Stable Models Semantics and

Answer Set Programming

CSE 505 — Computing with Logic

Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse505



http://www.cs.stonybrook.edu/~cse505

General Logic Programs

° A general program is a collection of rules of the form:

A — A1y ...y not a_ ,,.., not a_.,.

n'’

(c) Paul Fodor (CS Stony Brook) and Elsevier




/Grounding

® Variables are placeholders for constants.

all possible ways”

* Example:

isInterestedinASP (X) : - attendsASP (X) .
attendsASP (john). attendsASP (mary) .

* After grounding:
isInterestedinASP (john) : -
attendsASP (john) .
isInterestedinASP (mary) : -
attendsASP (mary) .
\!gFtendsASP(john). attendsASP (mary) .

(c) Paul Fodor (CS Stony Brook) and Elsevier

® Grounding is the process to “replace variables by constants in

/




Eaelfond-Lifschitz transformation

* A general program is a collection of rules of the form:

a—a;, ..., a,,

® Let Il be a program and I be a set of atoms, by II'
(Gelfond-Lifschitz transformation) we denote the
positive program obtained from ground(Il) by:

® Deleting from ground(Il) any rule for that
{a,,1,,a.,. NI # 0, ie., the body of the

not a_,,,.., not a_,,

™~

rule contains a nat-atom not a; and a; belongs to I;

and

® Removing all of the naf-atoms from the remaining rules

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

/




/, . N
General Logic Programs

® A set of atoms | is called an answer set of a program [1if Iis the

minimal model of the program [1!

* Example: Consider I, = {a —~ not b. b ~ not a.}.
We will show that it has two answer sets {a} and {b}

J-.STE — {ﬂ-} J.S'H — {b} J.S'l — {!'.1: b}
52 [15% - ot

h —
:“l" ;;'3 = {b} ;"'»'Irph'4 — m
;"'»'fl__[g,':; — J-.SE:_‘. ;"'»'fan‘ 7£ 51
YES NO

® Theorem: For every positive program I, the minimal model of

°H, My, is also the unique answer set of I1.

(c) Paul Fodor (CS Stony Brook) and Elsevier




General Logic Programs

e [I. = {p « not p.} doesnot have an answer set.
e S, = @, then II’! = {p <=} whose minimal model is {p}. {p} # 0
implies that S, is not an answer set of Il.

e S, = {p}, then II*> = @ whose minimal model is @. {p} # @ implies that

S2 is not an answer set of I1 5

® This shows that this program does not have an answer set.

® A program may have zero, one, or more than one answer sets:

e [I, ={a <= notb.} has a unique answer set {a}.

e [I, = {a <—notb. b <—nota.} has two answer sets: {a} and {b}.

e [I, ={p <= a.a¢—notb. b «—nota.} has two answer sets: {a, p} and {b}
e [I, ={a <—notb.b <= notc. d «<— .} has one answer set {d, b}.

e [I. = {p <= not p.} No answer set.

e [I, ={p <= d, not p. r <= notd. d <= notr.} has one answer set {r}.

(c) Paul Fodor (CS Stony Brook) and Elsevier /




a ™
Entailment w.r.t. Answer Set Semantics

® For a program Il and an atom a, Il entails a, denoted by Il F a, if

a € S for every answer set S of I1.

® For a program Il and an atom a, Il entails 7a, denoted by Il F 7a, if

aES fOI' GVCI'y answer set S Of H

* If neither I E anor Il F 7a, then we say that a is unknown with

respect to I1.

* Examples:
o [I, = {a <—notb.} has a unique answer set {a}. Il,Fa, I1,F7b.
e [I, = {a <—notb. b «<—not a} has two answer sets: {a} and {b}. Botha

and b are unknown w.r.t. I1,.

o [I, = {p «—a.a<—notb.b < nota.} has two answer sets: {a, p} and

{b}. Everything is unknown.

60 H4 = {p «— not p.} No answer set. p is unknown.

(c) Paul Fodor (CS Stony Brook) and Elsevier




4 ™
Answer Sets of Programs with Constraints

e For a set of ground atoms S and a constraint c

<—a,...,a,nota ,,,nota .

we say that c is satisfied by Sif {a;, ...,a,} \ S# @ or
fa 1,3, NS#D.

® [etIl bea program with constraints.

® LetIl, = {r | r €II, r has non-empty head} (Il is the set of

normal logic program rules in 1)
o Let II. = IT \ Il (Il is the set of constraints in II)

® A set of atoms S is an answer sets of a program I1 if it is an answer

set of HO and satisfies all the constraints in ground (HC)

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




4 ™
Answer Sets of Programs with Constraints

® Example:

o [I, = {a<—notb. b <—not a.} has two answer sets {a} and {b}
® But, II, = { a < not b.
b <— not a.
<— not a.
has only one answer set {a}.
® But, Il = { a < not b.
b <— not a.
< a.

has only one answer set {b}.

(c) Paul Fodor (CS Stony Brook) and Elsevier




Computing Answer Sets

o Complexity: The problem of determining the
existence of an answer set for finite propositional
programs (programs without function symbols) is

NP—complete.

® For programs with disjunctions, function symbols,

etc. it is much higher.

® A consequence of this property is that there exists
no polynomial—time algorithm for computing

answer sets.

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




Answer set solvers :

® Programs that compute answer sets of (finite and grounded) logic programs.

® Two main approaches:
® Direct implementation: Due to the complexity of the problem, most

solvers implement a variation of the generate—and—test algorithm

Smodels http: / /www.tcs.hut.fi/Software/smodels/

DLV http: //www.dbai.tuwien.ac.at/ proj/ dlv/

deres http://www. cs.engr.uk\:edu/ ai/deres.html

® Using SAT solvers: A program II is translated into a satisfiabilty problem

FII and a call to a SAT solver is made to compute solution of FII.

The main task of this approach is to write the program for the conversion
from II to FII

Potassco: http://potassco.sourceforge.net/ (clasp, gringo, ...)

Cmodels http: / /www.cs.utexas.edu/users/ tag/ cmodels. html

ASSAT http: / /assat.cs.ust.hk/

(c) Paul Fodor (CS Stony Brook) and Elsevier



http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.cs.engr.uky.edu/ai/deres.html
http://potassco.sourceforge.net/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://assat.cs.ust.hk/

Example: Graph Coloring

® Given a (bi-directed) graph and three colors red, green, and yellow. Find a
color assignment for the nodes of the graph such that no edge of the graph

connects two nodes of the same color.

® Graph representation:
The nodes: node (1) . .. node(n) .
The edges: edge (1, J) .
® Each node is assigned one color:
the three rules:
color (X, red) — node(X), not color (X, green), not color (X, yellow).

color (X, green) — node(X), not color (X, red), not color (X, yellow).

color (X, yellow) — node(X), not color (X, green), not color (X, red).
e No edge connects two nodes of the same color:
— edge(X, Y ), color(X, C), color(Y, C).

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




Example: Graph Coloring

node (1) . node(2). node(3).

edge(1,2). edge(2,3). edge(3,1).
color (X,red) : - node(X), not color(X,green), not color (X, yellow).
color (X,green) : - node(X), not color(X,red), not color (X, yellow).

color (X,yellow) : - node(X), not color(X,green), not color (X, red).
:— edge (X,Y), color(X,C), color(Y,C).

* Try with

clingo —n 0 color.1lp

Answer: 1

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,red) color(2,green) color(3,yellow)
Answer: 2

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,red) color(2,yellow) color(3,green)
Answer: 3

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,green) color(2,red) color(3,yellow)
Answer: 4

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,yellow) color(2,red) color(3,green)
Answer: 5

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1l,green) color(2,yellow) color(3,red)
Answer: 6

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,yellow) color(2,green) color(3,red)
Models 16

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




