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Recap: OLD Resolution
 Prolog follows OLD resolution, which is SLD (Selective Linear 

Definite) resolution, but with with left-to-right literal 

selection & Prolog also uses the order in which the clauses are 

enumerated in the database to determine the order in which the 

branches of the search space are investigated

 Consider a goal G1, G2,…, Gn as a “procedure stack” with 

G1, the selected literal on top

 Call G1
 If and when G1 returns, continue with the rest of the 

computation: call G2, and upon its return call G3, etc. until 

nothing is left 
 Note: G2 is “opened up” only when G1 returns, not after executing only 

some part of G12



(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution
Depth-first expansion, however, contributes to the 

incompleteness of Prolog’s evaluation, which may 

not terminate even when the least model is finite 

(see the next example!)
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Example:Reachability in Directed Graphs
 Determining whether there is a path between two vertices in a directed 

graph is an important and widespread problem

 For instance, consider checking whether (or not) a program accesses a shared 

resource before obtaining a lock:

 A program itself can be considered as a graph with vertices representing 

program states!
 A state may be characterized by the program counter value, and values of variables

 There are richer models for representing program evaluation, but a directed graph is 

most basic

 If we can go from state s by executing one instruction to s', then we can 

place an edge from s to s'

 The reachability question may be whether we can reach from the start 

state to a state accessing a shared resource, without going through a state 

that obtained a lock
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Graph Reachability as a Logic Program
 A finite directed graph can be represented 

by a set of binary facts representing an 

"edge" relation
 Predicate “q” on right is an example

 Reachability can then be written as a 

"transitive closure" over the edge 

relation
 Observe the predicate “r” defined on right 

using two clauses:
 The first clause: there is a path from X to Y if there is 

an edge from X to Y

 The second clause: there is a path from X to Y if there 

an intermediate vertex Z such that: 

 there is an edge from X to Z, and 

 there is a path from Z to Y
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Bottom-Up Evaluation

 Note that the program on the right is a 

Datalog program, i.e., no function symbols
 Its Herbrand Universe is finite, and its least 

model computation using the bottom up 

evaluation will terminate:
M0 = ∅
M1 = Tp(M0) = M0 ∪ {q(a,a),   

q(a,b), q(a,c), q(b,b),  

q(b,d), q(b,e), q(e,d)}

M2 = Tp(M1) = M1 ∪ {r(a,a), 

r(a,b), r(a,c), r(b,b), 

r(b,d), r(b,e), r(e,d)}

M3 = Tp(M2) = M2 ∪ {r(a,d), 

r(a,e)}

M4 =  Tp(M3) = M3 = MP 6
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Bottom-Up Evaluation

MP = {q(a,a), q(a,b), q(a,c), 

q(b,b), q(b,d), q(b,e), 

q(e,d), r(a,a), r(a,b), 

r(a,c), r(b,b), r(b,d), 

r(b,e), r(e,d), r(a,d), 

r(a,e)}

 With care, using bottom-up evaluation all-

pairs reachability can be computed in 

O(V·E) time for a graph with V vertices 

and E edges
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OLD Resolution with Depth-First Expansion

8

?- r(a,N).

Consider initial query "?- r(a,N)." 

Let’s construct the SLD tree for this query
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

Resolving this goal with the first clause of r, 

we get a new goal "?- q(a,N)." 

?- q(a,N).
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

Resolving "?- q(a,N)." results in the 

empty goal, under three answer substitutions: 
a, b, and c. There are no more ways to 

resolve "?- q(a,N)."  

?- q(a,N).

□ □ □
{N=a}{N=b}{N=c}
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

Resolving "?- r(a,N)." with the second 

clause of r results in goal 

"?- q(a,Z), r(Z,N)." 

Note: We will use same variable names as in 

the program clause when possible, instead of 

mechanically inventing new variable names 

in every step.

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

The selected literal is q(a,Z) which unifies 

with fact q(a,a) with Z=a. Thus we get 

the goal "?-r(a,N)." 

Note: This is the same goal that we had at the 

beginning. 

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

Resolving "?-r(a,N)." leads to "?-q(a,N)."

(one of two options).  

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

"?-q(a,N).", in turn, leads to empty goal with 

answers N=a, b, and c.

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

The other way to resolve 
"?-r(a,N)." is …

You get the drift: we are 

repeating work done 

before, and there is an 

infinite branch here.

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).
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OLD Resolution with Depth-First Expansion
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?- r(a,N).

We never get to visit the other ways of resolving  
"?-q(a,Z),r(Z,N)."

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

∞
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Depth-First Expansion of the OLD tree
1. If the underlying graph is acyclic, all branches in 

the OLD tree will be finite
2. If the graph is cyclic, nothing to the right of an 

infinite branch is expanded 
 This renders the evaluation incomplete: goals for which there 

are OLD derivations, but they are not found

 Moreover, in both cases, the same answer may be 

returned multiple times (even infinitely!)
 Even if the underlying graph is acyclic, this evaluation is not 

efficient
 For our example, for the query "?- r(a,N)." we will return 

N=b for each path from “a” to “b”
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Expansion of the OLD tree
 Breadth-First expansion does have the completeness 

property for definite programs: 

Every OLD derivation will be eventually constructed

 If something is a logical consequence, we will 

eventually confirm it in a finite number of levels

But we may not be able to conclude negative 

information

 If something is not a logical consequence, we may 

never be able to identify it because we don't know 

when to stop? 
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Expansion of the OLD tree
Moreover, Breadth-First expansion does not give a 

natural operational understanding: 
 If we view predicates as being defined by 

“procedures”, then breadth first expansion switches 

contexts at the end of each step

As in procedural programming, context switching 

is expensive (in this case, we’ve to switch 

substitutions)
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Programming our way around the problem
 Check for any vertex if it was not already seen in the path L

 Start from L=[] to look for reachable vertices
r(X, Y) :-

p([], X, Y).

p(L, X, Y) :-

q(X, Y), 

not member(Y, L). 

p(L, X, Y) :-

q(X, Z), 

not member(Z, L), 

p([Z|L], Z, Y). 

 In L we remember the path so far, and use this to avoid loops
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Programming our way around the problem
 We are assured termination for reachability queries 

We stop if a node has been seen before on the same 

branch

 Still, this is inefficient

We re-execute queries on different branches of the 

SLD/OLD tree

May take exponential time
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What is Tabled Resolution?
Memoize calls and results to avoid 

repeated subcomputations

Properties:

Termination: Avoid performing 

computations that repeat infinitely often

Complete for Datalog programs

Efficiency: Dynamically share common 

subexpressions
22
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Depth-First Expansion of OLD tree with a little 

twist: Stop if the entire goal has been seen before

23

the entire goal will be tabled (remembered)
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Depth-First Expansion of OLD tree with a little 
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Depth-First Expansion of OLD tree with a little 

twist: Stop if a goal has been seen before
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Rationale for goal-based stopping
 The OLD tree is a representation of search for successful 

derivations 

 which are finite sequences of goals terminating in an empty 

goal

 If there is a successful derivation, then there is an equivalent one 

that does not repeat the same goal (compare to reachability via 

loop-free paths in a graph)

 Hence ignoring paths with repeated goals is sound: the 

derivations pruned away by stopping have equivalent ones that 

will not be ignored

 Unfortunately, this scheme still does not fix the problem of 

infinite derivations
41
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Infinite Derivations Despite Stopping Condition

42
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Infinite Derivations Despite Stopping Condition

43

Expand tree as usual
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Infinite Derivations Despite Stopping Condition
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Expand tree as usual
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Infinite Derivations Despite Stopping Condition
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Note that the right-most branch 
has ever-growing goals!
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OLD Resolution with Tabling (OLDT)
 The selected literal at a step in a derivation is known as a 

call (only individual literals are tabled)

 OLDT maintains a table of calls (initially empty)

 With each call, it maintains a table of computed answers 

(initially empty)

 Start resolution as in OLD

 When a literal is selected, check the call table.

 If the literal is in the table, resolve it with its answers 

in its answer table

 If the literal is not in the table, resolve with program 

clauses (as in OLD), and add computed answers to 

its answer table
46
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OLDT Example

47

:- table p/2.
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OLDT Example
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OLDT Example
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OLDT Example
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OLDT Example
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:- table p/2.
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OLDT Forest
 When we get new answer, we will have to return to 

previous queries to continue their execution

 When a literal is selected, mark it as a consumer

 Check the call table:

 If the literal is not in the table, start a new tree for 

that literal with its root marked as generator

Resolve generator with program clauses (as in 

OLD), and add computed answers to its answer table

 Resolve consumer with answers in its generator's table
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Calls and answers in tables
 Calls in table are standardized apart: i.e. their variables are 

renamed so that they are not identical to any other variable

 Answers in a call's computed answer table share variables with 

their call

 When checking if a literal l is in call table:

 We can check for variance: for a call c that is identical to the 

given literal l, modulo names of variables

 All answers to c are answers to l, and vice versa

 We can check for subsumption: for a call c that is more general than a 

given literal l, . i.e. if there is a substitution θ such that cθ = l

 Not all answers to c may be answers to l , but every answer to l is an answer to c
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Notes on OLDT
 We can selectively mark which predicates we want to maintain 

tables for (e.g. "p" in the previous example)

 In general, no need to maintain tables for predicates defined 

solely by facts (i.e. clauses with empty bodies)

 For a Datalog program, there can be only finitely many distinct 

calls and answers

 So the size of tables is bounded

 The number of literals in each goal is limited by the largest 

clause in the program (or original goal)

 Hence for Datalog, the OLDT forest as well as table sizes are 

bounded
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OLDT: Second Example

63



(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example
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OLD Resolution with Tabling (OLDT)

OLDT evaluation can be used to infer negative 

answers: e.g. a vertex is not reachable from 

another

Note that Breadth-First evaluation, or even the 

evaluation with goal-based stopping condition 

cannot do this
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Tabled Resolution in XSB
edge(a,a).

edge(a,b).

edge(b,c).

:- table(reach/2).

%OR :- auto_table.

reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

 Call:

?- reach(a,V).
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Tabled Resolution
reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V). 

Answers
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Tabled Resolution
reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V). 

Answers

V = a
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reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V). 

Answers

V = a

V = b

Tabled Resolution
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reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V). 

Answers

V = a

V = b

Tabled Resolution
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reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V). 

Answers

V = a

V = b

Tabled Resolution
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reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V). 

Answers

V = a

V = b

V = c

Tabled Resolution
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reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V). 

Answers

V = a

V = b

V = c

Answer completion!

Tabled Resolution
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