Constraint Logic Programming (CLP)

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Constraints

- **Constraint**: conjunction of atomic constraints
 - E.g., $4X + 3Y = 10 \land 2X - Y = 0$
- **Constraint Solution**: A valuation for the variables in a given constraint problem that satisfies all constraints of the problem. E.g., $X = 1 \land Y = 2$
- Why constraints?
 - Many examples of modelling can be partitioned into two parts:
 - a general description of the object or process, and
 - specific information about the situation at hand (**constraints**)
 - The programmer should be able to define their own problem specific constraints
Constraint Logic Programming

- *Constraint logic programming* is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction

- A constraint logic program is a logic program that contains *constraints* in the body of clauses

- For example:

 \[A(X,Y):- X+Y>0, B(X), C(Y). \]

- \(X+Y>0 \) is a constraint,
- \(A(X,Y), B(X) \) and \(C(Y) \) are literals as in regular logic programming
Constraint Logic Programming

- Why CLP?
 - “Generate-and-test” approach is a common methodology for logic programming:
 - Generate possible solutions
 - Test and eliminate non-solutions
 - Disadvantages of “generate-and-test” approach:
 - Passive use of constraints to test potential values
 - Inefficient for combinatorial search problems
 - CLP languages use the global search paradigm:
 - Actively pruning the search space
 - Recursively dividing a problem into sub-problems until its sub-problems are simple enough to be solved
Constraint Logic Programming

• Prolog is inefficient in dealing with numerical values, due to “generate-and-test” paradigm
• Goal of CLP is to pick numerical values from pre-defined domains for certain variables so that the given constraints on the variables are all satisfied.

• Idea: use CLP to define and reason with numerical constraints and assignments

• Defines a family of programming languages
• A language CLP(X) is defined by:
 • a constraint domain X,
 • a solver for the constraint domain X
 • a simplifier for the constraint domain X
• For example: CLP(FD) (finite domains), CLP(R) (reals), …
CLP(FD)

• **Constraint Logic Programming over Finite Domains**
 - SWI Prolog: library(clpfd)
 - XSB Prolog: library bounds

• **SWI:**

  ```prolog```
  :- use_module(library(clpfd)).
  ```

• Two major use cases of this library:
 - Provide *declarative integer arithmetic*: they implement
 pure relations between integer expressions and can be used in all
directions, also if parts of expressions are variables.

  ```prolog```
  ?- X #> 3, X #= 5+2.
  X=7.
  ```

 In contrast, when using low-level integer arithmetic, we get:

  ```prolog```
  ?- X > 3, X is 5+2.
  Error: >/2: Arguments are not sufficiently instantiated.
CLP(FD)

- In connection with enumeration predicates and more complex constraints, CLP(FD) is often used to model and solve combinatorial problems such as planning, scheduling and allocation tasks.

- **Arithmetic constraints** are relations between arithmetic expressions.
We can write factorial with CLP(FD):

```
n_factorial(0, 1).
n_factorial(N, F):-
 N #> 0,
 N1 #= N-1,
 F #= N*F1,
 n_factorial(N1, F1).

?- factorial(12, Fact).
 Fact = 479001600.
```

We can also use it in reverse:

```
?- factorial(N, 479001600).
 N = 12.
```

We can find out all the possible outputs:

```
?- factorial(N, F).
 N = 0,
 F = 1 ;
 N = 1,
 F = 1 ; ...
```
CLP(FD)

• Domains:
  • Each CLP(FD) variable has an associated set of admissible integers which we call the variable's domain.
  • Initially, the domain of each CLP(FD) variable is the set of all integers.
  • The constraints in/2 and ins/2 are the primary means to specify tighter domains of variables.

?- X => 3.
   X in 4..sup
?- [X,Y,Z] ins 0..3.
   X in 0..3,
   Y in 0..3,
   Z in 0..3
Example: Send More Money

• Crypto-arithmetic Puzzle
  • Replace distinct letters by distinct digits, numbers have no leading zeros.
  • The variables are the letters S, E, N, D, M, O, R and Y.
  • Each letter represents a digit between 0 and 9.
  • Assign a value to each digit, such that SEND + MORE equals MONEY.

\[
\begin{array}{cccc}
S & E & N & D \\
+ & M & O & R & E \\
\hline
= & M & O & N & E & Y
\end{array}
\]
Example: Send More Money

- Crypto-arithmetic Puzzle

\[
\begin{align*}
\text{SEND} & = 9567 \\
\text{MORE} & = 1085 \\
\text{+} & \\
\text{MONEY} & = 10652
\end{align*}
\]
Example: Send More Money

```prolog
:- use_module(library(clpfd)).

send([S,E,N,D,M,O,R,Y]) :-
 gen_domains([S,E,N,D,M,O,R,Y],0..9),
 S #\= 0,
 M #\= 0,
 all_distinct([S,E,N,D,M,O,R,Y]),
 1000*S + 100*E + 10*N + D+ 1000*M
 + 100*O + 10*R + E #= 10000*M
 + 1000*O + 100*N + 10*E + Y,
 labeling([],[],S,E,N,D,M,O,R,Y]).
```

```
12
(c) Paul Fodor (CS Stony Brook)
```
Labeling

- Labeling procedure or enumeration procedure: try possible values for a variable $X=v_1 \lor \ldots \lor X=v_n$
- labeling(+Options, +Vars): assign a value to each variable in $Vars$.
  - labeling procedure will use heuristics to choose the next variable and value for labeling
  - variable ordering: chosen sequence of variables
  - first-fail principle: choose the most constrained variable first; will often lead to failure quickly, thus pruning the search tree early
  - value ordering: next value for labeling a variable must be chosen
Labeling

- labeling(+Options, +Vars): Options is a list of options that let you exhibit some control over the search process.
  - leftmost = Label the variables in the order they occur in Vars. This is the default.
  - ff = First fail. Label the leftmost variable with smallest domain next, in order to detect infeasibility early. This is often a good strategy.
  - ffc = Of the variables with smallest domains, the leftmost one participating in most constraints is labeled next.
  - min = Label the leftmost variable whose lower bound is the lowest next.
  - max = Label the leftmost variable whose upper bound is the highest next.

?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).
  - generates solutions in descending order of X, and for each binding of X, solutions are generated in ascending order of Y.
  - To obtain the incomplete behaviour that other systems exhibit with "maximize(Expr)" and "minimize(Expr)", use once/1, e.g.: once(labeling([max(Expr)], Vars))
Example: n-Queens

- Place $n$ queens $q_1, \ldots, q_n$ on an $n \times n$ chess board, such that they do not attack each other.

- No two queens are in the same row, column and diagonal
  - each row and each column has exactly one queen
  - each diagonal has at most one queen
- $q_i$: row position of the queen $i$ in the $i$-th column

$q_1, \ldots, q_n \in \{1, \ldots, n\}$

\[ \forall i \neq j. \ q_i \neq q_j \land |q_i - q_j| \neq |i - j| \]
Example: n-Queens

:- use_module(library(clpfd)).

n_queens(N, Qs) :-
    length(Qs, N),
    Qs ins 1..N,
    safe_queens(Qs).

safe_queens([]).

safe_queens([Q|Qs]) :-
    safe_queens(Qs, Q, 1),
    safe_queens(Qs).

safe_queens([], _, _).

safe_queens([Q|Qs], Q0, D0) :-
    Q0 #\= Q,
    abs(Q0 - Q) #\= D0,
    D1 #= D0 + 1,
    safe_queens(Qs, Q0, D1).

?- N = 8, n_queens(N, Qs), labeling([ff], Qs).
   Qs = [1, 5, 8, 6, 3, 7, 2, 4] .
This library provides Constraint Logic Programming over real numbers.

- Elements are trees containing real constants with operator in \{=, \neq, <, \leq, >, \geq\}.
- SWI Prolog:
  ```prolog
 :- use_module(library(clpr)).
 p(X,Y) :-
 \{X = Y * 3\},
 q(X,Y).
 q(X,Y) :-
 \{X - 2 = Y\}.
  ```

- constraints are marked with \{\ldots\}.
CLP(R)

Example:

A traveller wishes to cross a shark infested river as quickly as possible. Reasoning the fastest route is to row straight across and drift downstream, where should she set off

width of river: \( W \)
speed of river: \( S \)
set of position: \( P \)
rowing speed: \( R \)
Example:

```prolog
:- use_module(library(clpr))
river(W, S, R, P):-
 \{T = W/R\},
 \{P = S*T\}.
```

Suppose she rows at 1.5m/s, river speed is 1m/s and width is 24m.

```prolog
?- river(24, 1, 1.5, P).
```

Has unique answer \( P = 16 \).
More Constraint Handling

- Constraint Simplification
- Optimization
- Implication and Equivalence
More Constraint Handling

- Constraint Simplification
  - Two equivalent constraints represent the same information, but one may be simpler than the other

\[
X \geq 1 \land X \geq 3 \land 2 = Y + X
\]
\[
\iff X \geq 3 \land 2 = Y + X
\]
\[
\iff 3 \leq X \land X = 2 - Y
\]
\[
\iff X = 2 - Y \land 3 \leq X
\]
\[
\iff X = 2 - Y \land 3 \leq 2 - Y
\]
\[
\iff X = 2 - Y \land Y \leq -1
\]

Removing redundant constraints, rewriting a primitive constraint, changing order, substituting using an equation all preserve equivalence
Redundant Constraints

• One constraint $C_1$ implies another $C_2$ if the solutions of $C_1$ are a subset of those of $C_2$

• $C_2$ is said to be redundant wrt $C_1$
  • It is written $C_1 \rightarrow C_2$
  • For example:

\[
\begin{align*}
X \geq 3 \rightarrow X \geq 1 \\
Y \leq X + 2 \land Y \geq 4 \rightarrow X \geq 1 \\
\text{cons}(X, X) = \text{cons}(Z, \text{nil}) \rightarrow Z = \text{nil}
\end{align*}
\]
Solved Form Solvers

- Since a solved form solver creates equivalent constraints it can be a simplifier

\[ \text{cons}(X, X) = \text{cons}(Z, \text{nil}) \land Y = \text{succ}(X) \land \text{succ}(Z) = Y \land Z = \text{nil} \]
\[ \leftrightarrow X = \text{nil} \land Z = \text{nil} \land Y = \text{succ}(\text{nil}) \]

- Gaussian elimination:

\[ X = 2 + Y \land 2Y + X - T = Z \land X + Y = 4 \land Z + T = 5 \]
\[ \leftrightarrow X = 3 \land Y = 1 \land Z = 5 - T \]
Optimization

• Often given some problem which is modelled by constraints we don’t want just any solution, but a “best” solution
• This is an optimization problem
• We need an objective function so that we can rank solutions, that is a mapping from solutions to a real value
  • An optimization problem \((C,f)\) consists of a constraint \(C\) and objective function \(f\)
  • A valuation \(v_1\) is preferred to valuation \(v_2\) if \(f(v_1) < f(v_2)\)
  • An optimal solution is a solution of \(C\) such that no other solution of \(C\) is preferred to it.
Optimization Example

\((C \equiv X + Y \geq 4, \ f \equiv X^2 + Y^2)\)

- Find the closest point to the origin satisfying the \(C\).
- Some solutions and \(f\) value

\(\{ X \mapsto 0, Y \mapsto 4\} \quad 16\)
\(\{ X \mapsto 3, Y \mapsto 3\} \quad 18\)
\(\{ X \mapsto 2, Y \mapsto 2\} \quad 8\)

- Optimal solution:

\(\{ X \mapsto 2, Y \mapsto 2\}\)
Implication and Equivalence

• Other important operations involving constraints are:
  • **implication**: test if C1 implies C2
    • impl(C1, C2) answers true, false or unknown
  • **equivalence**: test if C1 and C2 are equivalent
    • equiv(C1, C2) answers true, false or unknown
Implication Example

• For the house constraints $CH$, will stage B have to be reached after stage C?
  
  $$CH \rightarrow T_B \geq T_C$$

• For this question the answer if false, but if we require the house to be finished in 15 days the answer is true
  
  $$CH \land T_E = 15 \rightarrow T_B \geq T_C$$
Application Domains

- Modeling
- Executable Specifications
- Solving combinatorial problems
  - Scheduling, Planning, Timetabling
  - Configuration, Layout, Placement, Design
  - Analysis: Simulation, Verification, Diagnosis of software, hardware and industrial processes.
- Artificial Intelligence
  - Machine Vision
  - Natural Language Understanding
  - Qualitative Reasoning, etc.
Applications in Research

- Computer Science: Program Analysis, Robotics, Agents
- Molecular Biology, Biochemistry, Bio-informatics: Protein Folding, Genomic Sequencing
- Economics: Scheduling
- Linguistics: Parsing
- Medicine: Diagnosis Support
- Physics: System Modeling
- Geography: Geo-Information-Systems