Definite Logic Programs: Derivation and Proof Trees

CSE 505 – Computing with Logic
Stony Brook University
http://www.cs.stonybrook.edu/~cse505
Refutation in Predicate Logic

parent(pam, bob). parent(tom, bob).
parent(tom, liz). ...
anc(X,Y) :- parent(X,Y).
anc(X,Y) :- parent(X,Z), anc(Z,Y).

• **Goal G:** For what values of Q is \(\neg \text{anc(tom,Q)} \) a logical consequence of the above program?

• **Negate the goal G:** i.e. \(\neg \text{G} \equiv \forall Q \neg \text{anc(tom, Q)} \).

• Consider the clauses in the program \(P \cup \neg G \) and apply refutation
 • Note that a program clause written as \(p(A,B) : \neg q(A,C), r(B,C) \)
 can be rewritten as: \(\forall A,B,C (p(A, B) V \neg q(A, C) V \neg r(B, C)) \)
 i.e., l.h.s. literal is positive, while all r.h.s. literals are negative
 • Note also that all variables are universally quantified in a clause!

• **Note on syntax:** we use \(:\), \(?:\) and \(\leftarrow \) for IMPLICATION
Refutation: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[\text{anc}(X,Y) : \neg \text{parent}(X,Y) \]
\[\text{anc}(X,Y) : \neg \text{parent}(X,Z), \text{anc}(Z,Y) \]

\[\text{anc}(X,Y) \leftarrow \text{parent}(tom, Q) \]
\[\text{anc}(X,Y) \leftarrow \text{parent}(tom, bob) \]
\[Q = bob \]
Refutation: An Example

\[
\text{parent(pam, bob).} \\
\text{parent(tom, bob).} \\
\text{parent(tom, liz).} \\
\text{parent(bob, ann).} \\
\text{parent(bob, pat).} \\
\text{parent(pat, jim).} \\
\]

\[
\text{anc}(X,Y) : - \\
\quad \text{parent}(X,Y). \\
\text{anc}(X,Y) : - \\
\quad \text{parent}(X,Z), \\
\quad \text{anc}(Z,Y). \\
\]

\[
\begin{align*}
\text{anc}(X,Y) & \Leftarrow \text{parent}(X,Z), \text{anc}(Z,Y) \\
\text{anc}(X,Y) & \Leftarrow \text{parent}(tom,Z'), \text{anc}(Z', Q) \\
\text{anc}(X,Y) & \Leftarrow \text{parent}(tom, bob) \\
\text{anc}(X,Y) & \Leftarrow \text{parent}(bob, Q) \\
\text{anc}(X,Y) & \Leftarrow \text{parent}(bob, ann) \\
\text{anc}(Q, Q) & \Leftarrow Q=ann
\end{align*}
\]
Unification

• Operation done to “match” the goal atom with the head of a clause in the program.
• Forms the basis for the matching operation we used for Prolog evaluation:
 • $f(a, Y)$ and $f(X, b)$ unify when $X=a$ and $Y=b$
 • $f(a, X)$ and $f(X, b)$ do not unify
 • $f(a, X) = f(X, b)$ fails in Prolog
Substitutions

• A substitution is a mapping between variables and values (terms)
 • Denoted by \(\{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\} \) such that
 • \(x_i \neq t_i \), and
 • \(x_i \) and \(x_j \) are distinct variables when \(i \neq j \).
• The empty substitution is denoted by \(\{\} \) (or \(\varepsilon \)).
• A substitution is said to be a *renaming* if it is of the form \(\{x_1/y_1, x_2/y_2, \ldots, x_n/y_n\} \) and \(y_1, y_2, \ldots, y_n \) is a permutation of \(x_1, x_2, \ldots, x_n \).
 • Example: \(\{x/y, y/x\} \) is a renaming substitution.
Substitutions and Terms

- Application of a substitution:
 - $x_\theta = t$ if $x/t \in \theta$.
 - $x_\theta = x$ if $x/t \notin \theta$ for any term t.
- Application of a substitution $\{x_1/t_1, \ldots, x_n/t_n\}$ to a term/formula F:
 - is a term/formula obtained by simultaneously replacing every free occurrence of x_i in F by t_i.
 - Denoted by F_θ [and F_θ is said to be an instance of F]
- Example:
 $$p(f(X,Z), f(Y,a)) \{X/g(Y), Y/Z, Z/a\} = p(f(g(Y),a), f(Z,a))$$
Composition of Substitutions

- Composition of substitutions $\theta = \{X_1/s_1, \ldots, X_m/s_m\}$ and $\sigma = \{Y_1/t_1, \ldots, Y_n/t_n\}$:
 - First form the set $\{X_1/s_1\sigma, \ldots, X_m/s_m\sigma, Y_1/t_1, \ldots, Y_n/t_n\}$
 - Remove from the set $X_i/s_i\sigma$ if $s_i\sigma = X_i$
 - Remove from the set Y_j/t_j if Y_j is identical to some variable X_i
 - Example: Let $\theta = \sigma = \{X/g(Y), Y/Z, Z/a\}$. Then $\theta\sigma = \{X/g(Y), Y/Z, Z/a\}\{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$
 - More examples: Let $\theta = \{X/f(Y)\}$ and $\sigma = \{Y/a\}$
 - $\theta\sigma = \{X/f(a), Y/a\}$
 - $\sigma\theta = \{Y/a, X/f(Y)\}$
 - Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$
Idempotence

- A substitution θ is **idempotent** iff $\theta \theta = \theta$.

- Examples:
 - $\{X/g(Y), Y/Z, Z/a\}$ is not idempotent since
 $\{X/g(Y), Y/Z, Z/a\} \{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$
 - $\{X/g(Z), Y/a, Z/a\}$ is not idempotent either since
 $\{X/g(Z), Y/a, Z/a\} \{X/g(Z), Y/a, Z/a\} = \{X/g(a), Y/a, Z/a\}$
 - $\{X/g(a), Y/a, Z/a\}$ is idempotent

- For a substitution $\theta = \{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\}$,
 - $\text{Dom}(\theta) = \{x_1, x_2, \ldots, x_n\}$
 - $\text{Range}(\theta) =$ set of all variables in t_1, t_2, \ldots, t_n

- A substitution θ is **idempotent** iff $\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset$
Unifiers

- A substitution θ is a **unifier of** two terms s and t if $s\theta$ is identical to $t\theta$
- θ is a unifier of a set of equations $\{s_1=t_1, \ldots, s_n=t_n\}$, if for all $i, s_i\theta = t_i\theta$
- A substitution θ is **more general** than σ (written as $\theta \geq \sigma$) if there is a substitution ω such that $\sigma = \theta\omega$
- A substitution θ is a **most general unifier** (mgu) of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \geq \sigma$

- Example: Consider two terms $f(g(X),Y,a)$ and $f(Z,W,X)$.
 - $\theta_1 = \{X/a, Y/b, Z/g(a), W/b\}$ is a unifier
 - $\theta_2 = \{X/a, Y/W, Z/g(a)\}$ is also a unifier
 - θ_2 is more general than θ_1
 - $\theta_1 = \theta_2\omega$ where $\omega = \{W/b\}$
 - θ_2 is also the most general unifier of the 2 terms
Equations and Unifiers

- A set of equations E is in **solved form** if it is of the form
 \[\{x_1 = t_1, \ldots, x_n = t_n\} \] if no x_i appears in any t_j.

- Given a set of equations $E = \{x_1 = t_1, \ldots, x_n = t_n\}$, the substitution $\{x_1 / t_1, \ldots, x_n / t_n\}$ is an idempotent mgu of E.

- Two sets of equations E_1 and E_2 are said to be **equivalent** iff they have the same set of unifiers.

- To find the mgu of two terms s and t, try to find a set of equations in solved form that is equivalent to $\{s = t\}$. If there is no equivalent solved form, there is no mgu.
A Simple Unification Algorithm

Given a set of equations E:

repeat
 select $s = t \in E$;
 case $s = t$ of
 1. $f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$:
 replace the equation by $s_i = t_i$ for all i
 2. $f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m)$, $f \neq g$ or $n \neq m$:
 halt with failure
 3. $X = X$: remove the equation
 4. $t = X$: where t is not a variable, X is a variable
 replace equation by $X = t$
 5. $X = t$: where $X \neq t$ and X occurs more than once in E:
 if X is a proper subterm of t
 then halt with failure
 else replace all other X in E by t (5a)
 else replace all other X in E by t (5b)
 until no action is possible for any equation in E
return E
Example: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$\{f(X, g(Y)) = f(g(Z), Z)\} \Rightarrow$$

$\Rightarrow \{X = g(Z), g(Y) = Z\}$ \hspace{1cm} \text{case 1}$

$\Rightarrow \{X = g(Z), Z = g(Y)\}$ \hspace{1cm} \text{case 4}$

$\Rightarrow \{X = g(g(Y)), Z = g(Y)\}$ \hspace{1cm} \text{case 5b}$
Example: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

\[
\begin{align*}
\{f(X, g(X)) &= f(Z, Z) \} & \Rightarrow \\
\Rightarrow \{X = Z, g(X) = Z \} & \text{ case 1} \\
\Rightarrow \{X = Z, g(Z) = Z \} & \text{ case 5b} \\
\Rightarrow \{X = Z, Z = g(Z) \} & \text{ case 4} \\
\Rightarrow \text{fail} & \text{ case 5a}
\end{align*}
\]
Example: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$\{f(X, g(X), b) = f(a, g(Z), Z)\} \Rightarrow$

$\Rightarrow \{X = a, g(X) = g(Z), b = Z\}$

$\Rightarrow \{X = a, g(a) = g(Z), b = Z\}$

$\Rightarrow \{X = a, a = Z, b = Z\}$

$\Rightarrow \{X = a, Z = a, b = Z\}$

$\Rightarrow \{X = a, Z = a, b = a\}$

$\Rightarrow \text{fail}$
Complexity of the unification algorithm

- Consider the set of equations:
 \[E = \{ g(X_1, \ldots, X_n) = g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1})) \} \]

 - By applying case 1 of the algorithm, we get
 \[\{ X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), X_3 = f(X_2, X_2), \ldots, X_n = f(X_{n-1}, X_{n-1}) \} \]

 - If terms are kept as trees, the final value for \(X_n \) is a tree of size \(O(2^n) \).

- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take \(O(2^n) \) time.
 - There are linear-time unification algorithms that share structures (terms as DAGs).

- \(X = t \) is the most common case for unification in Prolog.
 - The fastest algorithms are linear in \(t \).
 - Prolog cuts corners by omitting case 5a (the occur check), thereby doing \(X = t \) in constant time.
Most General Unifiers

- Note that mgu stands for a/one most general unifier.
- There may be more than one mgu.
- E.g. $f(X) = f(Y)$ has two mgus:
 - $\{X / Y\}$ (by our simple algorithm)
 - $\{Y / X\}$ (by definition of mgu)
- If θ is an mgu of s and t, and ω is a renaming, then $\theta\omega$ is a mgu of s and t.
- If θ and σ are mgus of s and t, then there is a renaming ω such that $\theta = \sigma\omega$.
- MGU is unique up to renaming!
SLD Resolution

- Selective Linear Definite clause (SLD) Resolution:

\[\leftarrow A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_m \quad B_0 \leftarrow B_1, \ldots, B_n \]

\[\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_n, A_{i+1}, \ldots, A_m)\theta \]

where:

1. \(A_j \) are atomic formulas
2. \(B_0 \leftarrow B_1, \ldots, B_n \) is a (renamed) definite clause in the program
3. \(\theta = \text{mgu}(A_i, B_0) \)
 - \(A_i \) is called the selected atom
 - Given a goal \(\leftarrow A_1, \ldots, A_n \) a function called the selection function or computation rule selects \(A_i \)
SLD Resolution (cont.)

- When the resolution rule is applied, from a goal G and a clause C, we get a new goal G'.
- We then say that G' is derived directly from G and C:

$$ G \overset{C}{\Rightarrow} G' $$

- An SLD Derivation is a sequence:

$$ G_0 \overset{C_0}{\Rightarrow} G_1 \cdots G_i \overset{C_i}{\Rightarrow} G_{i+1} \cdots $$
Refutation & SLD Derivation

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

\[\leftarrow \text{anc}(\text{tom}, Q) \]
\[\text{anc}(X,Y) \leftarrow \text{parent}(X,Y) \]
\[\leftarrow \text{parent}(\text{tom}, Q) \]
\[\text{parent}(\text{tom}, \text{bob}) \leftarrow \]
\[\square \]
\[Q=\text{bob} \]

anc(tom, Q)
\[\leadsto \text{parent}(\text{tom}, Q) \]
\[\leadsto \square \]
Refutation & SLD Derivation

\[
\begin{align*}
\text{parent}(pam, \text{bob}) & . \\
\text{parent}(\text{tom}, \text{bob}) & . \\
\text{parent}(\text{tom}, \text{liz}) & . \\
\text{parent}(\text{bob}, \text{ann}) & . \\
\text{parent}(\text{bob}, \text{pat}) & . \\
\text{parent}(\text{pat}, jim) & . \\
\text{anc}(X,Y) & :- \\
& \quad \text{parent}(X,Y). \quad \text{(2)} \\
\text{anc}(X,Y) & :- \\
& \quad \text{parent}(X,Z), \text{anc}(Z,Y). \quad \text{(3)} \\
\leftarrow \text{anc}(\text{tom}, Q) & \\
\leftarrow \text{parent}(\text{tom}, \text{Z'}, \text{anc}(\text{Z'}, Q)) & \\
\leftarrow \text{parent}(\text{bob}, Q) & \\
\leftarrow \text{parent}(\text{bob}, Q) & \\
\leftarrow \text{anc}(\text{bob}, Q) & \\
\leftarrow \text{anc}(\text{bob}, Q) & \\
\leftarrow \text{parent}(\text{bob}, \text{ann}) & \\
\hline
\hline
\end{align*}
\]

\[
\begin{align*}
\text{anc}(\text{tom}, Q) & \\
\leadsto & \text{parent}(\text{tom}, \text{Z'}) & \\
& \quad \text{anc}(\text{Z'}, Q) & \\
\leadsto & \text{anc}(\text{bob}, Q) & \\
\leadsto & \text{parent}(\text{bob}, Q) & \\
\leadsto & \square & \\
\hline
\hline
Q=\text{ann} &
\end{align*}
\]
Computed Answer Substitution

- Let $\theta_0, \theta_1, \ldots, \theta_{n-1}$ be the sequence of mgu's used in derivation $G_0 \overset{C_0}{\Rightarrow} G_1 \cdots G_{n-1} \overset{C_{n-1}}{\Rightarrow} G_n$

 Then $\theta = \theta_0 \theta_1 \cdots \theta_{n-1}$ is the *computed substitution* of the derivation.

- Example:

 \[
 \begin{array}{|l|l|l|}
 \hline
 \text{Goal} & \text{Clause Used} & \text{mgu} \\
 \hline
 \text{anc(tom, Q)} & \text{anc}(X',Y') : - \\
 & \text{parent}(X',Z'), \text{anc}(Z',Y') & \theta_0 = \{X'/\text{tom}, Y'/Q\} \\
 \text{parent(tom, Z'),} & \text{parent(tom, bob).} & \theta_1 = \{Z'/\text{bob}\} \\
 \text{anc(Z', Q)} & \text{anc}(X'',Y'') : - \\
 & \text{parent}(X'',Y''). & \theta_2 = \{X''/\text{bob}, Y''/Q\} \\
 \text{anc(bob, Q)} & \text{parent(bob, ann).} & \theta_3 = \{Q/\text{ann}\} \\
 \text{parent(bob, Q)} & & \\
 \hline
 \end{array}
 \]

- Computed substitution for the above derivation is

 $\theta_0 \theta_1 \theta_2 \theta_3 = \{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\}$
Computed Answer Substitution

• A finite derivation of the form

\[G_0 \overset{C_0}{\Rightarrow} G_1 \cdots G_{n-1} \overset{C_{n-1}}{\Rightarrow} G_n \]

where \(G_n = \Box \) (i.e., an empty goal) is an \textit{SLD refutation} of \(G_0 \).

• The computed substitution of an SLD refutation of \(G \), restricted to variables of \(G \), is a \textit{computed answer substitution} for \(G \).

• Example (contd.): The computed answer substitution for the previous SLD refutation is

\[\{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann\} \]

restricted to \(Q \):

\[\{Q/ann\} \]
Failed SLD Derivation

- A derivation of a goal clause G_0 whose last element is not empty, and cannot be resolved with any clause of the program.

- Example: consider the following program:

  ```prolog
  grandfather(X,Z) :- father(X,Y), parent(Y,Z).
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  father(a,b).
  mother(b,c).
  ```

- A failed SLD derivation of $\text{grandfather}(a,Q)$ is:

 $$
 \leadsto \text{father}(a,Y'), \text{parent}(Y',Q)
 \leadsto \text{parent}(b,Q)
 \leadsto \text{father}(b,Q)
 $$
OLD Resolution

- Prolog follows *OLD resolution* = SLD with left-to-right literal selection.
- Prolog searches for OLD proofs by expanding the resolution tree depth first.
 - This depth-first expansion is close to how procedural programs are evaluated:
 - Consider a goal G_1, G_2, \ldots, G_n as a “procedure stack” with G_1, the selected literal on top.
 - Call G_1.
 - **If** and **when** G_1 returns, continue with the rest of the computation: call G_2, and upon its return call G_3, etc. until nothing is left
 - Note: G_2 is “opened up” only when G_1 returns, not after executing only some part of G_1.
SLD Tree

• A tree where every path is an SLD derivation

grandfather(X,Z) :-
 father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

father(a,b).
mother(b,c).
Soundness of SLD resolution

Let P be a definite program, R be a computation rule, and θ be a computed answer substitution for a goal G.

Then ∀Gθ is a logical consequence of P.

Proof is by induction on the number of resolution steps used in the refutation of G.

Base case uses the following lemma:

Let F be a formula and F’ be an instance of F, i.e., F’ = Fθ for some substitution θ.

Then (∀F) ⊨ (∀F’).