

• Problem: What is the quantification of CrsCode?
{Name | Id DeptId CrsCode ( Professor(Id,Name,DeptId)  AND

NOT  Teaching(Id,CrsCode,’S2002’) ) }
• Not what was intended(!!), but what the convention about implicit 

quantification says
or

{Name | Id DeptId CrsCode ( Professor(Id,Name,DeptId)  AND  ……}
• The intended result!36
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Negation Pitfall: Resolution
 QBE changed its convention:

 Variables that occur only in a negated table are implicitly quantified with 
instead of 

 For instance:  CrsCode in our example. Note:  _123  (which corresponds 
to Id in DRC formulation) is quantified with , because it also occurs in 
the non-negated table Professor

 Still, problems remain!  Is it
{Name | Id DeptId CrsCode ( Professor(Id,Name,DeptId)  AND …}

or
{Name | CrsCode Id DeptId ( Professor(Id,Name,DeptId)  AND …}

Not the same query!
 QBE decrees that the -prefix goes first
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Microsoft Access

38
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PC Databases

 A spruced up version of QBE (better interface)

 Be aware of implicit quantification

 Beware of negation pitfalls
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Deductive Databases

 Motivation: Limitations of SQL

 Recursion in SQL:1999

 Datalog – a better language for complex queries
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Limitations of SQL

 Given a relation Prereq with attributes Crs and PreCrs, list 
the set of all courses that must be completed prior to 
enrolling in CS632
 The set Prereq 2, computed by the following expression, 

contains the  immediate and once removed (i.e. 2-step 
prerequisites) prerequisites for all courses:

 In general, Prereqi contains all prerequisites up to those that are 
i-1 removed for all courses:

Crs, PreCrs ((Prereq PreCrs=Crs Prereq)[Crs, P1, C2, PreCrs]

 Prereq

Crs, PreCrs ((Prereq PreCrs=Crs Prereqi-1)[Crs, P1, C2, PreCrs]

 Prereqi-1
41
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Limitations of SQL (con’t)

 Question: We can compute Crs=‘CS632’(Prereqi) to get all 
prerequisites up to those that are i-1 removed, but how can 
we be sure that there are not additional prerequisites that are 
i removed?

 Answer: When you reach a value of  i such that Prereqi = 
Prereqi+1 you’ve got them all.  This is referred to as a stable 
state

 Problem: There’s no way of doing this within relational 
algebra, DRC, TRC, or SQL (this is not obvious and not easy 
to prove)
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Recursion in SQL:1999

 Recursive queries can be formulated using a recursive 
view:

 (a) is a non-recursive subquery – it cannot refer to the 
view being defined
 Starts recursion off by introducing the base case – the set of 

direct prerequisites

CREATE RECURSIVE VIEW   IndirectPrereq (Crs, PreCrs) AS
SELECT  *  FROM   Prereq
UNION 
SELECT   P.Crs,  I.PreCrs
FROM      Prereq P,  IndirectPrereq I
WHERE   P.PreCrs = I.Crs

(a)

(b)
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Recursion in SQL:1999  (cont’d)

 (b) contains recursion – this subquery refers to the view 
being defined.  
 This is a declarative way of specifying the iterative process of 

calculating successive levels of indirect prerequisites until a 
stable point is reached

CREATE RECURSIVE VIEW   IndirectPrereq (Crs, PreCrs)  AS
SELECT  *  FROM   Prereq
UNION 
SELECT   P.Crs, I.PreCrs
FROM      Prereq P,  IndirectPrereq I
WHERE   P.PreCrs = I.Crs

(b)

44



(c) Pearson and P.Fodor (CS Stony Brook)

Recursion in SQL:1999

 The recursive view can be evaluated by computing 
successive approximations
 IndirectPrereqi+1 is obtained by taking the union of 

IndirectPrereqi with the result of the query
SELECT   P.Crs, I.PreCrs

FROM      Prereq P,  IndirectPrereqi I
WHERE   P.PreCrs = I.Crs

 Successive values of IndirectPrereqi are computed until a stable 

point is reached, i.e., when  the result of the query 

(IndirectPrereqi+1) is contained in IndirectPrereqi
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Recursion in SQL:1999

 Also provides the WITH construct, which does not require views.

 Can even define mutually recursive queries:

WITH

RECURSIVE OddPrereq(Crs, PreCrs)  AS

(SELECT  *  FROM  Prereq)

UNION

(SELECT   P.Crs,  E.PreCrs

FROM      Prereq P,  EvenPrereq E

WHERE    P.PreCrs=E.Crs ) ),

RECURSIVE  EvenPrereq(Crs, PreCrs)  AS

(SELECT   P.Crs,  O.PreCrs

FROM      Prereq P,  OddPrereq O

WHERE    P.PreCrs = O.Crs )

SELECT  *  FROM  OddPrereq
46
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Datalog

 Rule-based query language

 Easier to use, more modular than SQL

 Much easier to use for recursive queries

 Extensively used in research

 Partial implementations of Datalog are used commercially

 W3C is standardizing a version of Datalog for the 
Semantic Web
 RIF-BLD: Basic Logic Dialect of the Rule Interchange Format 

http://www.w3.org/TR/rif-bld/
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Basic Syntax
 Rule:

head :- body.

 Query:
?- body.

 body:  any DRC expression without the quantifiers.
 AND is often written as ‘,’ (without the quotes)
 OR is often written as ‘;’

 head: a DRC expression of the form R(t1,…,tn), where ti
is either a constant or a variable; R is a relation name.

 body in a rule and in a query has the same syntax.
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Basic Syntax (cont’d)

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

?- NameSem(?Name,?Sem).

Answers:

?Name = kifer

?Sem = F2005

?Name = lewis

?Sem = F2004

… … …

Derived relation;
Like a database view

Base relation, if never 
occurs in a rule head
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Basic Syntax (cont’d)

 Datalog’s quantification of variables
 Like in SQL and QBE: implicit

 Variables that occur in the rule body, but not in the head are 
viewed as being quantified with 

 Variables that occur in the head are like target variables in SQL, 
QBE, and DRC
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Basic Semantics

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

?- NameSem(?Name, ?Sem).

The easiest way to explain the semantics is to use DRC:

NameSem = {Name,Sem| Id Dept ( Prof(Id,Name,Dept)  AND

Teaching(Id, ‘MGT123’, Sem) ) }
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Basic Semantics (cont’d)

 Another way to understand rules:

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept),            Teach(?Id,’MGT123’,?Sem).

(bob, F2002) (1111, bob, CS) and       (1111, MGT123, F2002)

If these tuples exist

Then this one must also exist

As in DRC, join is indicated 
by sharing variables

  
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Union Semantics of Multiple Rules
 Consider rules with the same head-predicate:

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’CS532’,?Sem).

 Semantics is the union:

NameSem = {Name, Sem| Id Dept ( 

(Prof(Id,Name,Dept)  AND Teaching(Id, ‘MGT123’, Sem)) 

OR (Prof(Id,Name,Dept)  AND Teaching(Id, ‘CS532’, Sem)) 

)  }

Equivalently:

NameSem = {Name, Sem| Id Dept ( 

Prof(Id,Name,Dept)  AND

(Teaching(Id, ‘MGT123’, Sem)  OR Teaching(Id, ‘CS532’, Sem)) 

)  }

 Above rules can also be written in one rule:

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept),

( Teach(?Id,’MGT123’,?Sem) ;Teach(?Id,’CS532’,?Sem) ).

by distributivity
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Recursion

 Recall: DRC cannot express transitive closure

 SQL was specifically extended with recursion to capture this (in 
fact, but mimicking Datalog)

 Example of recursion in Datalog:

IndirectPrereq(?Crs,?Pre) :- Prereq(?Crs,?Pre).

IndirectPrereq(?Crs,?Pre) :-
Prereq(?Crs,?Intermediate),

IndirectPrereq(?Intermediate,?Pre).
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Semantics of Recursive Datalog 
Without Negation

 Positive rules
 No negation (not) in the rule body
 No disjunction in the rule body
 The last restriction does not limit the expressive power:  H :- (B;C) is 

equivalent to  H :- B and  H :- C because
 H :- B is  H or not B

 Hence

o H or not (B or C)   is equivalent to  the pair of formulas

H or not B

and

H or not C.
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Semantics of Negation-free Datalog 
(cont’d)

 A Datalog rule  

HeadRelation(HeadVars) :- Body

can be represented in DRC as
HeadRelation = {HeadVars | BodyOnlyVars  Body}

 We call this the DRC query corresponding to the above Datalog 
rule

56



(c) Pearson and P.Fodor (CS Stony Brook)

Semantics of Negation-free Datalog  -
An Algorithm

 Semantics can be defined completely declaratively, but we 
will define it using an algorithm

 Input: A set of Datalog rules without
negation + a database

 The initial state of the computation:
 Base relations – have the content assigned to them by the 

database
 Derived relations – initially empty 

57



(c) Pearson and P.Fodor (CS Stony Brook)

Semantics of Negation-free Datalog  -
An Algorithm (cont’d)

1. CurrentState := InitialDBState

2. For each derived relation R, let r1,…,rk be all the rules that have R
in the head

 Evaluate the DRC queries that correspond to each ri

 Assign the union of the results from these queries to R

3. NewState := the database where instances of all derived relations 
have been replaced as in Step 2 above

4. if CurrentState = NewState
then Stop: NewState is the stable state that represents the  

meaning of that set of Datalog rules on the given DB
else CurrentState := NewState; Goto Step 2.
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 The algorithm always terminates:
 CurrentState constantly grows (at least, never shrinks)

 Because DRC expressions of the form 
Vars (A and/or B and/or C …)

which have no negation, are monotonic: if tuples are added to the database, the result of such 
a DRC query grows monotonically

 It cannot grow indefinitely (Why?)
 Complexity: number of steps is polynomial in the size of the DB (if the 

ruleset is fixed)
 D – number of constants in DB;

N – sum of all arities
 Can’t take more than DN iterations
 Each iteration can produce at most DN  tuples

 Hence, the number of steps is O(DN  * DN)

Semantics of Negation-free Datalog  -
An Algorithm (cont’d)
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Expressivity
 Recursive Datalog can express queries that cannot be done in 

DRC (e.g., transitive closure) – recall recursive SQL

 DRC can express queries that cannot be expressed in Datalog 
without negation (e.g., complement of a relation or set-
difference of relations)

 Datalog with negation is strictly more expressive than DRC
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Negation in Datalog

 Uses of negation in the rule body:
 Simple uses: For set difference
 Complex cases: When the (relational algebra) division operator is 

needed

 Expressing division is hard, as in SQL, since no explicit universal 
quantification
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Negation (cont’d)
 Find all students who took a course from every professor

Answer(?Sid) :- Student(?Sid, ?Name, ?Addr),
not DidNotTakeAnyCourseFromSomeProf(?Sid).

DidNotTakeAnyCourseFromSomeProf(?Sid) :-
Professor(?Pid,?Pname,?Dept),
Student(?Sid,?Name,?Addr),
not HasTaught(?Pid,?Sid).

HasTaught(?Pid,?Sid) :-Teaching(?Pid,?Crs,?Sem),
Transcript(?Sid,?Crs,?Sem,?Grd).

?- Answer(?Sid).

 Not as straightforward as in DRC, but still quite logical!
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Negation Pitfalls: Watch Your Variables

 Has problem similar to the wrong choice of operands in 
relational division

 Consider: Find all students who have passed all courses that were 
taught in spring 2006

StudId, CrsCode,Grade (Grade ‘F’ (Transcript) ) / CrsCode (Semester=‘S2006’ (Teaching) )

versus
StudId, CrsCode (Grade ‘F’ (Transcript) ) / CrsCode (Semester=‘S2006’ (Teaching) )

Which is correct?  Why?
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Negation Pitfalls (cont’d)

 Consider a reformulation of: Find all students who took a course from every professor

Answer(?Sid) :-
Student(?Sid, ?Name, ?Addr),     
Professor(?Pid,?Pname,?Dept),
not ProfWhoDidNotTeachStud(?Sid,?Pid).

ProfWhoDidNotTeachStud(?Sid,?Pid) :-
Professor(?Pid,?Pname,?Dept),
Student(?Sid,?Name,?Addr),
not HasTaught(?Pid,?Sid).

HasTaught(?Pid,?Sid) :- … … …

?- Answer(?Sid).

 What’s wrong?
 The answer will consist of students who were taught by 
some professor

The only real differences compared to
DidNotTakeAnyCourseFromSomeProf

?Pid ?Name

Implied 
quantification 

is wrong!
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Negation and a Pitfall: Another Example

 Negation can be used to express containment: Students who took every course taught 
by professor with Id 1234567 in spring 2006.

 DRC
{Name | CrsGradeSid

(Student(Sid, Name), 

(Teaching(1234567,Crs,’S2006’)
=> Transcript(Sid,Crs,’S2006’,Grade)))}

 Datalog
Answer(?Name) :- Student(?Sid,?Name),

not DidntTakeS2006CrsFrom1234567(?Sid).

DidntTakeS2006CrsFrom1234567(?Sid) :-
Teaching(1234567,?Crs,’S2006’),  not TookS2006Course(?Sid,?Crs).

TookS2006Course(?Sid,?Crs) :-Transcript(?Sid,?Crs,’S2006’,?Grade).

 Pitfall: Transcript(?Sid,?Crs,’S2006’,?Grade) here   won’t do because of ?Grade ! 
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Negation and Recursion

 What is the meaning of a ruleset that has recursion through 
not?

 Already saw this in recursive SQL – same issue

OddPrereq(?X,?Y) :- Prereq(?X,?Y).

OddPrereq(?X,?Y) :- Prereq(?X,?Z), EvenPrereq(?Z,?Y),

not EvenPrereq(?X,?Y).

EvenPrereq(?X,?Y) :- Prereq(?X,?Z), OddPrereq(?Z,?Y).

?- OddPrereq(?X,?Y).

 Problem:  
 Computing OddPrereq depends on knowing the complement of EvenPrereq
 To know the complement of EvenPrereq, need to know EvenPrereq
 To know EvenPrereq, need to compute OddPrereq first!
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Negation Through Recursion (cont’d)

 The algorithm for positive Datalog wont work with negation in the 
rules:
 For convergence of the computation, it relied on the monotonicity of 

the DRC queries involved
 But with negation in DRC, these queries are no longer monotonic:

Query = {X | P(X) and not Q(X)}

P(a), P(b), P(c);  Q(a) => Query result:  {b,c}

Add Q(b) => Query result shrinks: just {c}
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“Well-behaved” Negation
 Negation is “well-behaved” if there is no recursion through it

P(?X,?Y) :- Q(?X,?Z),  not R(?X,?Y).

Q(?X,?Y) :- P(?X,?Z), R(?X,?Y).

R(?X,?Y) :- S(?X,?Z), R(?Z,?V), notT(?V,?Y).

R(?X,?Y) :- V(?X,?Z).

P

Q

–

S T

–

Dependency graph

Evaluation method for P:
1. Compute T , then its complement, not T
2. Compute R using the Negation-free

Datalog algorithm. Treat not T as base 
relation

3. Compute not R
4. Compute Q and P using Negation-free 

Datalog algorithm. Treat not R as base

R

V

Negative 
arcs

Negative 
arcs

Positive 
arcs

Positive 
arcs
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“Ill-behaved” Negation
 What was wrong with the even/odd prerequisites example?

OddPrereq(?X,?Y) :- Prereq(?X,?Y).

OddPrereq(?X,?Y) :- Prereq(?X,?Z), EvenPrereq(?Z,?Y),

not EvenPrereq(?X,?Y).

EvenPrereq(?X,?Y) :- Prereq(?X,?Z), OddPrereq(?Z,?Y).

OddPrereq EvenPrereq

Prereq

-

Dependency graph

Cycle through negation in 
dependency graph
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Dependency Graph for a Ruleset R

 Nodes: relation names in R

 Arcs:
 if   P(…) :- …, Q(…), …  is in  R then the dependency graph 

has a positive arc  Q -----> R
 if  P(…) :- …, not Q(…), …  is in  R then the dependency 

graph has a negative arc
Q -----> R  (marked with the minus sign)-
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Strata in a Dependency Graph
 A stratum is a positively strongly connected 

component, i.e., a subset of nodes such that:
 No negative paths among any pair of nodes in the set
 Every pair of nodes has a positive path connecting them 

(i.e.,     a----> b and b----> a)

Q

–

S T

–

R

V

P

Strata
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Stratification
 Partial order on the strata: if there is a path from a 

node in a stratum, , to a stratum φ, then  < φ. 
(Are  < φ and φ <  possible together?)

 Stratification: any total order of the strata that is 
consistent with the above partial order.

Q

–

S T

–

R

V

P
1

2

3
4

5

A possible stratification:
3 , 5 , 4 , 2 , 1

Another stratification:
5 , 4 , 3 , 2 , 1
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Stratifiable Rulesets

 This is what we meant earlier by “well-behaved” rulesets

 A ruleset is stratifiable if it has a stratification

 Easy to prove (see the book):
 A ruleset is stratifiable iff its dependency graph has no negative cycles (or if 

there are no cycles, positive or negative, among the strata of the graph)
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Partitioning of a Ruleset According to 
Strata

 Let R be a ruleset and let 1 , 2 , … , n be a stratification

 Then the rules of R can be partitioned into subsets Q1 , Q2 , 
…, Qn, where each Qi includes exactly those rules whose 
head relations belong to i
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Evaluation of a Stratifiable Ruleset, R

1. Partition the relations of R into strata
2. Stratify (order)
3. Partition the ruleset according to the strata into the subsets Q1 , Q2 , 

Q3 , …, Qn

4. Evaluate
a. Evaluate the lowest stratum, Q1, using the negation-free algorithm
b. Evaluate the next stratum, Q2, using the results for Q1 and the algorithm for 

negation-free Datalog
 If  relation P is defined in Q1 and used in Q2, then treat P as a base relation in Q2

 If  not P occurs in Q2, then treat it as a new base relation, NotP, whose extension is the 
complement of P (which can be computed, since P was computed earlier, during the 
evaluation of Q1)

c. Do the same for Q3 using the results from the evaluation of Q2, etc.
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Unstratified Programs

 Truth be told, stratification is not needed to to evaluate 
Datalog rulesets.  But this becomes a rather complicated 
stuff, which we won’t touch. (Refer to the bibliographic 
notes, if interested.)
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The XSB Datalog System
 http://xsb.sourceforge.net

 Developed at Stony Brook by Prof. Warren and many 
contributors

 Not just a Datalog system – it is a complete 
programming language, called Prolog, which happens to 
support Datalog

 Has a number of syntactic differences with the version 
we have just seen
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Differences

 Variables:  Any alphanumeric symbol that starts with a capital letter or a 
_ (underscore)
 Examples: Abc, ABC2, _abc34
 Non-examples:  123, abc, aBC

 Each occurrence of a singleton symbol _ is treated as a new variable, 
which was never seen before:
 Example:  p(_,abc), q(cde,_) – the two _’s are treated as completely different 

variables
 But  the two occurrences of _xyz in p(_xyz,abc), q(cde,_xyz) refer to the same 

variable

 Relation names and constants:
 must either start with a lowercase letter (and include only alphanumerics and _)

 Example:  abc, aBC123, abc_123
 or be enclosed in single quotes

 Example:  'abc &% (, foobar1'
 Note:  abc and 'abc'  refer to the same thing
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Differences (cont’d)

 Negation: called tnot
 Note:  XSB also has not, but it is a different thing!
 Use:   … :- …, tnot(foobar(X)).

 All variables under the scope of tnot must also occur to the 
left of that scope in the body of the rule in other positive
relations:
 Ok:         … :- p(X,Y), tnot(foobar(X,Y)), …
 Not ok:   … :- p(X,Z), tnot(foobar(X,Y)), …

 XSB does not support Datalog by default – must tell it to do 
so with this instruction:

:- auto_table.
at the top of the program file
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Overview of Installation

 Unzip/untar; this will create a subdirectory XSB
 Windows: you are done
 Linux:

cd  XSB/build
./configure
./makexsb

That’s it!
 Cygwin under Windows: same as in Linux
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Use of XSB
 Put your ruleset and data in a file with extension .P (or .pl)

p(X) :- q(X,_).
q(1,a).
q(2,a).
q(b,c).
?- p(X).

 Don’t forget: all rules and facts end with a period (.)
 Comments: /*…*/  or  %.... (% acts like // in Java/C++)
 Type

…/XSB/bin/xsb                                            (Linux/Cygwin)
…\XSB\config\x86-pc-windows\bin\xsb     (Windows)

where … is the path to the directory where you downloaded XSB
 You will see a prompt

| ?-
and are now ready to type queries
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Use of XSB (cont’d)
 Loading your program, myprog.P

| ?- [myprog].
XSB will compile myprog.P (if necessary) and load it. Now you 
can type further queries, e.g.

| ?- p(X).
| ?- p(1).
Etc.
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Some Useful Built-ins
 write(X) – write whatever X is bound to
 writeln(X) – write then put newline
 nl – output newline
 Equality: =
 Inequality:  \=

http://xsb.sourceforge.net/manual1/index.html  (Volume 1)
http://xsb.sourceforge.net/manual2/index.html  (Volume 2)
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Arithmetics

 If you need it: use the builtin  is
p(1).  p(2).

q(X)  :- p(Y),  X  isY*2.

Now  q(2), q(4) will become true.

 Note:  
q(2*X)  :- p(X).

will not do what you might think it will do.
It will make  q(2*1) and q(2*2) true, but 2*1 and 2*2 are treated 

completely differently from 2 and 4 (no need to get into all that 
for now)
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Some Useful Tricks

 XSB returns only the first answer to the query. To get the 
next, type  ; <Return>. For instance:

| ?- q(X).
X = 2
X = 4
yes
| ?-

 Usually, typing the ;’s is tedious. To do this 
programmatically, use this idiom:

| ?- (q(_X), write('X='), writeln(_X), fail ; true).

_X  here tells XSB to not print its own answers, since we are 
printing them by ourselves.  (XSB won’t print answers for 
variables that are prefixed with a _.)

; <Return>
<Return>

<Return>
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Aggregates in XSB

 setof(?Template, +Goal, ?Set) : ?Set is the set of all instances 
of Template such that Goal is provable.

 bagof(?Template, +Goal, ?Bag) has the same semantics as 
setof/3 except that the third argument returns an unsorted 
list that may contain duplicates.

 findall(?Template, +Goal, ?List) is similar to predicate 
bagof/3, except that variables in Goal that do not occur in 
Template are treated as existential, and alternative lists are 
not returned for different bindings of such variables.

 tfindall(?Template, +Goal, ?List) is similar to predicate 
findall/3, but the Goal must be a call to a single tabled 
predicate.
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XSB Prolog basics

 An atom is a general-purpose name with no inherent 
meaning.

 Numbers can be floats or integers.

 A compound term is composed of an atom called a 
"functor" and a number of "arguments", which are again 
terms: tree(node(a),tree(node(b),node(c)))

 Special cases of compound terms:
 Lists: ordered collections of terms: [], [1,2,3], [a,1,X|T]
 Strings: A sequence of characters surrounded by quotes is 

equivalent to a list of (numeric) character codes: “abc”, “to be, 
or not to be”
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XSB Prolog

 Variables begin with a capital letter or underscore:
X, Socrates, _result

 Atoms do not begin with a capital letter:
socrates, paul

 Atoms containing special characters, or beginning with a capital 
letter, must be enclosed in single quotes: ‘Socrates’
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Representation of Lists
 List is handled as binary tree in Prolog

[Head | Tail]   OR
.(Head,Tail) 
 Where Head is an atom and Tail is a list
 We can write [a,b,c] or .(a,.(b,.(c,[]))).
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Matching
 Given two terms, they are identical or the variables in both 

terms can have same objects after being instantiated
date(D,M,2006) unification date(D1,feb,Y1) 

D=D1, M=feb, Y1=2006

 General Rule to decide whether two terms, S and T match 
are as follows:
 If S and T are constants, S=T if both are same object
 If S is a variable and T is anything, T=S 
 If T is variable and S is anything, S=T
 If S and T are structures, S=T if
 S and T have same functor
 All their corresponding arguments components have to match
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Declarative and Procedural Way

 Prolog programs can be understood two ways: declaratively 
and procedurally.

 P:- Q,R

 Declarative Way
 P is true if Q and R are true

 Procedural Way
 To solve problem P, first solve Q and then R (or) To satisfy P, 

first satisfy Q and then R
 Procedural way does not only define logical relation between 

the head of the clause and the goals in the body, but also the 
order in which the goal are processed.
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Evaluation
mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

sibling(X, Y):- parent_child(Z, X), parent_child(Z, Y).

?- sibling(sally, erica).

Yes (by chronological backtracking)
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Evaluation

 ?- father_child(Father, Child).
enumerates all valid answers on backtracking.

 ?- sibling(S1, S2).
enumerates all valid answers on backtracking.
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append([],L,L).
append([X|L], M, [X|N]) :- append(L,M,N).

append([1,2],[3,4],X)?

Append example
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append([],L,L).
append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

Append example
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append([],L,L).
append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

append([2],[3,4],N)?

Append example
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append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

Append example
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append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)?

Append example
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append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

Append example
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append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

A = [1|N] 
N = [2|N’] 
N’= L
L = [3,4]

Answer: A = [1,2,3,4] 

Append example



(c) Pearson and P.Fodor (CS Stony Brook)

More Examples

member(X,[X|R]). 

member(X,[Y|R]) :- member(X,R)

 X is a member of a list whose first element is X.

 X is a member of a list whose tail is R if X is a member of R.

?- member(2,[1,2,3]). 

Yes

?- member(X,[1,2,3]). 

X = 1 ;

X = 2 ;

X = 3 ;

No
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More Examples

select(X,[X|R],R). 

select(X,[F|R],[F|S]) :- select(X,R,S).

 When X is selected from [X|R], R results.

 When X is selected from the tail of [X|R], [X|S] results, where S is 
the result of taking X out of R.

?- select(X,[1,2,3],L). 

X=1 L=[2,3] ; 

X=2 L=[1,3] ; 

X=3 L=[1,2] ; 

No
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More Examples

reverse([X|Y],Z,W) :- reverse(Y,[X|Z],W). 

reverse([],X,X).

?- reverse([1,2,3],[],X).

X = [3,2,1]

Yes
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More Examples

perm([],[]).

perm([X|Y],Z) :- perm(Y,W), select(X,Z,W).

?- perm([1,2,3],P). 

P = [1,2,3] ; 

P = [2,1,3] ; 

P = [2,3,1] ; 

P = [1,3,2] ; 

P = [3,1,2] ; 

P = [3,2,1]
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Recursion

 Transitive closure:

edge(1,2).
edge(2,3).
edge(2,4).
reachable(X,Y) :- edge(X,Y).
reachable(X,Y) :- edge(X,Z), 

reachable(Z, Y).

105



(c) Pearson and P.Fodor (CS Stony Brook)
106

| ?- reachable(X,Y).

X = 1
Y = 2; Type a semi-colon repeatedly

X = 2
Y = 3;

X = 2
Y = 4;

X = 1
Y = 3;

X = 1
Y = 4;

no

| ?- halt. Command to Exit XSB
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Cut (logic programming)

 Cut (! in Prolog) is a goal which always succeeds, but cannot 
be backtracked past

 Green cut
gamble(X) :- gotmoney(X),!. 
gamble(X) :- gotcredit(X), \+ gotmoney(X).
 cut says “stop looking for alternatives”
 by explicitly writing \+ gotmoney(X), it guarantees that the 

second rule will always work even if the first one is removed by 
accident or changed

 Red cut
gamble(X) :- gotmoney(X),!. 
gamble(X) :- gotcredit(X).


