Relational Normalization Theory

CSE 532, Theory of Database Systems
Stony Brook University

http://www.cs.stonybrook.edu/~cse532

Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design

Redundancy

- Dependencies between attributes cause redundancy
 - Ex. All addresses in the same town have the same zip code

SSN	Name	Town	Zip	
1234	Joe	Stony Brook	11790	Redundancy
4321	Mary	Stony Brook	11790	
5454	Tom	Stony Brook	11790	
	• • • • • •			

Redundancy and Other Problems

ER Model

SSN	Name	Addres	es Hobby
1111	Joe	123 Main	{biking, hiking}

Relational Model

SSN	Name	Address	Hobby
1111	Joe	123 Main	biking
1111	Joe	123 Main	hiking

Redundancy

Anomalies

- Redundancy leads to anomalies:
 - **Update anomaly**: A change in *Address* must be made in several places
 - **Deletion anomaly**: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? <u>No</u>, since *Hobby* is part of key
 - Delete the entire row? No, since we lose other information in the row
 - **Insertion anomaly**: *Hobby* value must be supplied for any inserted row since *Hobby* is part of key

Decomposition

- **Solution**: use two relations to store Person information
 - Person1 (SSN, Name, Address)
 - Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as *normalization theory* and is based on *functional dependencies* (and other kinds, like *multivalued dependencies*)

Functional Dependencies

- **Definition:** A functional dependency (FD) on a relation schema **R** is a <u>constraint</u> $X \rightarrow Y$, where X and Y are subsets of attributes of **R**.
- **Definition**: An FD $X \rightarrow Y$ is *satisfied* in an instance \mathbf{r} of \mathbf{R} if for <u>every</u> pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y
 - Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
 - $SSN \rightarrow SSN$, Name, Address

Functional Dependencies

- $Address \rightarrow ZipCode$
 - Stony Brook's ZIP is 11733
- ArtistName \rightarrow BirthYear
 - Picasso was born in 1881
- Autobrand \rightarrow Manufacturer, Engine type
 - Pontiac is built by General Motors with gasoline engine
- Author, Title \rightarrow PublDate
 - Shakespeare's Hamlet published in 1600

Functional Dependency - Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
 - HasAccount (AcctNum, ClientId, OfficeId)
 - keys are (ClientId, OfficeId), (AcctNum, ClientId)
 - Client, OfficeId \rightarrow AcctNum
 - $AcctNum \rightarrow OfficeId$
 - Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- Definition: If F is a set of FDs on schema R and f is another FD on R, then F entails f if every instance r of R that satisfies every FD in F also satisfies f
 - Ex: $\mathbf{F} = \{A \to B, B \to C\}$ and f is $A \to C$
 - If $Town \rightarrow Zip$ and $Zip \rightarrow AreaCode$ then $Town \rightarrow AreaCode$
- **Definition**: The *closure* of F, denoted F⁺, is the set of all FDs entailed by F
- Definition: F and G are equivalent if F entails G and G entails F

Entailment (cont.)

- Satisfaction, entailment, and equivalence are <u>semantic</u> concepts defined in terms of the actual relations in the "real world."
 - They define what these notions are, not how to compute them
- How to check if F entails f or if F and G are equivalent?
 - Apply the respective definitions for all possible relations?
 - Bad idea: might be infinite number for infinite domains
 - Even for finite domains, we have to look at relations of all arities
 - **Solution**: find algorithmic, <u>syntactic</u> ways to compute these notions
 - <u>Important</u>: The syntactic solution must be "correct" with respect to the semantic definitions
 - Correctness has two aspects: soundness and completeness see later

Armstrong's Axioms for FDs

- This is the *syntactic* way of computing/testing the various properties of FDs
- **Reflexivity**: If $Y \subseteq X$ then $X \to Y$ (trivial FD)
 - Name, Address \rightarrow Name
- **Augmentation**: If $X \rightarrow Y$ then $XZ \rightarrow YZ$
 - If $Town \rightarrow Zip$ then Town, $Name \rightarrow Zip$, Name
- Transitivity: If $X \to Y$ and $Y \to Z$ then $X \to Z$

Soundness

- Axioms are *sound*: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

$$X \rightarrow XY$$
 Augmentation by X
 $YX \rightarrow YZ$ Augmentation by Y
 $X \rightarrow YZ$ Transitivity

- Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
 - Therefore, we have derived the *union rule* for FDs: we can take the union of the RHSs of FDs that have the same LHS

Completeness

- Axioms are *complete*: If *F* entails *f* , then *f* can be derived from
 F using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if **F** entails *f*:
 - Algorithm: Use the axioms in all possible ways to generate F^+ (the set of possible FD's is finite so this can be done) and see if f is in F^+

Correctness

- The notions of *soundness* and *completeness* link the syntax (Armstrong's axioms) with semantics (the definitions in terms of relational instances)
- This is a precise way of saying that the algorithm for entailment based on the axioms is "correct" with respect to the definitions

Generating F⁺

$$\begin{array}{c} \underline{F} \\ AB \rightarrow C \\ \qquad \qquad union \ AB \rightarrow BCD \qquad decomp \\ A \rightarrow D \quad aug \\ AB \rightarrow BD \qquad trans \ AB \rightarrow BCDE \quad AB \rightarrow CDE \\ \\ D \rightarrow E \quad aug \quad BCD \rightarrow BCDE \end{array}$$

Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow CDE$ are all elements of \mathbf{F}^+ (part-of, there are other FDs: $AC \rightarrow CD$, $AE \rightarrow ED$, etc.)

Attribute Closure

- Calculating *attribute closure* leads to a more efficient way of checking entailment
- The *attribute closure* of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted X^+_F) is the set of all attributes, A, such that $X \to A$
 - X^+_{F1} is not necessarily the same as X^+_{F2} if $F1 \neq F2$
- *Attribute closure and entailment:*
 - Algorithm: Given a set of FDs, F, then $X \to Y$ if and only if $X^+_F \supseteq Y$

Example - Computing Attribute Closure

$$F: AB \to C$$

$$A \to D$$

$$D \to E$$

$$AC \to B$$

X	X_{F}^{+}
\overline{A}	$\{A, D, E\}$
AB	$\{A, B, C, D, E\}$
	(Hence AB is a key)
B	$\{B\}$
D	$\{D, E\}$

Is $AB \rightarrow E$ entailed by F? Yes

Is $D \rightarrow C$ entailed by F? No

Result: X_F^+ allows us to determine FDs of the form $X \to Y$ entailed by F

Computation of Attribute Closure X_F^+

```
closure := X;  // since X \subseteq X^+_F

repeat

old := closure;

if there is an FD Z \rightarrow V in F such that

Z \subseteq closure and V \nsubseteq closure

then closure := closure \cup V

until old = closure
```

- If $T \subseteq closure$ then $X \to T$ is entailed by F

Example: Computation of Attribute Closure

Problem: Compute the attribute closure of *AB* with

respect to the set of FDs:

$$AB \rightarrow C$$
 (a)

$$A \to D$$
 (b)

$$D \to E$$
 (c)

$$AC \rightarrow B$$
 (d)

Solution:

Initially $closure = \{AB\}$

Using (a) $closure = \{ABC\}$

Using (b) $closure = \{ABCD\}$

Using (c) $closure = \{ABCDE\}$

Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values)
- Second normal form (2NF) a research lab accident; has no practical or theoretical value:
 - no non prime attribute is dependent on any proper subset of any candidate key of the table (where a non prime attribute of a table is an attribute that is not a part of any candidate key of the table): every non-prime attribute is either dependent on the whole of a candidate key, or on another non prime attribute.
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)

BCNF

- **Definition**: A relation schema **R** is in BCNF if for every FD $X \rightarrow Y$ associated with **R** either
 - $Y \subseteq X$ (i.e., the FD is trivial) or
 - X is a superkey of \mathbf{R}
 - Remember: a *superkey* is a combination of attributes that can be used to uniquely identify a database record. A table might have many superkeys.
 - Remember: a *candidate* key is a special subset of superkeys that do not have any extraneous information in them: it is a **minimal** superkey.
- Example: Person1(SSN, Name, Address)
 - The only FD is $SSN \rightarrow Name$, Address
 - Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

- Person (SSN, Name, Address, Hobby)
 - The FD $SSN \rightarrow Name$, Address does <u>not</u> satisfy requirements of BCNF
 - since the key is (SSN, Hobby)
- HasAccount (AcctNum, ClientId, OfficeId)
 - The FD $AcctNum \rightarrow OfficeId$ does <u>not</u> satisfy BCNF requirements
 - since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.

Redundancy

• Suppose **R** has a FD $A \rightarrow B$, and A is not a superkey. If an instance has 2 rows with same value in A, they must also have same value in B (=> redundancy, if the A-value repeats twice)

redundancy

$SSN \rightarrow Name, Address$

SSN	Name	Address	Hobby
1111	Joe	123 Main	stamps
1111	Joe	123 Main	coins

- If *A* is a superkey, there cannot be two rows with same value of *A*
 - Hence, BCNF eliminates redundancy

Third Normal Form

- A relational schema **R** is in 3NF if for every FD $X \rightarrow Y$ associated with **R** either:
 - $Y \subseteq X$ (i.e., the FD is trivial); or
 - $\bullet X$ is a superkey of **R**; or
 - Every $A \in Y$ is part of some key of **R**

BCNF conditions

• 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)

3NF Example

- HasAccount (AcctNum, ClientId, OfficeId)
 - ClientId, OfficeId \rightarrow AcctNum
 - OK since LHS contains a key
 - $AcctNum \rightarrow OfficeId$
 - OK since RHS is part of a key
- HasAccount is in 3NF but it might still contain redundant information due to AcctNum → OfficeId (which is not allowed by BCNF)

3NF (Non) Example

- Person (SSN, Name, Address, Hobby)
 - (SSN, Hobby) is the only key.
 - $SSN \rightarrow Name$ violates 3NF conditions since Name is not part of a key and SSN is not a superkey

Decompositions

- **Goal**: Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition must be *lossless*: it must be possible to reconstruct the original relation from the relations in the decomposition

Decomposition

- Schema $\mathbf{R} = (R, \mathbf{F})$
 - R is set a of attributes
 - F is a set of functional dependencies over R
 - Each key is described by a FD
- The *decomposition of schema* **R** is a collection of schemas $\mathbf{R}_i = (R_i, \mathbf{F}_i)$ where
 - $R = \bigcup_{i} R_{i}$ for all i (no new attributes)
 - F_i is a set of functional dependences involving only attributes of R_i
 - F entails F_i for all i (no new FDs)
- The decomposition of an instance, \mathbf{r} , of \mathbf{R} is a set of relations $\mathbf{r}_i = \pi_{R_i}(\mathbf{r})$ for all i

Example Decomposition

```
Schema (R, F) where
   R = \{SSN, Name, Address, Hobby\}
   F = \{SSN \rightarrow Name, Address\}
can be decomposed into
   R_1 = \{SSN, Name, Address\}
   F_1 = \{SSN \rightarrow Name, Address\}
and
   R_2 = \{SSN, Hobby\}
   F_2 = \{ \}
```

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition $(\mathbf{R}_1, \dots, \mathbf{R}_n)$ of a schema, \mathbf{R} , is *lossless* if every valid instance, \mathbf{r} , of \mathbf{R} can be reconstructed from its components:

$$\mathbf{r} = \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \bowtie \mathbf{r}_n$$

• where each $\mathbf{r}_{i} = \pi_{\mathbf{R}i}(\mathbf{r})$

Lossy Decomposition

The following is always the case:

$$\mathbf{r} \subseteq \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \bowtie \mathbf{r}_n$$

But the following is not always true:

$$\mathbf{r} \supseteq \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \bowtie \mathbf{r}_n$$

Example: **r**

SSN	Name	Address
1111	Joe	1 Pine
2222	Alice	2 Oak
3333	Alice	3 Pine

$\not\supseteq$	\mathbf{r}_{1}	\bowtie	\mathbf{r}_2
/	1		

SSN	Name
1111	Joe
2222	Alice
3333	Alice •

	Name	Address
	Joe	1 Pine
	Alice	2 Oak
X	Alice	3 Pine

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original

Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were *gained*, not lost!
 - Why do we say that the decomposition was lossy?
- What was lost is *information*:
 - That 2222 lives at 2 Oak:

 In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 - That 3333 lives at 3 Pine:

 In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness

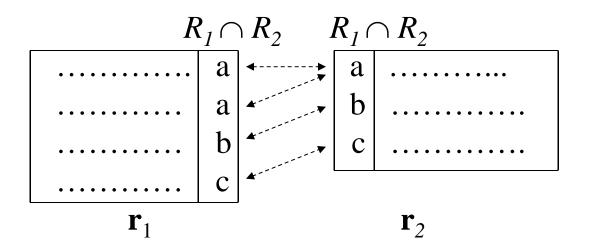
- A (binary) decomposition of $\mathbf{R} = (R, \mathbf{F})$ into $\mathbf{R}_1 = (R_1, \mathbf{F}_1)$ and $\mathbf{R}_2 = (R_2, \mathbf{F}_2)$ is lossless if and only if:
 - either the FD
 - $(R_1 \cap R_2) \rightarrow R_1$ is in \mathbf{F}^+
 - or the FD
 - $(R_1 \cap R_2) \rightarrow R_2$ is in F^+

Example

```
Schema (R, F) where
    R = \{SSN, Name, Address, Hobby\}
    F = \{SSN \rightarrow Name, Address\}
can be decomposed into
    R_1 = \{SSN, Name, Address\}
    \mathbf{F}_1 = \{SSN \rightarrow Name, Address\}
and
    R_2 = \{SSN, Hobby\}
    F_2 = \{ \}
Since R_1 \cap R_2 = SSN and SSN \rightarrow R_1 the
decomposition is lossless
```

Intuition Behind the Test for Losslessness

• Suppose $R_1 \cap R_2 \to R_2$. Then a row of \mathbf{r}_1 can combine with exactly one row of \mathbf{r}_2 in the natural join (since in \mathbf{r}_2 a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row)



Proof of Lossless Condition

- $\mathbf{r} \subseteq \mathbf{r}_1$ \bowtie \mathbf{r}_2 this is true for any decomposition
- $\mathbf{r} \supseteq \mathbf{r}_1 \bowtie \mathbf{r}_2$

```
If R_1 \cap R_2 \to R_2 then
card (\mathbf{r}_1 \bowtie \mathbf{r}_2) = card (\mathbf{r}_1)
(since each row of r_1 joins with exactly one row of r_2)
```

But $card(\mathbf{r}) \ge card(\mathbf{r}_1)$ (since \mathbf{r}_1 is a projection of \mathbf{r}) and therefore $card(\mathbf{r}) \ge card(\mathbf{r}_1 \bowtie \mathbf{r}_2)$

Hence $\mathbf{r} = \mathbf{r}_1 \bowtie \mathbf{r}_2$

Dependency Preservation

- Consider a decomposition of $\mathbf{R}=(R,\mathbf{F})$ into $\mathbf{R}_1=(R_1,\mathbf{F}_1)$ and $\mathbf{R}_2=(R_2,\mathbf{F}_2)$
 - An FD $X \to Y$ of F^+ is in F_i iff $X \cup Y \subseteq R_i$
 - An FD, $f \in \mathbf{F}^+$ may be in neither \mathbf{F}_1 , nor \mathbf{F}_2 , nor even $(\mathbf{F}_1 \cup \mathbf{F}_2)^+$
 - Checking that f is true in \mathbf{r}_1 or \mathbf{r}_2 is (relatively) easy
 - Checking f in $\mathbf{r}_1 \bowtie \mathbf{r}_2$ is harder requires a join
 - *Ideally*: want to check FDs <u>locally</u>, in \mathbf{r}_1 and \mathbf{r}_2 , and have a guarantee that every $f \in F$ holds in $\mathbf{r}_1 \bowtie \mathbf{r}_2$
- The decomposition is dependency preserving iff the sets F and $F_1 \cup F_2$ are equivalent: $F^+ = (F_1 \cup F_2)^+$
 - Then checking all FDs in F, as \mathbf{r}_1 and \mathbf{r}_2 are updated, can be done by checking F_1 in \mathbf{r}_1 and F_2 in \mathbf{r}_2

Dependency Preservation

- If f is an FD in F, but f is not in $F_1 \cup F_2$, there are two possibilities:
 - $f \in (\mathbf{F}_1 \cup \mathbf{F}_2)^+$
 - If the constraints in F_1 and F_2 are maintained, f will be maintained automatically.
 - $f \notin (\mathbf{F}_1 \cup \mathbf{F}_2)^+$
 - f can be checked only by first taking the join of \mathbf{r}_1 and \mathbf{r}_2 . This is costly.

Example

```
Schema (R, F) where
    R = \{SSN, Name, Address, Hobby\}
    F = \{SSN \rightarrow Name, Address\}
can be decomposed into
    R_1 = \{SSN, Name, Address\}
    \mathbf{F}_1 = \{SSN \rightarrow Name, Address\}
and
   R_2 = \{SSN, Hobby\}
    F_2 = \{ \}
Since F = F_1 \cup F_2 the decomposition is
dependency preserving
```

Example

- Schema: (ABC; F), $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition:
 - $\bullet (AC, \mathbf{F}_1), \mathbf{F}_1 = \{A \rightarrow C\}$
 - Note: A \rightarrow C \notin **F**, but in **F**⁺
 - $(BC, \mathbf{F}_2), \mathbf{F}_2 = \{B \rightarrow C, C \rightarrow B\}$
- $A \rightarrow B \notin (F_1 \cup F_2)$, but $A \rightarrow B \in (F_1 \cup F_2)^+$.
 - So $F^+ = (F_1 \cup F_2)^+$ and thus the decompositions is still dependency preserving

Example

• HasAccount (AcctNum, ClientId, OfficeId)

```
f_1: AcctNum \rightarrow OfficeId
f_2: ClientId, OfficeId \rightarrow AcctNum
```

• Decomposition:

```
R_1 = (AcctNum, OfficeId; \{AcctNum \rightarrow OfficeId\})

R_2 = (AcctNum, ClientId; \{\})
```

• Decomposition <u>is</u> lossless:

$$R_1 \cap R_2 = \{AcctNum\} \text{ and } AcctNum \rightarrow OfficeId$$

- In BCNF
- Not dependency preserving: $f_2 \notin (\mathbf{F}_1 \cup \mathbf{F}_2)^+$
- HasAccount *does not* have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)
- Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!

BCNF Decomposition Algorithm

```
Input: \mathbf{R} = (R; \mathbf{F})

Decomp := \mathbf{R}

while there is \mathbf{S} = (S; \mathbf{F}') \in Decomp and \mathbf{S} not in BCNF \mathbf{do}

Find X \to Y \in \mathbf{F}' that violates BCNF // X isn't a superkey in \mathbf{S}

Replace \mathbf{S} in Decomp with \mathbf{S_1} = (XY; \mathbf{F_1}), \mathbf{S_2} = (S - (Y - X); \mathbf{F_2})

// \mathbf{F_1} = all \ FDs \ of \ \mathbf{F}' involving only attributes of XY

// \mathbf{F_2} = all \ FDs \ of \ \mathbf{F}' involving only attributes of S - (Y - X)

end

return Decomp
```

Simple Example

• HasAccount:

```
(ClientId, OfficeId, AcctNum) ClientId,OfficeId \rightarrow AcctNum
AcctNum \rightarrow OfficeId
```

• Decompose using $AcctNum \rightarrow OfficeId$:

(OfficeId, AcctNum)

(ClientId, AcctNum)

BCNF: AcctNum is key

FD: $AcctNum \rightarrow OfficeId$

BCNF (only trivial FDs)

A Larger Example

Given: $\mathbf{R} = (R; \mathbf{F})$ where R = ABCDEGHK and

 $F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}$

step 1: Find a FD that violates BCNF

Not $ABH \rightarrow C$ since $(ABH)^+$ includes all attributes (BH is a key)

 $A \rightarrow DE$ violates BCNF since A is not a superkey $(A^+ = ADE)$

step 2: Split R into:

 $\mathbf{R_1} = (ADE, \mathbf{F_1} = \{A \rightarrow DE \})$

 $\mathbf{R_2} = (ABCGHK; \mathbf{F_1} = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$

Note 1: $\mathbf{R_1}$ is in BCNF

Note 2: Decomposition is lossless since A is a key of \mathbf{R}_1 .

Note 3: FDs $K \to D$ and $BH \to E$ are not in F_1 or F_2 . But

both can be derived from $F_1 \cup F_2$

 $(E.g., K \rightarrow A \text{ and } A \rightarrow D \text{ implies } K \rightarrow D)$

Hence, decomposition is dependency preserving.

Example (con't)

Given: $\mathbf{R}_2 = (ABCGHK; \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$

step 1: Find a FD that violates BCNF.

Not $ABH \rightarrow C$ or $BGH \rightarrow K$, since BH is a key of \mathbb{R}_2

 $K \rightarrow AH$ violates BCNF since K is not a superkey $(K^+ = AH)$

step 2: Split **R**₂ into:

$$\mathbf{R}_{21} = (KAH, \, \mathbf{F}_{21} = \{K \to AH\})$$

$$\mathbf{R}_{22} = (BCGK; \mathbf{F}_{22} = \{\})$$

Note 1: Both \mathbf{R}_{21} and \mathbf{R}_{22} are in BCNF.

Note 2: The decomposition is *lossless* (since K is a key of \mathbf{R}_{21})

Note 3: FDs $ABH \rightarrow C$, $BGH \rightarrow K$, $BH \rightarrow G$ are not in F_{21} or F_{22} , and they can't be derived from $F_1 \cup F_{21} \cup F_{22}$. Hence the decomposition is *not* dependency-preserving

Properties of BCNF Decomposition Algorithm

Let $X \to Y$ violate BCNF in $\mathbf{R} = (R, \mathbf{F})$ and $\mathbf{R}_1 = (R_1, \mathbf{F}_1)$, $\mathbf{R}_2 = (R_2, \mathbf{F}_2)$ is the resulting decomposition. Then:

- There are *fewer violations* of BCNF in ${\bf R_1}$ and ${\bf R_2}$ than there were in ${\bf R}$
 - $X \rightarrow Y$ implies X is a key of \mathbf{R}_1
 - Hence $X \to Y \in F_1$ does not violate BCNF in \mathbf{R}_1 and, since $X \to Y \notin F_2$, does not violate BCNF in \mathbf{R}_2 either
 - Suppose f is $X' \to Y'$ and $f \in F$ doesn't violate BCNF in \mathbf{R} . If $f \in F_1$ or F_2 it does not violate BCNF in \mathbf{R}_1 or \mathbf{R}_2 either since X' is a superkey of \mathbf{R} and hence also of \mathbf{R}_1 and \mathbf{R}_2 .

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is *not necessarily* dependency preserving
- But always lossless:

since
$$R_1 \cap R_2 = X$$
, $X \rightarrow Y$, and $R_1 = XY$

• BCNF+lossless+dependency preserving is sometimes unachievable (recall HasAccount)

Third Normal Form

- Compromise Not all redundancy removed, but dependency preserving decompositions are <u>always</u> possible (and, of course, lossless)
- 3NF decomposition is based on a minimal cover

Minimal Cover

- A minimal cover of a set of dependencies, F, is a set of dependencies, U, such that:
 - U is equivalent to F $(F^+ = U^+)$
 - All FDs in U have the form $X \to A$ where A is a single attribute
 - ullet It is not possible to make U smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called *redundant*

Computing Minimal Cover

- Example: $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$
- step 1: Make RHS of each FD into a single attribute
 - *Algorithm*: Use the decomposition inference rule for FDs
 - Example: $L \to AD$ replaced by $L \to A, L \to D$; $ABH \to CK$ by $ABH \to C$, $ABH \to K$
- step 2: Eliminate redundant attributes from LHS.
 - Algorithm: If FD $XB \rightarrow A \in F$ (where B is a single attribute) and $X \rightarrow A$ is entailed by F, then B was unnecessary
 - Example: Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute AB_F^+ , AH_F^+ , BH_F^+ .
 - Since $C \in (BH)^+_F$, $BH \to C$ is entailed by F and A is redundant in $ABH \to C$.

Computing Minimal Cover (con't)

- **step 3**: Delete redundant FDs from *F*
 - Algorithm: If $F \{f\}$ entails f, then f is redundant
 - If f is $X \to A$ then check if $A \in X^+_{F-\{f\}}$
 - Example: $BGH \rightarrow L$ is entailed by $E \rightarrow L$, $BH \rightarrow E$, so it is redundant
- *Note*: The order of steps 2 and 3 cannot be interchanged!! See the textbook for a counterexample

Synthesizing a 3NF Schema

Starting with a schema $\mathbf{R} = (R, \mathbf{F})$

- **step 1**: Compute a minimal cover, U, of F. The decomposition is based on U, but since $U^+ = F^+$ the same functional dependencies will hold
 - A minimal cover for

$$F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$$
is
$$U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$$

Synthesizing a 3NF schema (con't)

• **step 2**: Partition U into sets $U_1, U_2, ... U_n$ such that the LHS of all elements of U_i are the same

$$\mathbf{U}_1 = \{BH \to C, BH \to K\}, U_2 = \{A \to D\},$$

$$\mathbf{U}_3 = \{C \to E\}, U_4 = \{L \to A\}, U_5 = \{E \to L\}$$

Synthesizing a 3NF schema (con't)

- **step 3**: For each U_i form schema $\mathbf{R_i} = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i
 - ullet Each FD of $oldsymbol{U}$ will be in some $\mathbf{R_{i^{*}}}$. Hence the decomposition is dependency preserving

$$\mathbf{R_1} = (BHCK; BH \rightarrow C, BH \rightarrow K),$$

$$\mathbf{R_2} = (AD; A \rightarrow D),$$

$$\mathbf{R_3} = (CE; C \rightarrow E),$$

$$\mathbf{R_4} = (AL; L \rightarrow A),$$

$$\mathbf{R_5} = (EL; E \rightarrow L)$$

Synthesizing a 3NF schema (con't)

- **step 4**: If no R_i is a superkey of \mathbf{R} , add schema $\mathbf{R_0} = (R_0, \{\})$ where R_0 is a key of \mathbf{R} .
 - $\mathbf{R_0} = (BGH, \{\})$
 - $\mathbf{R_0}$ might be needed when not all attributes are necessarily contained in $R_1 \cup R_2 \ldots \cup R_n$
 - A missing attribute, *A*, must be part of all keys (since it's not in any FD of *U*, deriving a key constraint from *U* involves the augmentation axiom)
 - $\mathbf{R_0}$ might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$
 - Example: $(ABCD; \{A \rightarrow B, C \rightarrow D\})$. Step 3 decomposition: $R_1 = (AB; \{A \rightarrow B\}), R_2 = (CD; \{C \rightarrow D\})$. Lossy! Need to add $(AC; \{\})$, for losslessness
 - Step 4 guarantees lossless decomposition.

BCNF Design Strategy

- ullet The resulting decomposition, $\mathbf{R_0}, \mathbf{R_1}, \dots \mathbf{R_n}$, is
 - Dependency preserving (since every FD in U is a FD of some schema)
 - Lossless (although this is not obvious)
 - In 3NF (although this is not obvious)
- Strategy for decomposing a relation
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a non-dependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- **Example**: A join is required to get the names and grades of all students taking CS305 in S2002.

```
SELECT S.Name, T.Grade

FROM Student S, Transcript T

WHERE S.Id = T.StudId AND

T.CrsCode = 'CS305' AND T.Semester = 'S2002'
```

Denormalization

- **Tradeoff**: *Judiciously* introduce redundancy to improve performance of certain queries
- **Example**: Add attribute *Name* to Transcript

```
SELECT T.Name, T.Grade

FROM Transcript' T

WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'
```

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript is no longer in BCNF since key is (StudId, CrsCode, Semester) and StudId \rightarrow Name

Fourth Normal Form

SSN **PhoneN ChildSSN** 111111 123-4444 222222 123-4444 333333 321-5555 222222 111111 321-5555 333333 987-6666 444444 222222 222222 444444 777-7777 555555 222222 987-6666 555555 777-7777

Person

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense),
 not because of the FDs

redundancy

Multi-Valued Dependency

- **Problem**: multi-valued (or binary join) dependency
 - **Definition**: If every instance of schema \mathbf{R} can be (losslessly) decomposed using attribute sets (X,Y) such that:

$$\mathbf{r} = \pi_X(\mathbf{r}) \bowtie \pi_Y(\mathbf{r})$$

then a multi-valued dependency

$$\mathbf{R} = \pi_X(\mathbf{R}) \quad |\!\!| \quad |\!\!| \quad \pi_Y(\mathbf{R})$$

holds in r

Ex: Person=
$$\pi_{SSN,PhoneN}$$
(Person) \bowtie $\pi_{SSN,ChildSSN}$ (Person)

Fourth Normal Form (4NF)

• A schema is in *fourth normal form* (4NF) if for every multivalued dependency

$$R = X \bowtie Y$$

in that schema, either:

- $-X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
- $-X \cap Y$ is a superkey of R (i.e., $X \cap Y \rightarrow R$)

Fourth Normal Form (Cont'd)

- *Intuition*: if $X \cap Y \rightarrow R$, there is a unique row in relation **r** for each value of $X \cap Y$ (hence no redundancy)
 - Ex: *SSN* does not uniquely determine *PhoneN* or *ChildSSN*, thus Person is not in 4NF.
- *Solution*: Decompose *R* into *X* and *Y*
 - Decomposition is lossless but not necessarily dependency preserving (since 4NF implies BCNF next)

4NF Implies BCNF

- Suppose R is in 4NF and $X \rightarrow Y$ is an FD.
 - R1 = XY, R2 = R Y is a lossless decomposition of R
 - Thus R has the multi-valued dependency:

$$R = R_1 \bowtie R_2$$

- Since R is in 4NF, one of the following must hold:
 - $-XY \subseteq R Y$ (an impossibility)
 - $-R-Y \subseteq XY$ (i.e., R=XY and X is a superkey)
 - $-XY \cap R Y = (=X)$ is a superkey
- Hence $X \rightarrow Y$ satisfies BCNF condition