
CSE 532, Theory of Database Systems
Stony Brook University

http://www.cs.stonybrook.edu/~cse532

Relational Calculus,Visual Query Languages,
and Deductive Databases

(c) Pearson and P.Fodor (CS Stony Brook)

SQL and Relational Calculus

 Although relational algebra is useful in the analysis of query
evaluation, SQL is actually based on a different query
language: relational calculus

 There are two relational calculi:
 Tuple relational calculus (TRC)
 Domain relational calculus (DRC)

2

(c) Pearson and P.Fodor (CS Stony Brook)

Tuple Relational Calculus

 Form of query:

{T | Condition(T)}
 T is the target – a variable that ranges over tuples of values
 Condition is the body of the query
 Involves T (and possibly other variables)

 Evaluates to true or false if a specific tuple is substituted for T

3

(c) Pearson and P.Fodor (CS Stony Brook)

Tuple Relational Calculus: Example

 When a concrete tuple has been substituted for T:
 Teaching(T) is true if T is in the relational instance of Teaching
 T.Semester = ‘F2000’ is true if the semester attribute of T has

value F2000
 Equivalent to:

{T | Teaching(T) AND T.Semester = ‘F2000’}

SELECT *
FROM Teaching T
WHERE T.Semester = ‘F2000’

4

(c) Pearson and P.Fodor (CS Stony Brook)

Relation Between SQL and TRC

 Target T corresponds to SELECT list: the query result
contains the entire tuple

 Body split between two clauses:
 Teaching(T) corresponds to FROM clause
 T.Semester = ‘F2000’ corresponds to WHERE clause

{T | Teaching(T) AND T.Semester = ‘F2000’}

SELECT *
FROM Teaching T
WHERE T.Semester = ‘F2000’

5

(c) Pearson and P.Fodor (CS Stony Brook)

Query Result

 The result of a TRC query with respect to a given database is
the set of all choices of tuples for the variable T that make the
query condition a true statement about the database

6

(c) Pearson and P.Fodor (CS Stony Brook)

Query Condition

 Atomic condition:
 P(T), where P is a relation name
 T.A operator S.B or T.A operator constant, where T and S are

relation names, A and B are attributes and operator is a
comparison operator (e.g., =, ,<, >, , etc)

 (General) condition:
 atomic condition
 If C1 and C2 are conditions then C1 AND C2 ,

C1 OR C2, and NOT C1 are conditions
 If R is a relation name, T a tuple variable, and C(T) is a

condition that uses T, then T  R (C(T)) and T R (C(T))
are conditions

7

(c) Pearson and P.Fodor (CS Stony Brook)

Bound and Free Variables

 X is a free variable in the statement C1: “X is in CS305”
(this might be represented more formally as C1(X))
 The statement is neither true nor false in a particular state of

the database until we assign a value to X

 X is a bound (or quantified) variable in the statement C2:
“there exists a student X such that X is in CS305” (this might
be represented more formally as

 X S (C2(X))

where S is the set of all students)
 This statement can be assigned a truth value for any particular state of the

database

8

(c) Pearson and P.Fodor (CS Stony Brook)

Bound and Free Variables in TRC Queries

 Bound variables are used to make assertions about tuples
in database (used in conditions)

 Free variables designate the tuples to be returned by the
query (used in targets)

{S | Student(S) AND (T Transcript
(S.Id = T.StudId AND T.CrsCode = ‘CS305’)) }

 When a value is substituted for S the condition has value true or
false

 There can be only one free variable in a condition (the
one that appears in the target)

9

(c) Pearson and P.Fodor (CS Stony Brook)

Example 2

 Returns the set of all course tuples corresponding to all
courses that have been taken by all students

{ E | Course(E) AND
S  Student (

 T  Transcript (
T.StudId = S.Id AND
T. CrsCode = E.CrsCode

)
)

}

10

(c) Pearson and P.Fodor (CS Stony Brook)

TRC Syntax Extension
 We add syntactic sugar to TRC, which simplifies queries and

make the syntax even closer to that of SQL:

{S.Name, T.CrsCode | Student (S) AND Transcript (T)
AND … }

instead of

{R | S Student (R.Name = S.Name)
AND T Transcript(R.CrsCode = T.CrsCode)

AND …}

where R is a new tuple variable with attributes Name and CrsCode

11

(c) Pearson and P.Fodor (CS Stony Brook)

Relation Between TRC and SQL (cont’d)

 List the names of all professors who have taught MGT123
 In TRC:

{P.Name | Professor(P) AND T Teaching
(P.Id = T.ProfId AND T.CrsCode = ‘MGT123’) }

 In SQL:

SELECT P.Name
FROM Professor P, TeachingT
WHERE P.Id = T.ProfId AND T.CrsCode = ‘MGT123’

Core of SQL is merely a syntactic sugar on top of TRC

12

(c) Pearson and P.Fodor (CS Stony Brook)

What Happened to Quantifiers in SQL?

 SQL has no quantifiers: how come? It uses conventions:
 Convention 1. Universal quantifiers are not allowed (but SQL:1999

introduced a limited form of explicit )
 Convention 2. Make existential quantifiers implicit: Any tuple variable that

does not occur in SELECT is assumed to be implicitly quantified with 

 Compare:
{P.Name | Professor(P) AND T Teaching … }

and
SELECT P.Name

FROM Professor P, TeachingT
… … …

Implicit


13

(c) Pearson and P.Fodor (CS Stony Brook)

Relation Between TRC and SQL (cont’d)

 SQL uses a subset of TRC with simplifying conventions
for quantification

 Restricts the use of quantification and negation (so TRC
is more general in this respect)

 SQL uses aggregates, which are absent in TRC (and
relational algebra, for that matter). But aggregates can
be added

 SQL is extended with relational algebra operators
(MINUS, UNION, JOIN, etc.)
 This is just more syntactic sugar, but it makes queries easier to

write

14

(c) Pearson and P.Fodor (CS Stony Brook)

More on Quantification

 Adjacent existential quantifiers and adjacent universal
quantifiers commute:
 T Transcript (T1 Teaching (…)) is same as T1
Teaching (T Transcript (…))

 Adjacent existential and universal quantifiers do not
commute:
 T Transcript (T1 Teaching (…)) is different from
T1Teaching (T Transcript (…))

15

(c) Pearson and P.Fodor (CS Stony Brook)

More on Quantification (con’t)

 A quantifier defines the scope of the quantified variable
(analogously to a begin/end block):
T  R1 (U(T) AND T  R2(V(T)))

is the same as:
T  R1 (U(T) AND  S  R2(V(S)))

 Universal domain: Assume a domain, U, which is a union

of all other domains in the database. Then, instead of T

 U and  S  U we simply write T and T

16

(c) Pearson and P.Fodor (CS Stony Brook)

Views in TRC

 Problem: List students who took a course from every
professor in the Computer Science Department

 Solution:
 First create view: All CS professors

CSProf = {P.ProfId | Professor(P) AND P.DeptId = ‘CS’}

 Then use it

{S. Id | Student(S) AND

P  CSProf T Teaching R Transcript (
AND P. Id = T.ProfId AND S.Id = R.StudId AND

T.CrsCode = R.CrsCode AND T.Semester = R.Semester
) }

17

(c) Pearson and P.Fodor (CS Stony Brook)

Queries with Implication

 Did not need views in the previous query, but doing it
without a view has its pitfalls: need the implication 
(if-then):

{S. Id | Student(S) AND

P  Professor (
P.DeptId = ‘CS’ 

T1 Teaching R Transcript (
P.Id = T1.ProfId AND S.Id = R.Id
AND T1.CrsCode = R.CrsCode
AND T1.Semester = R.Semester

)
)

}

 Why P.DeptId = ‘CS’ … and not P.DeptId = ‘CS’ AND … ?
 List students who took a course from every professor in the Computer Science

Department!!!

18

(c) Pearson and P.Fodor (CS Stony Brook)

More complex SQL to TRC Conversion

 Using views, translation between complex SQL queries and
TRC is direct:

SELECT R1.A, R2.C
FROM Rel1 R1, Rel2 R2
WHERE condition1(R1, R2) AND

R1.B IN (SELECT R3.E
FROM Rel3 R3, Rel4 R4
WHERE condition2(R2, R3, R4))

versus:

{R1.A, R2.C | Rel1(R1) AND Rel2(R2) AND condition1(R1, R2)
AND R3 Temp (R1.B = R3.E AND R2.C = R3.C

AND R2.D = R3.D) }

Temp = {R3.E, R2.C, R2.D | Rel2(R2) AND Rel3(R3)
AND R4 Rel4 (condition2(R2, R3, R4))}

TRC view
corresponds
to subquery

19

(c) Pearson and P.Fodor (CS Stony Brook)

Domain Relational Calculus (DRC)

 A domain variable is a variable whose value is drawn from the
domain of an attribute
 Contrast this with a tuple variable, whose value is an entire

tuple
 Example: The domain of a domain variable Crs might be the set of

all possible values of the CrsCode attribute in the relation
Teaching

20

(c) Pearson and P.Fodor (CS Stony Brook)

Queries in DRC

 Form of DRC query:
{X1 , …, Xn | condition(X1 , …, Xn) }

 X1 , …, Xn is the target: a list of domain variables.
 condition(X1 , …, Xn) is similar to a condition in TRC;

uses free variables X1 , …, Xn.
 However, quantification is over a domain
 X Teaching.CrsCode (… … …)

 i.e., there is X in Teaching.CrsCode, such that condition is true

 Example: {Pid, Code | Teaching(Pid, Code, ‘F1997’)}
 This is similar to the TRC query:

{T | Teaching(T) AND T.Semester = ‘F1997’}

21

(c) Pearson and P.Fodor (CS Stony Brook)

Query Result

 The result of the DRC query
{X1 , …, Xn | condition(X1 , …, Xn) }

with respect to a given database is the set of all tuples
(x1,…,xn) such that, for i = 1,…,n, if xi is substituted for
the free variable Xi , then condition(x1 , …, xn) is a true
statement about the database
 Xi can be a constant, c, in which case xi = c

22

(c) Pearson and P.Fodor (CS Stony Brook)

Examples
 List names of all professors who taught MGT123:

{Name | Id Dept (Professor(Id, Name, Dept) AND

Sem (Teaching(Id, ‘MGT123’, Sem)))}
 The universal domain is used to abbreviate the query
 Note the mixing of variables (Id, Sem) and constants (MGT123)

 List names of all professors who ever taught Ann

{Name | Pid Dept (
Professor(Pid, Name, Dept) AND
Crs Sem Grd Sid Add Stat (

Teaching(Pid, Crs, Sem) AND
Transcript(Sid, Crs, Sem, Grd) AND
Student(Sid, ‘Ann’, Addr, Stat)

)) }

Lots of  – a
hallmark of DRC.
Conventions like
in SQL can be used
to shorten queries

23

(c) Pearson and P.Fodor (CS Stony Brook)

Relation Between Relational Algebra,
TRC, and DRC
 Consider the query {T | NOT Q(T)}: returns the set of

all tuples not in relation Q
 If the attribute domains change, the result set changes as well
 This is referred to as a domain-dependent query

 Another example: {T| S(R(S)) \/ Q(T)}
 It is domain-dependent

 Only domain-independent queries make sense, but
checking domain-independence is undecidable
 But there are syntactic restrictions that guarantee domain-

independence

24

(c) Pearson and P.Fodor (CS Stony Brook)

 Relational algebra (but not DRC or TRC) queries are
always domain-independent (proved by induction!)

 TRC, DRC, and relational algebra are equally expressive
for domain-independent queries
 Proving that every domain-independent TRC/DRC query can

be written in the algebra is somewhat hard
 We will show the other direction: that algebraic queries are

expressible in TRC/DRC

25

Relation Between Relational Algebra,
TRC, and DRC

(c) Pearson and P.Fodor (CS Stony Brook)

 Algebra: Condition(R)
 TRC: {T | R(T) AND Condition1}
 DRC: {X1,…,Xn | R(X1,…,Xn) AND Condition2 }

 Let Condition be A=B AND C=‘Joe’. Why Condition1 and
Condition2?
 Because TRC, DRC, and the algebra have slightly different

syntax:
Condition1 is T.A=T.B AND T.C=‘Joe’
Condition2 would be A=B AND C=‘Joe’

(possibly with different variable names)

26

Relation Between Relational Algebra,
TRC, and DRC

(c) Pearson and P.Fodor (CS Stony Brook)

 Algebra: A,B,C(R)

 TRC: {T.A,T.B,T.C | R(T)}

 DRC: {A,B,C | D E… R(A,B,C,D,E,…) }

 Algebra: R S

 TRC: {T.A.T.B,T.C,V.D,V,E | R(T) AND S(V) }

 DRC: {A,B,C,D,E | R(A,B,C) AND S(D,E) }

27

Relation Between Relational Algebra,
TRC, and DRC

(c) Pearson and P.Fodor (CS Stony Brook)

 Algebra: R  S
 TRC: {T | R(T) OR S(T)}

 DRC: {A,B,C | R(A,B,C) OR S(A,B,C) }

 Algebra: R – S

 TRC: {T | R(T) AND NOT S(T)}

 DRC: {A,B,C | R(A,B,C) AND NOT S(A,B,C) }

28

Relation Between Relational Algebra,
TRC, and DRC

(c) Pearson and P.Fodor (CS Stony Brook)

QBE: Query by Example

 Declarative query language, like SQL

 Based on DRC (rather than TRC)

 Visual

 Other visual query languages (MS Access, Paradox) are just
incremental improvements

29

(c) Pearson and P.Fodor (CS Stony Brook)

QBE Examples

Professor Id Name DeptId

Professor Id Name DeptId

P._John MGT

P. MGT

Print all professors’ names in the MGT department

Same, but print all attributes

Operator “Print”
Targetlist “example”

variable

• Literals that start with “_” are variables.
30

(c) Pearson and P.Fodor (CS Stony Brook)

Joins in QBE

Professor Id Name DeptId
_123 P._John

Teaching ProfId CrsCode Semester
_123 MGT123

• Names of professors who taught MGT123 in any semester
except Fall 2002

< > ‘F2002’

Simple conditions placed
directly in columns

31

(c) Pearson and P.Fodor (CS Stony Brook)

Condition Boxes
• Some conditions are too complex to be placed directly

in table columns

Transcript StudId CrsCode Semester Grade
P. CS532 _Gr

Conditions

_Gr = ‘A’ OR _Gr = ‘B’

• Students who took CS532 & got A or B
32

(c) Pearson and P.Fodor (CS Stony Brook)

Aggregates, Updates, etc.

 Has aggregates (operators like AVG, COUNT), grouping
operator, etc.

 Has update operators

 To create a new table (like SQL’s CREATE TABLE), simply
construct a new template:

HasTaught Professor Student
I. 123456789 567891012

33

(c) Pearson and P.Fodor (CS Stony Brook)

A Complex Insert Using a Query

Teaching ProfId CrsCode Semester

HasTaught Professor Student
I. _12345 _5678

HasTaught Professor Student
P.

Transcript StudId CrsCode Semester Grade
_5678 _CS532 _S2002

_S2002_CS532_12345

q
u
e
r
y

query
target

u
p
d
a
t
e

34

(c) Pearson and P.Fodor (CS Stony Brook)

Connection to DRC

 Obvious: just a graphical representation of DRC

 Uses the same convention as SQL: existential quantifiers ()
are omitted

Transcript StudId CrsCode Semester Grade

_123 _CS532 F2002 A

Transcript(X, Y, ‘F2002’, ‘A’)

35

(c) Pearson and P.Fodor (CS Stony Brook)

Pitfalls: Negation
 List all professors who didn’t teach anything in S2002:

Professor Id Name DeptId
_123 P.

Teaching ProfId CrsCode Semester

_123 S2002

• Problem: What is the quantification of CrsCode?
{Name | Id DeptId CrsCode (Professor(Id,Name,DeptId) AND

NOT Teaching(Id,CrsCode,’S2002’)) }
• Not what was intended(!!), but what the convention about implicit

quantification says
or

{Name | Id DeptId CrsCode (Professor(Id,Name,DeptId) AND ……}
• The intended result!36

(c) Pearson and P.Fodor (CS Stony Brook)

Negation Pitfall: Resolution
 QBE changed its convention:

 Variables that occur only in a negated table are implicitly quantified with 
instead of 

 For instance: CrsCode in our example. Note: _123 (which corresponds
to Id in DRC formulation) is quantified with , because it also occurs in
the non-negated table Professor

 Still, problems remain! Is it
{Name | Id DeptId CrsCode (Professor(Id,Name,DeptId) AND …}

or
{Name | CrsCode Id DeptId (Professor(Id,Name,DeptId) AND …}

Not the same query!
 QBE decrees that the -prefix goes first

37

(c) Pearson and P.Fodor (CS Stony Brook)

Microsoft Access

38

(c) Pearson and P.Fodor (CS Stony Brook)

PC Databases

 A spruced up version of QBE (better interface)

 Be aware of implicit quantification

 Beware of negation pitfalls

39

(c) Pearson and P.Fodor (CS Stony Brook)

Deductive Databases

 Motivation: Limitations of SQL

 Recursion in SQL:1999

 Datalog – a better language for complex queries

40

(c) Pearson and P.Fodor (CS Stony Brook)

Limitations of SQL

 Given a relation Prereq with attributes Crs and PreCrs, list
the set of all courses that must be completed prior to
enrolling in CS632
 The set Prereq 2, computed by the following expression,

contains the immediate and once removed (i.e. 2-step
prerequisites) prerequisites for all courses:

 In general, Prereqi contains all prerequisites up to those that are
i-1 removed for all courses:

Crs, PreCrs ((Prereq PreCrs=Crs Prereq)[Crs, P1, C2, PreCrs]

 Prereq

Crs, PreCrs ((Prereq PreCrs=Crs Prereqi-1)[Crs, P1, C2, PreCrs]

 Prereqi-1
41

(c) Pearson and P.Fodor (CS Stony Brook)

Limitations of SQL (con’t)

 Question: We can compute Crs=‘CS632’(Prereqi) to get all
prerequisites up to those that are i-1 removed, but how can
we be sure that there are not additional prerequisites that are
i removed?

 Answer: When you reach a value of i such that Prereqi =
Prereqi+1 you’ve got them all. This is referred to as a stable
state

 Problem: There’s no way of doing this within relational
algebra, DRC, TRC, or SQL (this is not obvious and not easy
to prove)

42

(c) Pearson and P.Fodor (CS Stony Brook)

Recursion in SQL:1999

 Recursive queries can be formulated using a recursive
view:

 (a) is a non-recursive subquery – it cannot refer to the
view being defined
 Starts recursion off by introducing the base case – the set of

direct prerequisites

CREATE RECURSIVE VIEW IndirectPrereq (Crs, PreCrs) AS
SELECT * FROM Prereq
UNION
SELECT P.Crs, I.PreCrs
FROM Prereq P, IndirectPrereq I
WHERE P.PreCrs = I.Crs

(a)

(b)

43

(c) Pearson and P.Fodor (CS Stony Brook)

Recursion in SQL:1999 (cont’d)

 (b) contains recursion – this subquery refers to the view
being defined.
 This is a declarative way of specifying the iterative process of

calculating successive levels of indirect prerequisites until a
stable point is reached

CREATE RECURSIVE VIEW IndirectPrereq (Crs, PreCrs) AS
SELECT * FROM Prereq
UNION
SELECT P.Crs, I.PreCrs
FROM Prereq P, IndirectPrereq I
WHERE P.PreCrs = I.Crs

(b)

44

(c) Pearson and P.Fodor (CS Stony Brook)

Recursion in SQL:1999

 The recursive view can be evaluated by computing
successive approximations
 IndirectPrereqi+1 is obtained by taking the union of

IndirectPrereqi with the result of the query
SELECT P.Crs, I.PreCrs

FROM Prereq P, IndirectPrereqi I
WHERE P.PreCrs = I.Crs

 Successive values of IndirectPrereqi are computed until a stable

point is reached, i.e., when the result of the query

(IndirectPrereqi+1) is contained in IndirectPrereqi

45

(c) Pearson and P.Fodor (CS Stony Brook)

Recursion in SQL:1999

 Also provides the WITH construct, which does not require views.

 Can even define mutually recursive queries:

WITH

RECURSIVE OddPrereq(Crs, PreCrs) AS

(SELECT * FROM Prereq)

UNION

(SELECT P.Crs, E.PreCrs

FROM Prereq P, EvenPrereq E

WHERE P.PreCrs=E.Crs)),

RECURSIVE EvenPrereq(Crs, PreCrs) AS

(SELECT P.Crs, O.PreCrs

FROM Prereq P, OddPrereq O

WHERE P.PreCrs = O.Crs)

SELECT * FROM OddPrereq
46

(c) Pearson and P.Fodor (CS Stony Brook)

Datalog

 Rule-based query language

 Easier to use, more modular than SQL

 Much easier to use for recursive queries

 Extensively used in research

 Partial implementations of Datalog are used commercially

 W3C is standardizing a version of Datalog for the
Semantic Web
 RIF-BLD: Basic Logic Dialect of the Rule Interchange Format

http://www.w3.org/TR/rif-bld/

47

(c) Pearson and P.Fodor (CS Stony Brook)

Basic Syntax
 Rule:

head :- body.

 Query:
?- body.

 body: any DRC expression without the quantifiers.
 AND is often written as ‘,’ (without the quotes)
 OR is often written as ‘;’

 head: a DRC expression of the form R(t1,…,tn), where ti
is either a constant or a variable; R is a relation name.

 body in a rule and in a query has the same syntax.

48

(c) Pearson and P.Fodor (CS Stony Brook)

Basic Syntax (cont’d)

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

?- NameSem(?Name,?Sem).

Answers:

?Name = kifer

?Sem = F2005

?Name = lewis

?Sem = F2004

… … …

Derived relation;
Like a database view

Base relation, if never
occurs in a rule head

49

(c) Pearson and P.Fodor (CS Stony Brook)

Basic Syntax (cont’d)

 Datalog’s quantification of variables
 Like in SQL and QBE: implicit

 Variables that occur in the rule body, but not in the head are
viewed as being quantified with 

 Variables that occur in the head are like target variables in SQL,
QBE, and DRC

50

(c) Pearson and P.Fodor (CS Stony Brook)

Basic Semantics

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

?- NameSem(?Name, ?Sem).

The easiest way to explain the semantics is to use DRC:

NameSem = {Name,Sem| Id Dept (Prof(Id,Name,Dept) AND

Teaching(Id, ‘MGT123’, Sem)) }

51

(c) Pearson and P.Fodor (CS Stony Brook)

Basic Semantics (cont’d)

 Another way to understand rules:

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

(bob, F2002) (1111, bob, CS) and (1111, MGT123, F2002)

If these tuples exist

Then this one must also exist

As in DRC, join is indicated
by sharing variables

  

52

(c) Pearson and P.Fodor (CS Stony Brook)

Union Semantics of Multiple Rules
 Consider rules with the same head-predicate:

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’MGT123’,?Sem).

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept), Teach(?Id,’CS532’,?Sem).

 Semantics is the union:

NameSem = {Name, Sem| Id Dept (

(Prof(Id,Name,Dept) AND Teaching(Id, ‘MGT123’, Sem))

OR (Prof(Id,Name,Dept) AND Teaching(Id, ‘CS532’, Sem))

) }

Equivalently:

NameSem = {Name, Sem| Id Dept (

Prof(Id,Name,Dept) AND

(Teaching(Id, ‘MGT123’, Sem) OR Teaching(Id, ‘CS532’, Sem))

) }

 Above rules can also be written in one rule:

NameSem(?Name,?Sem) :- Prof(?Id,?Name,?Dept),

(Teach(?Id,’MGT123’,?Sem) ;Teach(?Id,’CS532’,?Sem)).

by distributivity

53

(c) Pearson and P.Fodor (CS Stony Brook)

Recursion

 Recall: DRC cannot express transitive closure

 SQL was specifically extended with recursion to capture this (in
fact, but mimicking Datalog)

 Example of recursion in Datalog:

IndirectPrereq(?Crs,?Pre) :- Prereq(?Crs,?Pre).

IndirectPrereq(?Crs,?Pre) :-
Prereq(?Crs,?Intermediate),

IndirectPrereq(?Intermediate,?Pre).

54

(c) Pearson and P.Fodor (CS Stony Brook)

Semantics of Recursive Datalog
Without Negation

 Positive rules
 No negation (not) in the rule body
 No disjunction in the rule body
 The last restriction does not limit the expressive power: H :- (B;C) is

equivalent to H :- B and H :- C because
 H :- B is H or not B

 Hence

o H or not (B or C) is equivalent to the pair of formulas

H or not B

and

H or not C.

55

(c) Pearson and P.Fodor (CS Stony Brook)

Semantics of Negation-free Datalog
(cont’d)

 A Datalog rule

HeadRelation(HeadVars) :- Body

can be represented in DRC as
HeadRelation = {HeadVars | BodyOnlyVars Body}

 We call this the DRC query corresponding to the above Datalog
rule

56

(c) Pearson and P.Fodor (CS Stony Brook)

Semantics of Negation-free Datalog -
An Algorithm

 Semantics can be defined completely declaratively, but we
will define it using an algorithm

 Input: A set of Datalog rules without
negation + a database

 The initial state of the computation:
 Base relations – have the content assigned to them by the

database
 Derived relations – initially empty

57

(c) Pearson and P.Fodor (CS Stony Brook)

Semantics of Negation-free Datalog -
An Algorithm (cont’d)

1. CurrentState := InitialDBState

2. For each derived relation R, let r1,…,rk be all the rules that have R
in the head

 Evaluate the DRC queries that correspond to each ri

 Assign the union of the results from these queries to R

3. NewState := the database where instances of all derived relations
have been replaced as in Step 2 above

4. if CurrentState = NewState
then Stop: NewState is the stable state that represents the

meaning of that set of Datalog rules on the given DB
else CurrentState := NewState; Goto Step 2.

58

(c) Pearson and P.Fodor (CS Stony Brook)

 The algorithm always terminates:
 CurrentState constantly grows (at least, never shrinks)

 Because DRC expressions of the form
Vars (A and/or B and/or C …)

which have no negation, are monotonic: if tuples are added to the database, the result of such
a DRC query grows monotonically

 It cannot grow indefinitely (Why?)
 Complexity: number of steps is polynomial in the size of the DB (if the

ruleset is fixed)
 D – number of constants in DB;

N – sum of all arities
 Can’t take more than DN iterations
 Each iteration can produce at most DN tuples

 Hence, the number of steps is O(DN * DN)

Semantics of Negation-free Datalog -
An Algorithm (cont’d)

59

(c) Pearson and P.Fodor (CS Stony Brook)

Expressivity
 Recursive Datalog can express queries that cannot be done in

DRC (e.g., transitive closure) – recall recursive SQL

 DRC can express queries that cannot be expressed in Datalog
without negation (e.g., complement of a relation or set-
difference of relations)

 Datalog with negation is strictly more expressive than DRC

60

(c) Pearson and P.Fodor (CS Stony Brook)

Negation in Datalog

 Uses of negation in the rule body:
 Simple uses: For set difference
 Complex cases: When the (relational algebra) division operator is

needed

 Expressing division is hard, as in SQL, since no explicit universal
quantification

61

(c) Pearson and P.Fodor (CS Stony Brook)

Negation (cont’d)
 Find all students who took a course from every professor

Answer(?Sid) :- Student(?Sid, ?Name, ?Addr),
not DidNotTakeAnyCourseFromSomeProf(?Sid).

DidNotTakeAnyCourseFromSomeProf(?Sid) :-
Professor(?Pid,?Pname,?Dept),
Student(?Sid,?Name,?Addr),
not HasTaught(?Pid,?Sid).

HasTaught(?Pid,?Sid) :-Teaching(?Pid,?Crs,?Sem),
Transcript(?Sid,?Crs,?Sem,?Grd).

?- Answer(?Sid).

 Not as straightforward as in DRC, but still quite logical!

62

(c) Pearson and P.Fodor (CS Stony Brook)

Negation Pitfalls: Watch Your Variables

 Has problem similar to the wrong choice of operands in
relational division

 Consider: Find all students who have passed all courses that were
taught in spring 2006

StudId, CrsCode,Grade (Grade ‘F’ (Transcript)) / CrsCode (Semester=‘S2006’ (Teaching))

versus
StudId, CrsCode (Grade ‘F’ (Transcript)) / CrsCode (Semester=‘S2006’ (Teaching))

Which is correct? Why?

63

(c) Pearson and P.Fodor (CS Stony Brook)

Negation Pitfalls (cont’d)

 Consider a reformulation of: Find all students who took a course from every professor

Answer(?Sid) :-
Student(?Sid, ?Name, ?Addr),
Professor(?Pid,?Pname,?Dept),
not ProfWhoDidNotTeachStud(?Sid,?Pid).

ProfWhoDidNotTeachStud(?Sid,?Pid) :-
Professor(?Pid,?Pname,?Dept),
Student(?Sid,?Name,?Addr),
not HasTaught(?Pid,?Sid).

HasTaught(?Pid,?Sid) :- … … …

?- Answer(?Sid).

 What’s wrong?
 The answer will consist of students who were taught by
some professor

The only real differences compared to
DidNotTakeAnyCourseFromSomeProf

?Pid ?Name

Implied
quantification

is wrong!

64

(c) Pearson and P.Fodor (CS Stony Brook)

Negation and a Pitfall: Another Example

 Negation can be used to express containment: Students who took every course taught
by professor with Id 1234567 in spring 2006.

 DRC
{Name | CrsGradeSid

(Student(Sid, Name),

(Teaching(1234567,Crs,’S2006’)
=> Transcript(Sid,Crs,’S2006’,Grade)))}

 Datalog
Answer(?Name) :- Student(?Sid,?Name),

not DidntTakeS2006CrsFrom1234567(?Sid).

DidntTakeS2006CrsFrom1234567(?Sid) :-
Teaching(1234567,?Crs,’S2006’), not TookS2006Course(?Sid,?Crs).

TookS2006Course(?Sid,?Crs) :-Transcript(?Sid,?Crs,’S2006’,?Grade).

 Pitfall: Transcript(?Sid,?Crs,’S2006’,?Grade) here won’t do because of ?Grade !

65

(c) Pearson and P.Fodor (CS Stony Brook)

Negation and Recursion

 What is the meaning of a ruleset that has recursion through
not?

 Already saw this in recursive SQL – same issue

OddPrereq(?X,?Y) :- Prereq(?X,?Y).

OddPrereq(?X,?Y) :- Prereq(?X,?Z), EvenPrereq(?Z,?Y),

not EvenPrereq(?X,?Y).

EvenPrereq(?X,?Y) :- Prereq(?X,?Z), OddPrereq(?Z,?Y).

?- OddPrereq(?X,?Y).

 Problem:
 Computing OddPrereq depends on knowing the complement of EvenPrereq
 To know the complement of EvenPrereq, need to know EvenPrereq
 To know EvenPrereq, need to compute OddPrereq first!

66

(c) Pearson and P.Fodor (CS Stony Brook)

Negation Through Recursion (cont’d)

 The algorithm for positive Datalog wont work with negation in the
rules:
 For convergence of the computation, it relied on the monotonicity of

the DRC queries involved
 But with negation in DRC, these queries are no longer monotonic:

Query = {X | P(X) and not Q(X)}

P(a), P(b), P(c); Q(a) => Query result: {b,c}

Add Q(b) => Query result shrinks: just {c}

67

(c) Pearson and P.Fodor (CS Stony Brook)

“Well-behaved” Negation
 Negation is “well-behaved” if there is no recursion through it

P(?X,?Y) :- Q(?X,?Z), not R(?X,?Y).

Q(?X,?Y) :- P(?X,?Z), R(?X,?Y).

R(?X,?Y) :- S(?X,?Z), R(?Z,?V), notT(?V,?Y).

R(?X,?Y) :- V(?X,?Z).

P

Q

–

S T

–

Dependency graph

Evaluation method for P:
1. Compute T , then its complement, not T
2. Compute R using the Negation-free

Datalog algorithm. Treat not T as base
relation

3. Compute not R
4. Compute Q and P using Negation-free

Datalog algorithm. Treat not R as base

R

V

Negative
arcs

Negative
arcs

Positive
arcs

Positive
arcs

68

(c) Pearson and P.Fodor (CS Stony Brook)

“Ill-behaved” Negation
 What was wrong with the even/odd prerequisites example?

OddPrereq(?X,?Y) :- Prereq(?X,?Y).

OddPrereq(?X,?Y) :- Prereq(?X,?Z), EvenPrereq(?Z,?Y),

not EvenPrereq(?X,?Y).

EvenPrereq(?X,?Y) :- Prereq(?X,?Z), OddPrereq(?Z,?Y).

OddPrereq EvenPrereq

Prereq

-

Dependency graph

Cycle through negation in
dependency graph

69

(c) Pearson and P.Fodor (CS Stony Brook)

Dependency Graph for a Ruleset R

 Nodes: relation names in R

 Arcs:
 if P(…) :- …, Q(…), … is in R then the dependency graph

has a positive arc Q -----> R
 if P(…) :- …, not Q(…), … is in R then the dependency

graph has a negative arc
Q -----> R (marked with the minus sign)-

70

(c) Pearson and P.Fodor (CS Stony Brook)

Strata in a Dependency Graph
 A stratum is a positively strongly connected

component, i.e., a subset of nodes such that:
 No negative paths among any pair of nodes in the set
 Every pair of nodes has a positive path connecting them

(i.e., a----> b and b----> a)

Q

–

S T

–

R

V

P

Strata

71

(c) Pearson and P.Fodor (CS Stony Brook)

Stratification
 Partial order on the strata: if there is a path from a

node in a stratum, , to a stratum φ, then  < φ.
(Are  < φ and φ <  possible together?)

 Stratification: any total order of the strata that is
consistent with the above partial order.

Q

–

S T

–

R

V

P
1

2

3
4

5

A possible stratification:
3 , 5 , 4 , 2 , 1

Another stratification:
5 , 4 , 3 , 2 , 1

72

(c) Pearson and P.Fodor (CS Stony Brook)

Stratifiable Rulesets

 This is what we meant earlier by “well-behaved” rulesets

 A ruleset is stratifiable if it has a stratification

 Easy to prove (see the book):
 A ruleset is stratifiable iff its dependency graph has no negative cycles (or if

there are no cycles, positive or negative, among the strata of the graph)

73

(c) Pearson and P.Fodor (CS Stony Brook)

Partitioning of a Ruleset According to
Strata

 Let R be a ruleset and let 1 , 2 , … , n be a stratification

 Then the rules of R can be partitioned into subsets Q1 , Q2 ,
…, Qn, where each Qi includes exactly those rules whose
head relations belong to i

74

(c) Pearson and P.Fodor (CS Stony Brook)

Evaluation of a Stratifiable Ruleset, R

1. Partition the relations of R into strata
2. Stratify (order)
3. Partition the ruleset according to the strata into the subsets Q1 , Q2 ,

Q3 , …, Qn

4. Evaluate
a. Evaluate the lowest stratum, Q1, using the negation-free algorithm
b. Evaluate the next stratum, Q2, using the results for Q1 and the algorithm for

negation-free Datalog
 If relation P is defined in Q1 and used in Q2, then treat P as a base relation in Q2

 If not P occurs in Q2, then treat it as a new base relation, NotP, whose extension is the
complement of P (which can be computed, since P was computed earlier, during the
evaluation of Q1)

c. Do the same for Q3 using the results from the evaluation of Q2, etc.

75

(c) Pearson and P.Fodor (CS Stony Brook)

Unstratified Programs

 Truth be told, stratification is not needed to to evaluate
Datalog rulesets. But this becomes a rather complicated
stuff, which we won’t touch. (Refer to the bibliographic
notes, if interested.)

76

(c) Pearson and P.Fodor (CS Stony Brook)

The XSB Datalog System
 http://xsb.sourceforge.net

 Developed at Stony Brook by Prof. Warren and many
contributors

 Not just a Datalog system – it is a complete
programming language, called Prolog, which happens to
support Datalog

 Has a number of syntactic differences with the version
we have just seen

77

(c) Pearson and P.Fodor (CS Stony Brook)

Differences

 Variables: Any alphanumeric symbol that starts with a capital letter or a
_ (underscore)
 Examples: Abc, ABC2, _abc34
 Non-examples: 123, abc, aBC

 Each occurrence of a singleton symbol _ is treated as a new variable,
which was never seen before:
 Example: p(_,abc), q(cde,_) – the two _’s are treated as completely different

variables
 But the two occurrences of _xyz in p(_xyz,abc), q(cde,_xyz) refer to the same

variable

 Relation names and constants:
 must either start with a lowercase letter (and include only alphanumerics and _)

 Example: abc, aBC123, abc_123
 or be enclosed in single quotes

 Example: 'abc &% (, foobar1'
 Note: abc and 'abc' refer to the same thing

78

(c) Pearson and P.Fodor (CS Stony Brook)

Differences (cont’d)

 Negation: called tnot
 Note: XSB also has not, but it is a different thing!
 Use: … :- …, tnot(foobar(X)).

 All variables under the scope of tnot must also occur to the
left of that scope in the body of the rule in other positive
relations:
 Ok: … :- p(X,Y), tnot(foobar(X,Y)), …
 Not ok: … :- p(X,Z), tnot(foobar(X,Y)), …

 XSB does not support Datalog by default – must tell it to do
so with this instruction:

:- auto_table.
at the top of the program file

79

(c) Pearson and P.Fodor (CS Stony Brook)

Overview of Installation

 Unzip/untar; this will create a subdirectory XSB
 Windows: you are done
 Linux:

cd XSB/build
./configure
./makexsb

That’s it!
 Cygwin under Windows: same as in Linux

80

(c) Pearson and P.Fodor (CS Stony Brook)

Use of XSB
 Put your ruleset and data in a file with extension .P (or .pl)

p(X) :- q(X,_).
q(1,a).
q(2,a).
q(b,c).
?- p(X).

 Don’t forget: all rules and facts end with a period (.)
 Comments: /*…*/ or %.... (% acts like // in Java/C++)
 Type

…/XSB/bin/xsb (Linux/Cygwin)
…\XSB\config\x86-pc-windows\bin\xsb (Windows)

where … is the path to the directory where you downloaded XSB
 You will see a prompt

| ?-
and are now ready to type queries

81

(c) Pearson and P.Fodor (CS Stony Brook)

Use of XSB (cont’d)
 Loading your program, myprog.P

| ?- [myprog].
XSB will compile myprog.P (if necessary) and load it. Now you
can type further queries, e.g.

| ?- p(X).
| ?- p(1).
Etc.

82

(c) Pearson and P.Fodor (CS Stony Brook)

Some Useful Built-ins
 write(X) – write whatever X is bound to
 writeln(X) – write then put newline
 nl – output newline
 Equality: =
 Inequality: \=

http://xsb.sourceforge.net/manual1/index.html (Volume 1)
http://xsb.sourceforge.net/manual2/index.html (Volume 2)

83

(c) Pearson and P.Fodor (CS Stony Brook)

Arithmetics

 If you need it: use the builtin is
p(1). p(2).

q(X) :- p(Y), X isY*2.

Now q(2), q(4) will become true.

 Note:
q(2*X) :- p(X).

will not do what you might think it will do.
It will make q(2*1) and q(2*2) true, but 2*1 and 2*2 are treated

completely differently from 2 and 4 (no need to get into all that
for now)

84

(c) Pearson and P.Fodor (CS Stony Brook)

Some Useful Tricks

 XSB returns only the first answer to the query. To get the
next, type ; <Return>. For instance:

| ?- q(X).
X = 2
X = 4
yes
| ?-

 Usually, typing the ;’s is tedious. To do this
programmatically, use this idiom:

| ?- (q(_X), write('X='), writeln(_X), fail ; true).

_X here tells XSB to not print its own answers, since we are
printing them by ourselves. (XSB won’t print answers for
variables that are prefixed with a _.)

; <Return>
<Return>

<Return>

85

(c) Pearson and P.Fodor (CS Stony Brook)

Aggregates in XSB

 setof(?Template, +Goal, ?Set) : ?Set is the set of all instances
of Template such that Goal is provable.

 bagof(?Template, +Goal, ?Bag) has the same semantics as
setof/3 except that the third argument returns an unsorted
list that may contain duplicates.

 findall(?Template, +Goal, ?List) is similar to predicate
bagof/3, except that variables in Goal that do not occur in
Template are treated as existential, and alternative lists are
not returned for different bindings of such variables.

 tfindall(?Template, +Goal, ?List) is similar to predicate
findall/3, but the Goal must be a call to a single tabled
predicate.

86

(c) Pearson and P.Fodor (CS Stony Brook)

XSB Prolog basics

 An atom is a general-purpose name with no inherent
meaning.

 Numbers can be floats or integers.

 A compound term is composed of an atom called a
"functor" and a number of "arguments", which are again
terms: tree(node(a),tree(node(b),node(c)))

 Special cases of compound terms:
 Lists: ordered collections of terms: [], [1,2,3], [a,1,X|T]
 Strings: A sequence of characters surrounded by quotes is

equivalent to a list of (numeric) character codes: “abc”, “to be,
or not to be”

(c) Pearson and P.Fodor (CS Stony Brook)

XSB Prolog

 Variables begin with a capital letter or underscore:
X, Socrates, _result

 Atoms do not begin with a capital letter:
socrates, paul

 Atoms containing special characters, or beginning with a capital
letter, must be enclosed in single quotes: ‘Socrates’

(c) Pearson and P.Fodor (CS Stony Brook)

Representation of Lists
 List is handled as binary tree in Prolog

[Head | Tail] OR
.(Head,Tail)
 Where Head is an atom and Tail is a list
 We can write [a,b,c] or .(a,.(b,.(c,[]))).

(c) Pearson and P.Fodor (CS Stony Brook)

Matching
 Given two terms, they are identical or the variables in both

terms can have same objects after being instantiated
date(D,M,2006) unification date(D1,feb,Y1)

D=D1, M=feb, Y1=2006

 General Rule to decide whether two terms, S and T match
are as follows:
 If S and T are constants, S=T if both are same object
 If S is a variable and T is anything, T=S
 If T is variable and S is anything, S=T
 If S and T are structures, S=T if
 S and T have same functor
 All their corresponding arguments components have to match

(c) Pearson and P.Fodor (CS Stony Brook)

Declarative and Procedural Way

 Prolog programs can be understood two ways: declaratively
and procedurally.

 P:- Q,R

 Declarative Way
 P is true if Q and R are true

 Procedural Way
 To solve problem P, first solve Q and then R (or) To satisfy P,

first satisfy Q and then R
 Procedural way does not only define logical relation between

the head of the clause and the goals in the body, but also the
order in which the goal are processed.

(c) Pearson and P.Fodor (CS Stony Brook)

Evaluation
mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

sibling(X, Y):- parent_child(Z, X), parent_child(Z, Y).

?- sibling(sally, erica).

Yes (by chronological backtracking)

(c) Pearson and P.Fodor (CS Stony Brook)

Evaluation

 ?- father_child(Father, Child).
enumerates all valid answers on backtracking.

 ?- sibling(S1, S2).
enumerates all valid answers on backtracking.

(c) Pearson and P.Fodor (CS Stony Brook) 94

append([],L,L).
append([X|L], M, [X|N]) :- append(L,M,N).

append([1,2],[3,4],X)?

Append example

(c) Pearson and P.Fodor (CS Stony Brook) 95

append([],L,L).
append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

Append example

(c) Pearson and P.Fodor (CS Stony Brook) 96

append([],L,L).
append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

append([2],[3,4],N)?

Append example

(c) Pearson and P.Fodor (CS Stony Brook) 97

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

Append example

(c) Pearson and P.Fodor (CS Stony Brook) 98

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)?

Append example

(c) Pearson and P.Fodor (CS Stony Brook) 99

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

Append example

(c) Pearson and P.Fodor (CS Stony Brook) 100

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

A = [1|N]
N = [2|N’]
N’= L
L = [3,4]

Answer: A = [1,2,3,4]

Append example

(c) Pearson and P.Fodor (CS Stony Brook)

More Examples

member(X,[X|R]).

member(X,[Y|R]) :- member(X,R)

 X is a member of a list whose first element is X.

 X is a member of a list whose tail is R if X is a member of R.

?- member(2,[1,2,3]).

Yes

?- member(X,[1,2,3]).

X = 1 ;

X = 2 ;

X = 3 ;

No

(c) Pearson and P.Fodor (CS Stony Brook)

More Examples

select(X,[X|R],R).

select(X,[F|R],[F|S]) :- select(X,R,S).

 When X is selected from [X|R], R results.

 When X is selected from the tail of [X|R], [X|S] results, where S is
the result of taking X out of R.

?- select(X,[1,2,3],L).

X=1 L=[2,3] ;

X=2 L=[1,3] ;

X=3 L=[1,2] ;

No

(c) Pearson and P.Fodor (CS Stony Brook)

More Examples

reverse([X|Y],Z,W) :- reverse(Y,[X|Z],W).

reverse([],X,X).

?- reverse([1,2,3],[],X).

X = [3,2,1]

Yes

(c) Pearson and P.Fodor (CS Stony Brook)

More Examples

perm([],[]).

perm([X|Y],Z) :- perm(Y,W), select(X,Z,W).

?- perm([1,2,3],P).

P = [1,2,3] ;

P = [2,1,3] ;

P = [2,3,1] ;

P = [1,3,2] ;

P = [3,1,2] ;

P = [3,2,1]

(c) Pearson and P.Fodor (CS Stony Brook)

Recursion

 Transitive closure:

edge(1,2).
edge(2,3).
edge(2,4).
reachable(X,Y) :- edge(X,Y).
reachable(X,Y) :- edge(X,Z),

reachable(Z, Y).

105

(c) Pearson and P.Fodor (CS Stony Brook)
106

| ?- reachable(X,Y).

X = 1
Y = 2; Type a semi-colon repeatedly

X = 2
Y = 3;

X = 2
Y = 4;

X = 1
Y = 3;

X = 1
Y = 4;

no

| ?- halt. Command to Exit XSB

(c) Pearson and P.Fodor (CS Stony Brook)

Cut (logic programming)

 Cut (! in Prolog) is a goal which always succeeds, but cannot
be backtracked past

 Green cut
gamble(X) :- gotmoney(X),!.
gamble(X) :- gotcredit(X), \+ gotmoney(X).
 cut says “stop looking for alternatives”
 by explicitly writing \+ gotmoney(X), it guarantees that the

second rule will always work even if the first one is removed by
accident or changed

 Red cut
gamble(X) :- gotmoney(X),!.
gamble(X) :- gotcredit(X).

