Tabled Resolution

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Recap: OLD Resolution

- Prolog follows OLD resolution = SLD with left-to-right literal selection.
- Prolog searches for OLD proofs by expanding the resolution tree depth first.
 - This depth-first expansion is close to how procedural programs are evaluated:
 - Consider a goal G_1, G_2, \ldots, G_n as a “procedure stack” with G_1, the selected literal on top.
 - Call G_1.
 - If and when G_1 returns, continue with the rest of the computation: call G_2, and upon its return call G_3, etc. until nothing is left
 - Note: G_2 is “opened up” only when G_1 returns, not after executing only some part of G_1.
OLD Resolution

- Depth-first expansion, however, contributes to the *incompleteness* of Prolog’s evaluation, which may *not terminate* even when the least model is finite (see the next example!)
Example: Reachability in Directed Graphs

• Determining whether there is a path between two vertices in a directed graph is an important and widespread problem.

• For instance, consider checking whether (or not) a program accesses a shared resource before obtaining a lock:
 • A program itself can be considered as a graph with vertices representing program states!
 • A state may be characterized by the program counter value, and values of variables.
 • There are richer models for representing program evaluation, but a directed graph is most basic.
 • If we can go from state s by executing one instruction to s', then we can place an edge from s to s'.
 • The reachability question may be whether we can reach from the start state to a state accessing a shared resource, without going through a state that obtained a lock.
Graph Reachability as a Logic Program

- A finite directed graph can be represented by a set of binary facts representing an "edge" relation
 - Predicate “\(\mathcal{q} \)" on right is an example
- Reachability can then be written as a "transitive closure" over the edge relation
 - Observe the predicate “\(\mathcal{r} \)" defined on right using two clauses:
 - The first clause: there is a path from \(X \) to \(Y \) if there is an edge from \(X \) to \(Y \)
 - The second clause: there is a path from \(X \) to \(Y \) if there is an intermediate vertex \(Z \) such that:
 - there is an edge from \(X \) to \(Z \), and
 - there is a path from \(Z \) to \(Y \)

\[
\begin{align*}
q(a, a). & \\
q(a, b). & \\
q(a, c). & \\
q(b, b). & \\
q(b, d). & \\
q(b, e). & \\
q(e, d). & \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{r}(X,Y) & : = q(X,Y). \\
\mathcal{r}(X,Y) & : = q(X,Z), \; \mathcal{r}(Z,Y). \\
\end{align*}
\]
Bottom-Up Evaluation

- Note that the program on the left is a *Datalog* program: no function symbols
- Its Herbrand Universe is *finite*, and its least model computation using the bottom up evaluation will *terminate*:

\[
M_0 = \emptyset
\]

\[
M_1 = T_P (M_0) = M_0 \cup \{ q(a,a), q(a,b), q(a,c), q(b,b), q(b,d), q(b,e), q(e,d) \}
\]

\[
M_2 = T_P (M_1) = M_1 \cup \{ r(a,a), r(a,b), r(a,c), r(b,b), r(b,d), r(b,e), r(e,d) \}
\]

\[
M_3 = T_P (M_2) = M_2 \cup \{ r(a,d), r(a,e) \}
\]

\[
M_4 = T_P (M_3) = M_3
\]
Bottom-Up Evaluation

\[M_4 = \{ q(a,a), q(a,b), q(a,c), q(b,b), q(b,d), q(b,e), q(e,d), r(a,a), r(a,b), r(a,c), r(b,b), r(b,d), r(b,e), r(e,d), r(a,d), r(a,e) \} \]

- With care, using bottom-up evaluation all-pairs reachability can be computed in \(O(V \cdot E) \) time for a graph with \(V \) vertices and \(E \) edges.
OLD Resolution with Depth-First Expansion

?- r(a,N).

Consider initial query "?- r(a,N)."
Let’s construct the SLD tree for this query

\[
\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d). \\
\end{align*}
\]

\[
\begin{align*}
r(X,Y) & :- q(X,Y). \\
r(X,Y) & :- q(X,Z), r(Z,Y). \\
\end{align*}
\]
OLD Resolution with Depth-First Expansion

?- r(a,N).

?- q(a,N).

Resolving this goal with the first clause of \(r \), we get a new goal "?- q(a,N)."
OLD Resolution with Depth-First Expansion

?- r(a,N).

?- q(a,N).

{N=a} {N=b} {N=c}

Resolving "?- q(a,N)." results in the empty goal, under three answer substitutions: a, b, and c. There are no more ways to resolve "?- q(a,N)."

```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```

```
r(X,Y) :- q(X,Y).
r(X,Y) :- q(X,Z), r(Z,Y).
```
OLD Resolution with Depth-First Expansion

?- \(r(a,N) \).

?- \(q(a,N) \).

?- \(q(a,Z), r(Z,N) \).

\(\{N=a\} \{N=b\} \{N=c\} \)

Resolving "?- \(r(a,N) \)." with the second clause of \(r \) results in goal "?- \(q(a,Z), r(Z,N) \)."

Note: We will use same variable names as in the program clause when possible, instead of mechanically inventing new variable names in every step.
OLD Resolution with Depth-First Expansion

?- \text{r}(a, N).

?- \text{q}(a, N).
?- \text{q}(a, Z), \text{r}(Z, N).

\{N=a\} \{N=b\} \{N=c\}
?- \text{r}(a, N).

The selected literal is \text{q}(a, Z) which unifies with fact \text{q}(a, a) with \(Z=a\). Thus we get the goal "?- \text{r}(a, N) ."

Note: This is the same goal that we had at the beginning.

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLD Resolution with Depth-First Expansion

?- r(a,N).

?-q(a,N). ?-q(a,Z), r(Z,N).

{N=a} {N=b} {N=c} ?-r(a,N).

?-q(a,N).

Resolving "?-r(a,N)." leads to "?-q(a,N)." (one of two options).

r(X,Y) :- q(X,Y).
r(X,Y) :- q(X,Z), r(Z,Y).
OLD Resolution with Depth-First Expansion

?- r(a,N).

?-q(a,N). ?-q(a,Z),r(Z,N).

?-q(a,N). ?-r(a,N).

{N=a} {N=b} {N=c}

?-q(a,N).

{N=a} {N=b} {N=c}

"?-q(a,N) .", in turn, leads to empty goal with answers N=a, b, and c.

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :- q(X,Z), r(Z,Y).
OLD Resolution with Depth-First Expansion

The other way to resolve "?-r(a,N)." is ...

You get the drift: we are repeating work done before, and there is an infinite branch here.

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLD Resolution with Depth-First Expansion

We never get to visit the other ways of resolving "?-q(a,Z),r(Z,N)."
Depth-First Expansion of the OLD tree

- If the underlying graph is acyclic, all branches in the OLD tree will be finite.
- If the graph is cyclic, nothing to the right of an infinite branch is expanded.
- This renders the evaluation **incomplete**: goals for which there are OLD derivations, but they are not found.
- Moreover, the same answer may be returned multiple times (even **infinitely**)!
 - Even if the underlying graph is acyclic, this evaluation is not efficient.
 - For query of the form $r(a, N)$ we will return $N=b$ for each path from “a” to “b”.
Depth-First Expansion of the OLD tree

- **Breadth-First** expansion does have the completeness property:
 - Every OLD derivation will be eventually constructed.
 - If something is a logical consequence, we will eventually confirm it in a finite number of levels.
- But we may not be able to conclude *negative information*.
 - If something is not a logical consequence, we may never be able to identify it because we don't know when to stop?
Depth-First Expansion of the OLD tree

- Moreover, Breadth-First expansion does not give a natural operational understanding:
 - If we view predicates as being defined by “procedures”, then breadth first expansion steps through a procedure’s evaluation, switching contexts at the end of each step.
 - As in procedural programming, context switching is expensive (in this case, we’ve to switch substitutions)
Is there a path from X to Y that does not visit any vertex already seen in L?

\[p(L, X, Y) :- q(X, Y), \text{not member}(Y, L). \]

\[p(L, X, Y) :- q(X, Z), \text{not member}(Z, L), p([Z|L], Z, Y). \]

Now, start from \(L=[\] \) to look for reachable vertices

\[r(X, Y) :- p([], X, Y). \]

In \(L \) we remember the path so far, and use this to avoid loops
Programming our way around the problem

- We are assured termination for reachability queries
- We stop if a node has been seen before on the same branch.
- Still, this is inefficient: may take exponential time
- We re-execute queries on different branches of the SLD/OLD tree
What is Tabled Resolution?

- Memoize calls and results to avoid repeated subcomputations.
- Termination: Avoid performing computations that repeat infinitely often.
- Complete for Datalog programs
- Efficiency: Dynamically share common subexpressions.
Depth-First Expansion of OLD tree with a little twist: **Stop if a goal has been seen before.**

\[
\begin{align*}
q(a, a) . \\
q(a, b) . \\
q(a, c) . \\
q(b, b) . \\
q(b, d) . \\
q(b, e) . \\
q(e, d) . \\
\end{align*}
\]

\[
\begin{align*}
r(X,Y) & :- q(X,Y) . \\
r(X,Y) & :- \\
& \quad q(X,Z), r(Z,Y) .
\end{align*}
\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

?- r(a, N)

?- q(a, N)

N=a N=b N=c

\[q(a, a).\]
\[q(a, b).\]
\[q(a, c).\]
\[q(b, b).\]
\[q(b, d).\]
\[q(b, e).\]
\[q(e, d).\]

\[r(X,Y) :- q(X,Y).\]
\[r(X,Y) :- q(X,Z), r(Z,Y).\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

\[
\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d). \\
\end{align*}
\]

\[
\begin{align*}
r(X,Y) &::= q(X,Y). \\
r(X,Y) &::= q(X,Z), r(Z,Y). \\
\end{align*}
\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

\[
\begin{align*}
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).}
\end{align*}
\]

\[
\begin{align*}
r(X,Y) & :- q(X,Y). \\
r(X,Y) & :- \\
& \quad q(X,Z), \ r(Z,Y).
\end{align*}
\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
    q(X,Z), r(Z,Y).
```

?- q(a, N)

?- q(a, Z), r(Z, N)

N=a N=b N=c

?- r(a, N)

STOP
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

\[\text{Depth-First Expansion} \]

\[\text{Stop if a goal has been seen before.}\]

\[\begin{align*}
\text{q}(a, a). \\
\text{q}(a, b). \\
\text{q}(a, c). \\
\text{q}(b, b). \\
\text{q}(b, d). \\
\text{q}(b, e). \\
\text{q}(e, d).
\end{align*}\]

\[\begin{align*}
\text{r}(X,Y) &: \text{q}(X,Y). \\
\text{r}(X,Y) &: \text{r}(X,Z), \text{r}(Z,Y).
\end{align*}\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

\begin{center}
\begin{tikzpicture}[level distance=1.5cm,
 level 1/.style={sibling distance=3.5cm},
 level 2/.style={sibling distance=2cm}]

 \node{a}
 child {node{b}
 child {node{d}}
 child {node{e}}
 }
 child {node{c}};

\end{tikzpicture}
\end{center}

\begin{verbatim}
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

?- r(a, N)
?- r(b, N)
?- q(a, N)
?- q(a, Z), r(Z, N)
?- q(b, N)
?- q(b, Z), r(Z, N)
\end{verbatim}
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

\[
\begin{align*}
q(a, a) & . \\
q(a, b) & . \\
q(a, c) & . \\
q(b, b) & . \\
q(b, d) & . \\
q(b, e) & . \\
q(e, d) & . \\
r(X,Y) & : = q(X,Y). \\
r(X,Y) & : = q(X,Z), r(Z,Y).
\end{align*}
\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

?- r(a, N)
?- q(a, N)
?- q(a, Z), r(Z, N)
N=a N=b N=c
?- r(a, N)
?- r(b, N)

?- q(b, N)
?- q(b, Z), r(Z, N)
N=b N=d N=e
?- r(b, N)

STOP

STOP

(c) Paul Fodor (CS Stony Brook) and Elsevier
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

?- r(a, N)
?- q(a, N)
?- q(a, Z), r(Z, N)
N=a N=b N=c
?- r(a, N)
?- r(b, N)

STOP

?- q(b, N)
?- q(b, Z), r(Z, N)
N=b N=d N=e
?- r(b, N)
?- r(d, N)

STOP

(c) Paul Fodor (CS Stony Brook) and Elsevier
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

\[
\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d). \\
\end{align*}
\]

\[
\begin{align*}
r(X,Y) & : - q(X,Y). \\
r(X,Y) & : - \ q(X,Z), r(Z,Y). \\
\end{align*}
\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
q(X,Z), r(Z,Y).

?- r(a, N)

?- r(a, N)
?- q(a, Z), r(Z, N)

N=a N=b N=c

?- r(a, N)
?- r(b, N)

?- q(b, N)
?- q(b, Z), r(Z, N)

?- q(b, N)
?- q(b, Z), r(Z, N)

?- r(b, N)
?- r(d, N)

?- r(b, N)
?- r(d, N)

?- r(e, N)

STOP

STOP

q(d, N) q(d, Z), r(Z, N)

ff ff

(c) Paul Fodor (CS Stony Brook) and Elsevier
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

```
q(a, a).
qu(a, b).
qu(a, c).
qu(b, b).
qu(b, d).
qu(b, e).
qu(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
    q(X,Z), r(Z,Y).
```

STOP

```
?- r(a, N)
?- q(a, N)
?- q(a, Z), r(Z, N)
N=a  N=b  N=c
?- r(a, N)
?- r(b, N)

?- q(b, N)
?- q(b, Z), r(Z, N)
N=b  N=d  N=e
?- r(b, N)
?- r(d, N)

?- q(d, N)
?- q(d, Z), r(Z, N)

?- q(e, N)

STOP

?- r(e, N)

N=d
```
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

\[
\begin{align*}
q(a, a) & . \\
q(a, b) & . \\
q(a, c) & . \\
q(b, b) & . \\
q(b, d) & . \\
q(b, e) & . \\
q(e, d) & . \\
r(X, Y) & :- q(X, Y). \\
r(X, Y) & :- q(X, Z), r(Z, Y). \\
\end{align*}
\]
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :- q(X,Z), r(Z,Y).
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
    q(X,Z), r(Z,Y).
```

STOP
Depth-First Expansion of OLD tree with a little twist: Stop if a goal has been seen before.

?- r(a, N)
?- q(a, N)
?- q(a, Z), r(Z, N)

N=a N=b N=c
?- r(a, N) ?-r(b, N) ?- r(c, N)

?- q(b, N)
?- q(b, Z), r(Z, N)

N=b N=d N=e
?- r(b, N) ?- r(d, N)

STOP

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

q(c, N) q(c, Z), r(Z, N)

STOP

q(d, N) q(d, Z), r(Z, N)

?- q(e, N) ?- q(e, Z), r(Z, N)

N=d

? - r(d, N)

STOP
Rationale for goal-based stopping

- The OLD tree is a representation of search for successful derivations
 - which are finite sequences of goals terminating in an empty goal.
- If there is a successful derivation, then there is an equivalent one that does not repeat the same goal (compare to reachability via loop-free paths in a graph).
- Hence ignoring paths with repeated goals is **sound**: the derivations pruned away by stopping have equivalent ones that will not be ignored.
- Unfortunately, this scheme still does not fix the problem of infinite derivations
Infinite Derivations Despite Stopping Condition

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (-1,-1) {b};
\node (c) at (1,-1) {c};
\node (d) at (-2,-2) {d};
\node (e) at (2,-2) {e};
\path
(a) edge [loop above] (a)
(a) edge (b)
(a) edge (c)
(b) edge (d)
(b) edge (e)
(c) edge (d)
(c) edge (e);
\end{tikzpicture}
\end{center}

\[\text{\texttt{?- p(a, N)}}\]

\begin{verbatim}
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, \epsilon).
q(e, d).
\end{verbatim}

\textit{Alternative formulation}
\textit{of reachability: Note}
\textit{use of LEFT recursion}
\begin{verbatim}
p(X,Y) :- q(X,Y).
p(X,Y) :- p(X,Z), q(Z,Y).
\end{verbatim}
Expand tree as usual

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
 p(X,Z), q(Z,Y).
Infinite Derivations Despite Stopping Condition

Expand tree as usual

% Alternative formulation
% of reachability: Note
% use of LEFT recursion

\begin{verbatim}
p(X, Y) :- q(X, Y).
p(X, Y) :- p(X, Z), q(Z, Y).
\end{verbatim}
Infinite Derivations Despite Stopping Condition

Note that the right-most branch has ever-growing goals.

\[
q(a, a) . \\
q(a, b) . \\
q(a, c) . \\
q(b, b) . \\
q(b, d) . \\
q(b, e) . \\
q(e, d) . \\
\]

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
\[
p(X,Y) :- q(X,Y) . \\
p(X,Y) :- \\
 p(X,Z), q(Z,Y) . \\
\]
OLD Resolution with Tabling (OLDT)

- The selected literal at a step in a derivation is known as a call.
- OLDT maintains a table of calls (initially empty).
- With each call, it maintains a table of computed answers (initially empty).
- Start resolution as in OLD.
- When a literal is selected, check the call table.
 - If the literal is in the table, resolve it with its answers in its answer table.
 - If the literal is not in the table, resolve with program clauses (as in OLD), and add computed answers to its answer table.
OLDT Example

?- p(a, N)

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
 p(X,Z), q(Z,Y).

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start with empty tables

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLDT Example

?- p(a, N)

\[q(a, a) .
q(a, b) .
q(a, c) .
q(b, b) .
q(b, d) .
q(b, e) .
q(e, d) .
\]

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
 p(X,Z), q(Z,Y).

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pick selected literal. Is it in call table?
OLDT Example

?- p(a, N)

\[\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d).
\end{align*}\]

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
 p(X,Z), q(Z,Y).

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(a, W)</td>
<td></td>
</tr>
</tbody>
</table>

Add to call table

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLDT Example

\[
\begin{array}{c}
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).} \\
\end{array}
\]

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
\[
p(X,Y) \leftarrow q(X,Y).
\]
\[
p(X,Y) \leftarrow
\]
\[
p(X,Z), q(Z,Y).
\]

Do OLD resolution with program clauses
OLDT Example

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d} \\
\text{e}
\end{array}
\]

\[\begin{aligned}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d).
\end{aligned}\]

Calls	**Answers**
\(p(a, W)\) | \(\{p(a, a)\}\)

Alternative formulation of reachability: Note use of LEFT recursion
\[
p(X, Y) \leftarrow q(X, Y).
p(X, Y) \leftarrow p(X, Z), q(Z, Y).
\]

Add computed answer to table (if not already there)
OLDT Example

?- q(a, N)

?- p(a, N)

\[
\begin{align*}
\text{Calls} & \quad \text{Answers} \\
p(a, W) & \quad \{p(a,a), p(a,b), p(a,c)\}
\end{align*}
\]

Add computed answer to table (if not already there)

\%Alternative formulation
\% of reachability: Note
\% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
p(X,Z), q(Z,Y).
OLDT Example

\[
\text{?- } p(a, N) \\
\text{?- } q(a, N) \\
\text{?- } p(a, Z), q(Z, N) \\
\text{N=a N=b N=c}
\]

\[
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).}
\]

% Alternative formulation

% of reachability: Note % use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
 p(X,Z), q(Z,Y).

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(a, W)</td>
<td>{ p(a,a), p(a,b), p(a,c) }</td>
</tr>
</tbody>
</table>

Continue with OLD resolution
OLDT Example

\[\begin{align*}
q(a, a) . \\
q(a, b) . \\
q(a, c) . \\
q(b, b) . \\
q(b, d) . \\
q(b, e) . \\
q(e, d) .
\end{align*} \]

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
\[p(X, Y) :- q(X, Y). \]
\[p(X, Y) :-
\quad p(X, Z), q(Z, Y). \]

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(a, W))</td>
<td>{ p(a,a), p(a,b), p(a,c) }</td>
</tr>
</tbody>
</table>

Pick selected literal. Is it in call table?
OLDT Example

\[
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).} \\
\]

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
\[
p(X,Y) :- q(X,Y). \\
p(X,Y) :- \\
\quad p(X,Z), q(Z,Y). \\
\]

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(a, W)</td>
<td>{p(a,a), p(a,b), p(a,c)}</td>
</tr>
</tbody>
</table>

Yes, resolve with answers in table

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLDT Example

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
 p(X,Z), q(Z,Y).

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(a, W)</td>
<td>{p(a,a), p(a,b), p(a,c)}</td>
</tr>
</tbody>
</table>

Add computed answer to table (if not already there)
OLDT Example

\[
\begin{align*}
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).}
\end{align*}
\]

% Alternative formulation
% of reachability: Note
% use of LEFT recursion
\[
p(X,Y) \leftarrow q(X,Y).
p(X,Y) \leftarrow
p(X,Z), q(Z,Y).
\]

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(a, W)</td>
<td>{p(a,a), p(a,b), p(a,c)}</td>
</tr>
</tbody>
</table>

Continue resolving with answers in table

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLDT Example

```
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
```

%Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :-
 p(X,Z), q(Z,Y).

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(a, W)</td>
<td>{p(a,a), p(a,b), p(a,c)</td>
</tr>
<tr>
<td></td>
<td>p(a,d), p(a,e)</td>
</tr>
</tbody>
</table>

Add computed answer to table (if not already there)
OLDT Example

%Alternative formulation
% of reachability: Note
% use of LEFT recursion
p(X,Y) :- q(X,Y).
p(X,Y) :- p(X,Z), q(Z,Y).

<table>
<thead>
<tr>
<th>Calls</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(a, W)</td>
<td>{p(a,a), p(a,b), p(a,c)</td>
</tr>
<tr>
<td></td>
<td>p(a,d), p(a,e)}</td>
</tr>
</tbody>
</table>

Complete when all answers have been considered for resolution
OLDT Forest

- When we get new answer, we will have to return to previous queries to continue their execution.

- When a literal is selected, mark it as a consumer.

- Check the call table.
 - If the literal is not in the table, start a new tree for that literal with its root marked as generator.
 - Resolve generator with program clauses (as in OLD), and add computed answers to its answer table.

- Resolve consumer with answers in its generator's table.
Calls and answers in tables

- Calls in table are standardized apart: i.e. their variables are renamed so that they are not identical to any other variable.
- Answers in a call's computed answer table share variables with their call. Any other variables are standardized apart.
- When checking if a literal is in call table:
 - We can check for variance: for a call c that is identical to the given literal l, modulo names of variables.
 - All answers to c are answers to l, and vice versa.
 - We can check for subsumption: for a call c that is more general than a given literal l, i.e. if there is a substitution θ such that $c\theta = l$.
 - Not all answers to c may be answers to l, but every answer to l is an answer to c.
Notes on OLDT

- We can selectively mark which predicates we want to maintain tables for. (e.g. "p" in the previous example).
 - In general, no need to maintain tables for predicates defined solely by facts (i.e. clauses with empty bodies).
- For a Datalog program, there can be only finitely many distinct calls and answers.
 - So the size of tables is bounded.
- The number of literals in each goal is limited by the largest clause in the program (or original goal).
- Hence for Datalog, the OLDT forest as well as table sizes are bounded
OLDT: Second Example

?- r(a, N)

\[\text{q(a, a). q(a, b). q(a, c). q(b, b). q(b, d). q(b, e). q(e, d).}
\]

- Construct a **forest**: one tree for each call
- Root of each tree (blue) is a **generator**
- Selected literal that matches a tabled call (green) is a **consumer**

% ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%ORIGIONAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

?- r(a, N)
?- q(a, N)
?- q(a, Z), r(Z, N)
N=a N=b N=c

?- r(a, N)
OLDT: Second Example

\[
\begin{align*}
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).} \\
\end{align*}
\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
\[
\begin{align*}
\text{r(X,Y) :-} \\
\text{q(X,Z), r(Z,Y).} \\
\end{align*}
\]
OLDT: Second Example

\[
\begin{align*}
? & \leftarrow r(a, N) \\
? & \leftarrow q(a, N) \\
? & \leftarrow q(a, Z), r(Z, N) \\
\end{align*}
\]

\[
\begin{array}{ccc}
N=a & N=b & N=c \\
\end{array}
\]

\[
\begin{align*}
? & \leftarrow r(a, N) \\
\end{align*}
\]

\[
\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d). \\
\end{align*}
\]

\[
\begin{align*}
\text{%ORIGINAL formulation} \\
\text{% of reachability: Note} \\
\text{% use of RIGHT recursion} \\
r(X,Y) & \leftarrow q(X,Y). \\
r(X,Y) & \leftarrow \quad q(X,Z), r(Z,Y). \\
\end{align*}
\]
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

?- r(a, N)
?- q(a, N)
?- q(a, Z), r(Z, N)

N=a N=b N=c

?- r(a, N)
?- r(b, N)

N=a N=b N=c

%ORIGINAl formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

\[\begin{array}{c}
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).}
\end{array}\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[r(X,Y) :- q(X,Y). \]
\[r(X,Y) :- \]
\[q(X,Z), r(Z,Y).\]
OLDT: Second Example

\begin{verbatim}
q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
\end{verbatim}

\textbf{ORIGINAL formulation}
\textit{\% of reachability: Note}
\textit{\% use of RIGHT recursion}
\texttt{r(X,Y) :- q(X,Y).}
\texttt{r(X,Y) :-
 q(X,Z), r(Z,Y).}

\begin{center}
\text{c} Paul Fodor (CS Stony Brook) and Elsevier
\end{center}
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X, Y) :- q(X, Y).
r(X, Y) :-
 q(X, Z), r(Z, Y).
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

% ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion

\[r(X, Y) :- q(X, Y). \]
\[r(X, Y) :- q(X, Z), r(Z, Y). \]
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X, Z), r(Z,Y).
OLDT: Second Example

\[\begin{align*}
q(a, a) & . \\
q(a, b) & . \\
q(a, c) & . \\
q(b, b) & . \\
q(b, d) & . \\
q(b, e) & . \\
q(e, d) & .
\end{align*} \]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

\[
\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d).
\end{align*}
\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[
r(X,Y) :- \ q(X,Y).
\]
\[
r(X,Y) :- \\
\quad q(X,Z), r(Z,Y).
\]
%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).
OLDT: Second Example

?- r(a, N)

?- q(a, N)
 N=a N=b N=c

?- r(a, N)

?- r(b, N)

?- r(c, N)

?- r(b, N)

?- q(b, N)

N=b N=d N=e

?- r(b, N)

?- q(b, N)

N=b N=d N=e

?- r(b, N)

?- q(b, N)

N=b N=d N=e

%-ORIGINAL formulation
%- of reachability: Note
%- use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLDT: Second Example

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[r(X,Y) :\] - q(X,Y).
\[r(X,Y) :\]
\[\quad q(X,Z), r(Z,Y). \]
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

?- r(a, N)
?- r(a, N)
?- r(b, N)
?- r(c, N)

?- q(a, N), r(Z, N)

N=a N=b N=c
N=a N=b N=c
N=d N=e
N=d
N=b
N=e

?- r(c, N)

?- q(c, N)

ff

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

\[\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d). \\
\end{align*}\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[\begin{align*}
r(X, Y) & : - q(X, Y). \\
r(X, Y) & : - q(X, Z), r(Z, Y). \\
\end{align*}\]
OLDT: Second Example

?- r(a, N)
?- q(a, N)
?- q(a, Z), r(Z, N)
N=α N=b N=c
?- r(a, N)
?- r(b, N)
?- r(c, N)
N=α N=b N=d N=e N=b N=d N=e

?- r(b, N)
?- q(b, N)
?- q(b, Z), r(Z, N)
N=b N=d N=e

?- r(c, N)
?- q(c, N)
?- q(c, Z), r(Z, N)
ff ff

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

\[
\begin{align*}
?- r(a, N) \\
?- q(a, N) & \quad ?- q(a, Z), r(Z, N) \\
N=a & \quad N=b & \quad N=c \\
?- r(a, N) & \quad ?- r(b, N) & \quad ?- r(c, N) \\
N=a & \quad N=b & \quad N=c & \quad N=d & \quad N=e & \quad N=d & \quad N=e \\
?- r(a, N) & \quad ?- q(b, N) & \quad ?- q(b, Z), r(Z, N) \\
N=b & \quad N=d & \quad N=e & \quad N=b \\
?- r(a, N) & \quad ?- r(b, N) \\
N=a & \quad N=b \\
\end{align*}
\]

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[
r(X,Y) :- q(X,Y).
\]
\[
r(X,Y) :-
\quad q(X,Z), r(Z,Y).
\]
OLDT: Second Example

\[
\begin{array}{c}
\text{\texttt{\texttt{r(a, N)}}} \\
\text{\texttt{r(b, N)}} \\
\text{\texttt{r(c, N)}} \\
\text{\texttt{r(b, N)}} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\texttt{q(a, a)}}. \\
\text{\texttt{q(a, b)}}. \\
\text{\texttt{q(a, c)}}. \\
\text{\texttt{q(b, b)}}. \\
\text{\texttt{q(b, d)}}. \\
\text{\texttt{q(b, e)}}. \\
\text{\texttt{q(e, d)}}. \\
\end{array}
\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[
r(X,Y) \ :- \ q(X,Y). \\
r(X,Y) \ :- \\
\qquad q(X,Z), r(Z,Y). \\
\]
OLDT: Second Example

\[
\begin{align*}
\text{q(a, a)}.
\text{q(a, b)}.
\text{q(a, c)}.
\text{q(b, b)}.
\text{q(b, d)}.
\text{q(b, e)}.
\text{q(e, d)}.
\end{align*}
\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[
\begin{align*}
r(X,Y) & :- q(X,Y).
\text{r(X,Y)} : -
\quad q(X,Z), \ r(Z,Y).
\end{align*}
\]
OLDT: Second Example

\[
\begin{align*}
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).} \\
\end{align*}
\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[
\begin{align*}
r(X,Y) & :- q(X,Y). \\
r(X,Y) & :- q(X,Z), r(Z,Y). \\
\end{align*}
\]
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

\[\begin{align*}
\text{q(a, a).} \\
\text{q(a, b).} \\
\text{q(a, c).} \\
\text{q(b, b).} \\
\text{q(b, d).} \\
\text{q(b, e).} \\
\text{q(e, d).}
\end{align*}\]

% ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
\r(X,Y) :-
\quad q(X,Z), r(Z,Y).
OLDT: Second Example

\[
\begin{align*}
\text{q}(a, a). \\
\text{q}(a, b). \\
\text{q}(a, c). \\
\text{q}(b, b). \\
\text{q}(b, d). \\
\text{q}(b, e). \\
\text{q}(e, d).
\end{align*}
\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[
\begin{align*}
r(X, Y) & : \text{~} \text{q}(X, Y). \\
r(X, Y) & : \text{q}(X, Z), r(Z, Y).
\end{align*}
\]
OLDT: Second Example

\[
\text{q(a, a).}
\text{q(a, b).}
\text{q(a, c).}
\text{q(b, b).}
\text{q(b, d).}
\text{q(b, e).}
\text{q(e, d).}
\]

\%
\text{ORIGINAL formulation}
\%
\text{of reachability: Note}
\%
\text{use of RIGHT recursion}
\text{r(X,Y) :- q(X,Y).}
\text{r(X,Y) :-}
\text{ q(X,Z), r(Z,Y).}
OLDT: Second Example

\[\begin{align*}
q(a, a). & \\
q(a, b). & \\
q(a, c). & \\
q(b, b). & \\
q(b, d). & \\
q(b, e). & \\
q(e, d). & \\
\end{align*} \]

% ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).

(c) Paul Fodor (CS Stony Brook) and Elsevier
OLDT: Second Example

q(a, a).
q(a, b).
q(a, c).
q(b, b).
q(b, d).
q(b, e).
q(e, d).

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
 q(X,Z), r(Z,Y).
OLDT: Second Example

\[\text{q(a, a).} \]
\[\text{q(a, b).} \]
\[\text{q(a, c).} \]
\[\text{q(b, b).} \]
\[\text{q(b, d).} \]
\[\text{q(b, e).} \]
\[\text{q(e, d).} \]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
\[r(X,Y) :- q(X,Y). \]
\[r(X,Y) :- q(X,Z), r(Z,Y). \]
OLDT: Second Example

\[\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d). \\
\end{align*} \]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
q(X,Z), r(Z,Y).
OLDT: Second Example

\[
\begin{align*}
q(a, a). \\
q(a, b). \\
q(a, c). \\
q(b, b). \\
q(b, d). \\
q(b, e). \\
q(e, d). \\
\end{align*}
\]

%ORIGINAL formulation
% of reachability: Note
% use of RIGHT recursion
r(X,Y) :- q(X,Y).
r(X,Y) :-
q(X,Z), r(Z,Y).
OLD Resolution with Tabling (OLDT)

- OLDT evaluation can be used to infer negative answers: e.g. a vertex is not reachable from another.

- Note that Breadth-First evaluation, or even the evaluation with goal-based stopping condition cannot do this.
Tabled Resolution in XSB

\[
\text{reach}(X,Y) :\neg \text{edge}(X,Y).
\]
\[
\text{reach}(X,Y) :\neg \text{reach}(X,Z), \text{ edge}(Z,Y).
\]
\[
\text{edge}(a,a).
\]
\[
\text{edge}(a,b).
\]
\[
\text{edge}(b,c).
\]
\[
:\neg \text{table}(\text{reach}/2).
\]
\[
\%\text{OR} :\neg \text{auto_table}.
\]

- Call:

\[
?- \text{reach}(a,V).
\]
Tabled Resolution

\begin{align*}
\text{reach}(X,Y) & :\text{−} \text{edge}(X,Y). \\
\text{reach}(X,Y) & :\text{−} \text{reach}(X,Z), \text{edge}(Z,Y). \\
\text{edge}(a,a). \\
\text{edge}(a,b). \\
\text{edge}(b,c). \\
\end{align*}

- Calls

?- \text{reach}(a,V).

Answers
Tabled Resolution

\[
\begin{align*}
\text{reach}(X,Y) & :\text{−} \text{ edge}(X,Y). \\
\text{reach}(X,Y) & :\text{−} \text{ reach}(X,Z), \text{ edge}(Z,Y).
\end{align*}
\]

\[
\text{edge}(a,a).
\text{edge}(a,b).
\text{edge}(b,c).
\]

• Calls

\[- \text{reach}(a,V).\]

Answers

\[V = a\]

(c) Paul Fodor (CS Stony Brook) and Elsevier
Tabled Resolution

\[\text{reach}(X,Y) :\leftarrow \text{edge}(X,Y). \]
\[\text{reach}(X,Y) :\leftarrow \text{reach}(X,Z), \text{edge}(Z,Y). \]
\[\text{edge}(a,a). \]
\[\text{edge}(a,b). \]
\[\text{edge}(b,c). \]

- Calls

\[?- \text{reach}(a,V). \]

Answers

\[V = a \]
\[V = b \]
Tabled Resolution

\[\text{reach}(X,Y) :\neg \text{edge}(X,Y). \]
\[\text{reach}(X,Y) :\neg \text{reach}(X,Z), \text{edge}(Z,Y). \]
\[\text{edge}(a,a). \]
\[\text{edge}(a,b). \]
\[\text{edge}(b,c). \]

- Calls

\[?- \text{reach}(a,V). \]

Answers

\[V = a \]
\[V = b \]
Tabled Resolution

\[
\text{reach}(X,Y) :\neg \text{edge}(X,Y).
\]
\[
\text{reach}(X,Y) :\neg \text{reach}(X,Z), \text{edge}(Z,Y).
\]
\[
\text{edge}(a,a).
\]
\[
\text{edge}(a,b).
\]
\[
\text{edge}(b,c).
\]

- Calls

\[- \text{reach}(a,V).\]

Answers

\[V = a\]
\[V = b\]
Tabled Resolution

\[
\text{reach}(X,Y) :\neg \text{edge}(X,Y). \\
\text{reach}(X,Y) :\neg \text{reach}(X,Z), \text{ edge}(Z,Y). \\
\text{edge}(a,a). \\
\text{edge}(a,b). \\
\text{edge}(b,c). \\
\]

- Calls

?- \text{reach}(a,V).

Answers

V = a \\
V = b \\
V = c
Tabled Resolution

reach(X,Y) :- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).
edge(a,a).
edge(a,b).
edge(b,c).

• Calls

?- reach(a,V).

Answers
V = a
V = b
V = c

Answer completion!