
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Tabled Resolution

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recap: OLD Resolution
 Prolog follows OLD resolution, which is SLD (Selective Linear

Definite) resolution, but with with left-to-right literal

selection & Prolog also uses the order in which the clauses are

enumerated in the database to determine the order in which the

branches of the search space are investigated

 Consider a goal G1, G2,…, Gn as a “procedure stack” with

G1, the selected literal on top

 Call G1
 If and when G1 returns, continue with the rest of the

computation: call G2, and upon its return call G3, etc. until

nothing is left
 Note: G2 is “opened up” only when G1 returns, not after executing only

some part of G12

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution
Depth-first expansion, however, contributes to the

incompleteness of Prolog’s evaluation, which may

not terminate even when the least model is finite

(see the next example!)

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example:Reachability in Directed Graphs
 Determining whether there is a path between two vertices in a directed

graph is an important and widespread problem

 For instance, consider checking whether (or not) a program accesses a shared

resource before obtaining a lock:

 A program itself can be considered as a graph with vertices representing

program states!
 A state may be characterized by the program counter value, and values of variables

 There are richer models for representing program evaluation, but a directed graph is

most basic

 If we can go from state s by executing one instruction to s', then we can

place an edge from s to s'

 The reachability question may be whether we can reach from the start

state to a state accessing a shared resource, without going through a state

that obtained a lock

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graph Reachability as a Logic Program
 A finite directed graph can be represented

by a set of binary facts representing an

"edge" relation
 Predicate “q” on right is an example

 Reachability can then be written as a

"transitive closure" over the edge

relation
 Observe the predicate “r” defined on right

using two clauses:
 The first clause: there is a path from X to Y if there is

an edge from X to Y

 The second clause: there is a path from X to Y if there

an intermediate vertex Z such that:

 there is an edge from X to Z, and

 there is a path from Z to Y
5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Bottom-Up Evaluation

 Note that the program on the right is a

Datalog program, i.e., no function symbols
 Its Herbrand Universe is finite, and its least

model computation using the bottom up

evaluation will terminate:
M0 = ∅
M1 = Tp(M0) = M0 ∪ {q(a,a),

q(a,b), q(a,c), q(b,b),

q(b,d), q(b,e), q(e,d)}

M2 = Tp(M1) = M1 ∪ {r(a,a),

r(a,b), r(a,c), r(b,b),

r(b,d), r(b,e), r(e,d)}

M3 = Tp(M2) = M2 ∪ {r(a,d),

r(a,e)}

M4 = Tp(M3) = M3 = MP 6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Bottom-Up Evaluation

MP = {q(a,a), q(a,b), q(a,c),

q(b,b), q(b,d), q(b,e),

q(e,d), r(a,a), r(a,b),

r(a,c), r(b,b), r(b,d),

r(b,e), r(e,d), r(a,d),

r(a,e)}

 With care, using bottom-up evaluation all-

pairs reachability can be computed in

O(V·E) time for a graph with V vertices

and E edges

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

8

?- r(a,N).

Consider initial query "?- r(a,N)."

Let’s construct the SLD tree for this query

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

9

?- r(a,N).

Resolving this goal with the first clause of r,

we get a new goal "?- q(a,N)."

?- q(a,N).

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

10

?- r(a,N).

Resolving "?- q(a,N)." results in the

empty goal, under three answer substitutions:
a, b, and c. There are no more ways to

resolve "?- q(a,N)."

?- q(a,N).

□ □ □
{N=a}{N=b}{N=c}

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

11

?- r(a,N).

Resolving "?- r(a,N)." with the second

clause of r results in goal

"?- q(a,Z), r(Z,N)."

Note: We will use same variable names as in

the program clause when possible, instead of

mechanically inventing new variable names

in every step.

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

12

?- r(a,N).

The selected literal is q(a,Z) which unifies

with fact q(a,a) with Z=a. Thus we get

the goal "?-r(a,N)."

Note: This is the same goal that we had at the

beginning.

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

13

?- r(a,N).

Resolving "?-r(a,N)." leads to "?-q(a,N)."

(one of two options).

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

14

?- r(a,N).

"?-q(a,N).", in turn, leads to empty goal with

answers N=a, b, and c.

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

15

?- r(a,N).

The other way to resolve
"?-r(a,N)." is …

You get the drift: we are

repeating work done

before, and there is an

infinite branch here.

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Depth-First Expansion

16

?- r(a,N).

We never get to visit the other ways of resolving
"?-q(a,Z),r(Z,N)."

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

?-r(a,N).

?-q(a,N).

□ □ □
{N=a}{N=b}{N=c}

?-q(a,Z),r(Z,N).

∞

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of the OLD tree
1. If the underlying graph is acyclic, all branches in

the OLD tree will be finite
2. If the graph is cyclic, nothing to the right of an

infinite branch is expanded
 This renders the evaluation incomplete: goals for which there

are OLD derivations, but they are not found

 Moreover, in both cases, the same answer may be

returned multiple times (even infinitely!)
 Even if the underlying graph is acyclic, this evaluation is not

efficient
 For our example, for the query "?- r(a,N)." we will return

N=b for each path from “a” to “b”
17

(c) Paul Fodor (CS Stony Brook) and Elsevier

Expansion of the OLD tree
 Breadth-First expansion does have the completeness

property for definite programs:

Every OLD derivation will be eventually constructed

 If something is a logical consequence, we will

eventually confirm it in a finite number of levels

But we may not be able to conclude negative

information

 If something is not a logical consequence, we may

never be able to identify it because we don't know

when to stop?

18

(c) Paul Fodor (CS Stony Brook) and Elsevier

Expansion of the OLD tree
Moreover, Breadth-First expansion does not give a

natural operational understanding:
 If we view predicates as being defined by

“procedures”, then breadth first expansion switches

contexts at the end of each step

As in procedural programming, context switching

is expensive (in this case, we’ve to switch

substitutions)

19

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming our way around the problem
 Check for any vertex if it was not already seen in the path L

 Start from L=[] to look for reachable vertices
r(X, Y) :-

p([], X, Y).

p(L, X, Y) :-

q(X, Y),

not member(Y, L).

p(L, X, Y) :-

q(X, Z),

not member(Z, L),

p([Z|L], Z, Y).

 In L we remember the path so far, and use this to avoid loops

20

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming our way around the problem
 We are assured termination for reachability queries

We stop if a node has been seen before on the same

branch

 Still, this is inefficient

We re-execute queries on different branches of the

SLD/OLD tree

May take exponential time

21

(c) Paul Fodor (CS Stony Brook) and Elsevier

What is Tabled Resolution?
Memoize calls and results to avoid

repeated subcomputations

Properties:

Termination: Avoid performing

computations that repeat infinitely often

Complete for Datalog programs

Efficiency: Dynamically share common

subexpressions
22

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if the entire goal has been seen before

23

the entire goal will be tabled (remembered)

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

25

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

26

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

27

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

28

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

29

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

30

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

31

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

34

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

35

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

36

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

37

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

38

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before.

39

(c) Paul Fodor (CS Stony Brook) and Elsevier

Depth-First Expansion of OLD tree with a little

twist: Stop if a goal has been seen before

40

(c) Paul Fodor (CS Stony Brook) and Elsevier

Rationale for goal-based stopping
 The OLD tree is a representation of search for successful

derivations

 which are finite sequences of goals terminating in an empty

goal

 If there is a successful derivation, then there is an equivalent one

that does not repeat the same goal (compare to reachability via

loop-free paths in a graph)

 Hence ignoring paths with repeated goals is sound: the

derivations pruned away by stopping have equivalent ones that

will not be ignored

 Unfortunately, this scheme still does not fix the problem of

infinite derivations
41

(c) Paul Fodor (CS Stony Brook) and Elsevier

Infinite Derivations Despite Stopping Condition

42

(c) Paul Fodor (CS Stony Brook) and Elsevier

Infinite Derivations Despite Stopping Condition

43

Expand tree as usual

(c) Paul Fodor (CS Stony Brook) and Elsevier

Infinite Derivations Despite Stopping Condition

44

Expand tree as usual

(c) Paul Fodor (CS Stony Brook) and Elsevier

Infinite Derivations Despite Stopping Condition

45

Note that the right-most branch
has ever-growing goals!

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Tabling (OLDT)
 The selected literal at a step in a derivation is known as a

call (only individual literals are tabled)

 OLDT maintains a table of calls (initially empty)

 With each call, it maintains a table of computed answers

(initially empty)

 Start resolution as in OLD

 When a literal is selected, check the call table.

 If the literal is in the table, resolve it with its answers

in its answer table

 If the literal is not in the table, resolve with program

clauses (as in OLD), and add computed answers to

its answer table
46

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

47

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

48

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

49

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

50

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

51

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

52

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

53

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

54

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

55

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

56

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

57

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

58

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Example

59

:- table p/2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT Forest
 When we get new answer, we will have to return to

previous queries to continue their execution

 When a literal is selected, mark it as a consumer

 Check the call table:

 If the literal is not in the table, start a new tree for

that literal with its root marked as generator

Resolve generator with program clauses (as in

OLD), and add computed answers to its answer table

 Resolve consumer with answers in its generator's table

60

(c) Paul Fodor (CS Stony Brook) and Elsevier

Calls and answers in tables
 Calls in table are standardized apart: i.e. their variables are

renamed so that they are not identical to any other variable

 Answers in a call's computed answer table share variables with

their call

 When checking if a literal l is in call table:

 We can check for variance: for a call c that is identical to the

given literal l, modulo names of variables

 All answers to c are answers to l, and vice versa

 We can check for subsumption: for a call c that is more general than a

given literal l, . i.e. if there is a substitution θ such that cθ = l

 Not all answers to c may be answers to l , but every answer to l is an answer to c

61

(c) Paul Fodor (CS Stony Brook) and Elsevier

Notes on OLDT
 We can selectively mark which predicates we want to maintain

tables for (e.g. "p" in the previous example)

 In general, no need to maintain tables for predicates defined

solely by facts (i.e. clauses with empty bodies)

 For a Datalog program, there can be only finitely many distinct

calls and answers

 So the size of tables is bounded

 The number of literals in each goal is limited by the largest

clause in the program (or original goal)

 Hence for Datalog, the OLDT forest as well as table sizes are

bounded

62

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

63

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

64

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

65

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

66

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

67

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

68

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

69

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

70

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

71

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

72

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

73

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

74

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

75

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

76

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

77

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

78

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

79

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

80

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

81

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

82

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

83

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

84

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

85

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

86

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

87

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

88

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

89

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

90

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

91

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

92

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

93

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

94

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLDT: Second Example

95

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution with Tabling (OLDT)

OLDT evaluation can be used to infer negative

answers: e.g. a vertex is not reachable from

another

Note that Breadth-First evaluation, or even the

evaluation with goal-based stopping condition

cannot do this

96

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tabled Resolution in XSB
edge(a,a).

edge(a,b).

edge(b,c).

:- table(reach/2).

%OR :- auto_table.

reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

 Call:

?- reach(a,V).

97

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tabled Resolution
reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V).

Answers

98

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tabled Resolution
reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V).

Answers

V = a

99

(c) Paul Fodor (CS Stony Brook) and Elsevier

reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V).

Answers

V = a

V = b

Tabled Resolution

100

(c) Paul Fodor (CS Stony Brook) and Elsevier

reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V).

Answers

V = a

V = b

Tabled Resolution

101

(c) Paul Fodor (CS Stony Brook) and Elsevier

reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V).

Answers

V = a

V = b

Tabled Resolution

102

(c) Paul Fodor (CS Stony Brook) and Elsevier

reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V).

Answers

V = a

V = b

V = c

Tabled Resolution

103

(c) Paul Fodor (CS Stony Brook) and Elsevier

reach(X,Y) :− edge(X,Y).

reach(X,Y) :− reach(X,Z), edge(Z,Y).

edge(a,a).

edge(a,b).

edge(b,c).

 Calls

?- reach(a,V).

Answers

V = a

V = b

V = c

Answer completion!

Tabled Resolution

104

