Refutation in Predicate Logic

parent(pam, bob). parent(tom, bob).
parent(tom, liz). ...

\[\text{anc}(X, Y) : \neg \text{parent}(X, Y). \]
\[\text{anc}(X, Y) : \neg \text{parent}(X, Z), \text{anc}(Z, Y). \]

- **Goal G:** For what values of \(Q \) is \(\text{anc}(\text{tom}, Q) \) a logical consequence of the above program?

- **Negate the goal G:** i.e. \(\neg G \equiv \forall Q \ \neg \text{anc}(\text{tom}, Q) \).

- Consider the clauses in the program \(P \cup \neg G \) and apply refutation
 - Note that a program clause written as \(p(A, B) : \neg q(A, C), r(B, C) \)
 can be rewritten as: \(\forall A, B, C \ (p(A, B) \lor \neg q(A, C) \lor \neg r(B, C)) \)
 i.e., l.h.s. literal is positive, while all r.h.s. literals are negative
 - Note also that all variables are universally quantified in a clause!
Refutation: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[\text{anc}(X,Y) :\]
\[
\quad \text{parent}(X,Y).
\]
\[\text{anc}(X,Y) :\]
\[
\quad \text{parent}(X,Z), \quad \text{anc}(Z,Y).
\]

\[\text{anc}(X,Y) \leftarrow \text{parent}(X,Y) \]
\[\text{anc}(X,Y) \leftarrow \text{parent}(tom, Q) \]
\[\text{parent}(tom, bob) \leftarrow \]
\[Q = \text{bob} \]
Refutation: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

Q=ann

(c) Paul Fodor (CS Stony Brook) and Elsevier
Unification

• Operation done to “match” the goal atom with the head of a clause in the program.

• Forms the basis for the *matching* operation we used for Prolog evaluation:
 • \(f(a, Y) \) and \(f(X, b) \) unify when \(X=a \) and \(Y=b \)
 • \(f(a, X) \) and \(f(X, b) \) do not unify
 • \(f(a, X)=f(X, b) \) fails in Prolog
Substitutions

- A substitution is a mapping between variables and values (terms)
 - Denoted by \(\{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\} \) such that
 - \(x_i \neq t_i \), and
 - \(x_i \) and \(x_j \) are distinct variables when \(i \neq j \).
 - The empty substitution is denoted by \(\{} \) (or \(\varepsilon \)).
 - A substitution is said to be a *renaming* if it is of the form \(\{x_1/y_1, x_2/y_2, \ldots, x_n/y_n\} \) and \(y_1, y_2, \ldots, y_n \) is a permutation of \(x_1, x_2, \ldots, x_n \).
 - Example: \(\{x/y, y/x\} \) is a renaming substitution.
Substitutions and Terms

• Application of a substitution:
 • $x\theta = t$ if $x/t \in \theta$.
 • $x\theta = x$ if $x/t \notin \theta$ for any term t.

• Application of a substitution $\{x_1/t_1, \ldots, x_n/t_n\}$ to a term/formula F:
 • is a term/formula obtained by simultaneously replacing every free occurrence of x_i in F by t_i.
 • Denoted by $F\theta$ [and $F\theta$ is said to be an instance of F]

• Example:
 $p(f(X,Z), f(Y,a))\{X/g(Y), Y/Z, Z/a\} = p(f(g(Y),a), f(Z,a))$
Composition of Substitutions

Composition of substitutions $\theta = \{x_1/s_1, \ldots, x_m/s_m\}$ and $\sigma = \{y_1/t_1, \ldots, y_n/t_n\}$:

- First form the set $\{x_1/s_1\sigma, \ldots, x_m/s_m\sigma, y_1/t_1, \ldots, y_n/t_n\}$
- Remove from the set $x_i/s_i\sigma$ if $s_i\sigma = x_i$
- Remove from the set y_j/t_j if y_j is identical to some variable x_i

Example: Let $\theta = \sigma = \{x/g(y), y/z, z/a\}$. Then $\theta\sigma = \{x/g(y), y/z, z/a\}\{x/g(y), y/z, z/a\} = \{x/g(z), y/a, z/a\}$

More examples: Let $\theta = \{x/f(y)\}$ and $\sigma = \{y/a\}$

- $\theta\sigma = \{x/f(a), y/a\}$
- $\sigma\theta = \{y/a, x/f(y)\}$

Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$
Idempotence

- A substitution \(\theta \) is **idempotent** iff \(\theta \theta = \theta \).

- Examples:
 - \(\{X/g(Y), Y/Z, Z/a\} \) is not idempotent since
 \(\{X/g(Y), Y/Z, Z/a\} \{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\} \)
 - \(\{X/g(Z), Y/a, Z/a\} \) is not idempotent either since
 \(\{X/g(Z), Y/a, Z/a\} \{X/g(Z), Y/a, Z/a\} = \{X/g(a), Y/a, Z/a\} \)
 - \(\{X/g(a), Y/a, Z/a\} \) is idempotent

- For a substitution \(\theta = \{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\} \),
 - \(\text{Dom}(\theta) = \{x_1, x_2, \ldots, x_n\} \)
 - \(\text{Range}(\theta) = \text{set of all variables in } t_1, t_2, \ldots, t_n \)
 - A substitution \(\theta \) is **idempotent** iff \(\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset \)
Unifiers

- A substitution θ is a **unifier of** two terms s and t if $s\theta$ is identical to $t\theta$
- θ is a unifier of a set of equations $\{s_1=t_1, \ldots, s_n=t_n\}$, if for all i, $s_i\theta = t_i\theta$
- A substitution θ is **more general** than σ (written as $\theta \geq \sigma$) if there is a substitution ω such that $\sigma = \theta\omega$
- A substitution θ is a **most general unifier (mgu)** of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \geq \sigma$

- Example: Consider two terms $f(g(X), Y, a)$ and $f(Z, W, X)$.

 $\theta_1 = \{X/a, Y/b, Z/g(a), W/b\}$ is a unifier

 $\theta_2 = \{X/a, Y/W, Z/g(a)\}$ is also a unifier

 θ_2 is the most general unifier of the 2 terms
Equations and Unifiers

• A set of equations E is in **solved form** if it is of the form

$$\{x_1 = t_1, \ldots, x_n = t_n\} \iff \text{no } x_i \text{ appears in any } t_j.$$

• Given a set of equations $E = \{x_1 = t_1, \ldots, x_n = t_n\}$, the substitution $\{x_1 / t_1, \ldots, x_n / t_n\}$ is an idempotent mgu of E.

• Two sets of equations E_1 and E_2 are said to be **equivalent** iff they have the same set of unifiers.

• To find the mgu of two terms s and t, try to find a set of equations in solved form that is equivalent to $\{s = t\}$. If there is no equivalent solved form, there is no mgu.
A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$
 \[\{ f(X, g(Y)) = f(g(Z), Z) \} \Rightarrow \]
 \[\Rightarrow \{ X = g(Z), g(Y) = Z \} \]
 \[\Rightarrow \{ X = g(Z), Z = g(Y) \} \]
 \[\Rightarrow \{ X = g(g(Y)), Z = g(Y) \} \]

• Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$
 \[\{ f(X, g(X), b) = f(a, g(Z), Z) \} \Rightarrow \]
 \[\Rightarrow \{ X = a, g(X) = g(Z), b = Z \} \]
 \[\Rightarrow \{ X = a, g(a) = g(Z), b = Z \} \]
 \[\Rightarrow \{ X = a, a = Z, b = Z \} \]
 \[\Rightarrow \{ X = a, Z = a, b = Z \} \]
 \[\Rightarrow \{ X = a, Z = a, b = a \} \]
 \[\Rightarrow \text{fail} \]
A Simple Unification Algorithm

Given a set of equations E:

repeat

select $s = t \in E$;

case $s = t$ of

1. $f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$:

 replace the equation by $s_i = t_i$ for all i

2. $f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m)$, $f \neq g$ or $n \neq m$:

 halt with failure

3. $X = X$: remove the equation

4. $t = X$: where t is not a variable

 replace equation by $X = t$

5. $X = t$: where $X \neq t$ and X occurs more than once in E:

 if X is a proper subterm of t

 then halt with failure (5a)

 else replace all other X in E by t (5b)

until no action is possible for any equation in E

return E
A Simple Unification Algorithm

Example: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$\{ f(X, g(Y)) = f(g(Z), Z) \}$$

$$\Rightarrow \{ X = g(Z), g(Y) = Z \} \quad \text{case 1}$$

$$\Rightarrow \{ X = g(Z), Z = g(Y) \} \quad \text{case 4}$$

$$\Rightarrow \{ X = g(g(Y)), Z = g(Y) \} \quad \text{case 5b}$$
Example: Find the mgu of \(f(X, g(X)) \) and \(f(Z, Z) \)

\[
\{ f(X, g(X)) = f(Z, Z) \} \\
\Rightarrow \{ X = Z, g(X) = Z \} \quad \text{case 1} \\
\Rightarrow \{ X = Z, g(Z) = Z \} \quad \text{case 5b} \\
\Rightarrow \{ X = Z, Z = g(Z) \} \quad \text{case 4} \\
\Rightarrow \text{fail} \quad \text{case 5a}
\]
Complexity of the unification algorithm

• Consider

\[E = \{ g(X_1, \ldots, X_n) = g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1}) \} \]

• By applying case 1 of the algorithm, we get

\[\{ X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), X_3 = f(X_2, X_2), \ldots, X_n = f(X_{n-1}, X_{n-1}) \} \]

• If terms are kept as trees, the final value for \(X_n \) is a tree of size \(O(2^n) \).

• Recall that for case 5 we need to first check if a variable appears in a term, and this could now take \(O(2^n) \) time.

• There are linear-time unification algorithms that share structures (terms as DAGs).

• \(X = t \) is the most common case for unification in Prolog.

 • The fastest algorithms are linear in \(t \)

 • Prolog cuts corners by omitting case 5a (the occur check), thereby doing \(X = t \) in constant time.
Most General Unifiers

- Note that mgu stands for a most general unifier.
- There may be more than one mgu.
 - E.g. \(f(x) = f(y) \) has two mgus:
 - \(\{x \rightarrow y\} \)
 - \(\{y \rightarrow x\} \)
- If \(\theta \) is an mgu of \(s \) and \(t \), and \(\omega \) is a renaming, then \(\theta \omega \) is a mgu of \(s \) and \(t \).
- If \(\theta \) and \(\sigma \) are mgus of \(s \) and \(t \), then there is a renaming \(\omega \) such that \(\theta = \sigma \omega \).
 - MGU is unique up to renaming
SLD Resolution

- **Selective Linear Definite clause (SLD) Resolution**:

\[\leftarrow A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_m \quad B_0 \leftarrow B_1, \ldots, B_n \]

\[\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_n, A_{i+1}, \ldots, A_m) \theta \]

where:

1. \(A_j \) are atomic formulas
2. \(B_0 \leftarrow B_1, \ldots, B_n \) is a (renamed) definite clause in the program
3. \(\theta = \text{mgu}(A_i, B_0) \)

- \(A_i \) is called the *selected* atom
- Given a goal \(\leftarrow A_1, \ldots, A_n \) a function called the *selection function* or *computation rule* selects \(A_i \)
SLD Resolution (cont.)

- When the resolution rule is applied, from a goal G and a clause C, we get a new goal G'.
- We then say that G' is derived directly from G and C:

$$ G \overline{\Rightarrow} C \Rightarrow G' $$

- An SLD Derivation is a sequence

$$ G_0 \overline{\Rightarrow} C_0 \Rightarrow G_1 \ldots \overline{\Rightarrow} G_i \overline{\Rightarrow} C_i \Rightarrow G_{i+1} \ldots $$
Refutation & SLD Derivation

\[
\begin{align*}
\text{parent}(pam, bob). \\
\text{parent}(tom, bob). \\
\text{parent}(tom, liz). \\
\text{parent}(bob, ann). \\
\text{parent}(bob, pat). \\
\text{parent}(pat, jim). \\
\text{anc}(X,Y) :- \\
\quad \text{parent}(X,Y). \\
\text{anc}(X,Y) :- \\
\quad \text{parent}(X,Z), \\
\quad \text{anc}(Z,Y). \\
\text{anc}(tom, Q) \leftarrow \text{parent}(tom, Q) \\
\text{anc}(X,Y) \leftarrow \text{parent}(X,Y) \\
\text{parent}(tom, bob) \leftarrow \\
\text{Q} = \text{bob} \\
\text{anc}(tom, Q) \triangleright \text{parent}(tom, Q) \\
\triangleright \square
\end{align*}
\]
Refutation & SLD Derivation

\[
\begin{align*}
\text{parent}(pam, bob). \\
\text{parent}(tom, bob). \\
\text{parent}(tom, liz). \\
\text{parent}(bob, ann). \\
\text{parent}(bob, pat). \\
\text{parent}(pat, jim). \\
\text{anc}(X, Y) \leftarrow \\
\text{parent}(X, Y). \\
\text{anc}(X, Y) \leftarrow \\
\text{parent}(X, Z), \text{anc}(Z, Y). \\
\text{Q} = \text{ann}
\end{align*}
\]

\[
\begin{align*}
\text{anc}(tom, Q) \\
\text{anc}(X, Y) \leftarrow \text{parent}(X, Z), \text{anc}(Z, Y) \\
\text{parent}(tom, Z'), \text{anc}(Z', Q) \leftarrow \\
\text{anc}(bob, Q) \leftarrow \\
\text{anc}(X, Y) \leftarrow \text{parent}(X, Y) \\
\text{parent}(bob, Q) \leftarrow \\
\text{parent}(bob, ann) \leftarrow \\
\text{anc}(tom, Q) \leftarrow \\
\text{parent}(tom, Z') \leftarrow \\
\text{anc}(Z', Q) \leftarrow \\
\text{parent}(bob, Q) \leftarrow \\
\text{parent}(bob, Q) \leftarrow \square
\end{align*}
\]
Computed Answer Substitution

- Let $\theta_0, \theta_1, \ldots, \theta_{n-1}$ be the sequence of mgus used in derivation

$$G_0 \xrightarrow{c_0} G_1 \cdots G_{n-1} \xrightarrow{c_{n-1}} G_n$$

Then $\theta = \theta_0 \theta_1 \cdots \theta_{n-1}$ is the *computed substitution* of the derivation.

- Example:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Clause Used</th>
<th>mgu</th>
</tr>
</thead>
<tbody>
<tr>
<td>anc(tom, Q)</td>
<td>anc(X',Y') :- parent(X',Z'), anc(Z',Y')</td>
<td>$\theta_0 = {X'/\text{tom}, Y'/Q}$</td>
</tr>
<tr>
<td>parent(tom, Z'), anc(Z', Q)</td>
<td>parent(tom, bob). anc(X'', Y'') :- parent(X'', Y'').</td>
<td>$\theta_1 = {Z'/\text{bob}}$ $\theta_2 = {X''/\text{bob}, Y''/Q}$ $\theta_3 = {Q/\text{ann}}$</td>
</tr>
<tr>
<td>anc(bob, Q)</td>
<td>parent(bob, ann).</td>
<td></td>
</tr>
<tr>
<td>parent(bob, Q)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Computed substitution for the above derivation is

$$\theta_0 \theta_1 \theta_2 \theta_3 = \{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\}$$
Computed Answer Substitution

• A finite derivation of the form

\[G_0 \xrightarrow{C_0} G_1 \ldots \xrightarrow{C_{n-1}} G_n \]

where \(G_n = \) (i.e., an empty goal) is an **SLD refutation** of \(G_0 \)

• The computed substitution of an SLD refutation of \(G \), restricted to variables of \(G \), is a **computed answer substitution** for \(G \).

• Example (contd.): The computed answer substitution for the previous SLD refutation is

\{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann\}

restricted to \(Q \):

\{Q/ann\}
Failed SLD Derivation

- A derivation of a goal clause G_0 whose last element is not empty, and cannot be resolved with any clause of the program.
- Example: consider the following program:

  ```prolog
  grandfather(X,Z) :- father(X,Y), parent(Y,Z).
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  father(a,b).
  mother(b,c).
  ```

- A derivation of $\text{grandfather}(a,Q)$ is:

  ```prolog
  \[\sim \rightarrow\] father(a,Y’), parent(Y’,Q)
  \[\sim \rightarrow\] parent(b,Q)
  \[\sim \rightarrow\] father(b,Q)
  ```
SLD Tree

- A tree where every path is an SLD derivation

grandfather(X,Z) :-
 father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

father(a,b).
mother(b,c).

← grandfather(a, Q)
 ← father(a,Z’), parent(Z’, Q)
 ← parent(b, Q)
 ← father(b, Q)
 ← mother(b, Q)
Soundness of SLD resolution

- Let \(P \) be a definite program, \(R \) be a computation rule, and \(\theta \) be a computed answer substitution for a goal \(G \). Then \(\forall G \theta \) is a logical consequence of \(P \).
- Proof is by induction on the number of resolution steps used in the refutation of \(G \).
 - Base case uses the following lemma:
 - Let \(F \) be a formula and \(F' \) be an instance of \(F \), i.e., \(F' = F\theta \) for some substitution \(\theta \).
 Then \((\forall F) \models (\forall F') \).