Definite Logic Programs: Derivation and Proof Trees

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Refutation in Predicate Logic

parent(pam, bob). anc(X, Y) :- parent(X, Y).
parent(tom, bob). anc(X, Y) :- parent(X, Z),
parent(tom, liz). anc(Z, Y).

• For what values of Q is anc(tom, Q) a logical consequence of the above program?

• Negate the goal F: i.e. \(\neg F = \forall Q. \neg \text{anc}(\text{tom}, Q) \).

• Consider the clauses in \(P \cup \neg F \)
 • Note that a program clause written as \(p(A, B) :- q(A, C), r(B, C) \) can be rewritten as: \(\forall A, B, C \ (p(A, B) \lor \neg q(A, C) \lor \neg r(B, C)) \)
 I.e., l.h.s. literal is positive, while all r.h.s. literals are negative
 • Note also that all variables are universally quantified in a clause!
Refutation: An Example

\[\text{parent(pam, bob).} \]
\[\text{parent(tom, bob).} \]
\[\text{parent(tom, liz).} \]
\[\text{parent(bob, ann).} \]
\[\text{parent(bob, pat).} \]
\[\text{parent(pat, jim).} \]
\[\text{anc(X,Y) :-} \]
\[\text{parent(X,Y).} \]
\[\text{anc(X,Y) :-} \]
\[\text{parent(X,Z),} \]
\[\text{anc(Z,Y).} \]
Refutation: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).

anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

(c) Paul Fodor (CS Stony Brook) and Elsevier
Unification

• Operation done to “match” the goal atom with the head of a clause in the program.
• Forms the basis for the **matching** operation we used for Prolog evaluation.
 • f(a, Y) and f(X, b) unify when X = a and Y = b
 • f(a, X) and f(X, b) do not unify
Substitutions

- A substitution is a mapping between variables and values (terms)
- Denoted by \{X_1/t_1, X_2/t_2, \ldots, X_n/t_n\} such that
 - \(X_i \neq t_i\), and
 - \(X_i\) and \(X_j\) are distinct variables when \(i \neq j\).
- The empty substitution is denoted by \(\varepsilon\) (or \{\}).
- A substitution is said to be a renaming if it is of the form \{X_1/Y_1, \ldots, X_n/Y_n\} and \(Y_1, \ldots, Y_n\) is a permutation of \(X_1, \ldots, X_n\).
- Example: \{X/Y, Y/X\} is a renaming substitution.
Substitutions and Terms

• Application of a substitution:
 • $X^\theta = t$ if $X/t \in \theta$.
 • $X^\theta = X$ if $X/t \notin \theta$ for any term t.
• Application of a substitution $\{X_1/t_1, \ldots, X_n/t_n\}$ to a term/formula F:
 • is a term/formula obtained by simultaneously replacing every free occurrence of X_i in F by t_i.
 • Denoted by F^θ [and F^θ is said to be an instance of F]
• Example:

 $$p(f(X, Z), f(Y, a)) \{X/g(Y), Y/Z, Z/a\} = p(f(g(Y), a), f(Z, a))$$
Composition of Substitutions

- Composition of substitutions $\theta = \{X_1/s_1, \ldots, X_m/s_m\}$ and $\sigma = \{Y_1/t_1, \ldots, Y_n/t_n\}$:
 - First form the set $\{X_1/s_1\sigma, \ldots, X_m/s_m\sigma, Y_1/t_1, \ldots, Y_n/t_n\}$
 - Remove from the set $X_i/s_i\sigma$ if $s_i\sigma = X_i$
 - Remove from the set Y_j/t_j if Y_j is identical to some variable X_i

- Example: Let $\theta = \sigma = \{X/g(Y), Y/Z, Z/a\}$. Then $\theta\sigma = \{X/g(Y), Y/Z, Z/a\}$

- More examples: Let $\theta = \{X/f(Y)\}$ and $\sigma = \{Y/a\}$
 - $\theta\sigma = \{X/f(a), Y/a\}$
 - $\sigma\theta = \{Y/a, X/f(Y)\}$

- Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$

- Also, $E(\theta\sigma) = (E\theta)\sigma$
Idempotence

• A substitution θ is idempotent iff $\theta \theta = \theta$.

• Examples:

 • $\{X/g(Y), Y/Z, Z/a\}$ is not idempotent since
 $\{X/g(Y), Y/Z, Z/a\} \{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$

 • $\{X/g(Z), Y/a, Z/a\}$ is not idempotent either since
 $\{X/g(Z), Y/a, Z/a\} \{X/g(Z), Y/a, Z/a\} = \{X/g(a), Y/a, Z/a\}$

 • $\{X/g(a), Y/a, Z/a\}$ is idempotent

• For a substitution $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$,

 • $\text{Dom}(\theta) = \{X_1, X_2, \ldots, X_n\}$

 • $\text{Range}(\theta) =$ set of all variables in t_1, \ldots, t_n

• A substitution θ is idempotent iff $\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset$
Unifiers

- A substitution θ is a **unifier** of two terms s and t if $s\theta$ is identical to $t\theta$
- θ is a unifier of a set of equations $\{s_1 = t_1, \ldots, s_n = t_n\}$, if for all i, $s_i \theta = t_i \theta$
- A substitution θ is more general than σ (written as $\theta \geq \sigma$) if there is a substitution ω such that $\sigma = \theta \omega$
- A substitution θ is a **most general unifier** (mgu) of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \geq \sigma$

- Example: Consider two terms $f(g(X), Y, a)$ and $f(Z, W, X)$.

 - $\theta_1 = \frac{X}{a, Y/b, Z/g(a), W/b}$ is a unifier
 - $\theta_2 = \frac{X/a, Y/W, Z/g(a)}$ is also a unifier
 - θ_2 is a most general unifier
Equations and Unifiers

- A set of equations E is in **solved form** if it is of the form
 \{X_1 = t_1, \ldots, X_n = t_n\} iff no X_i appears in any t_j.

- Given a set of equations $E = \{X_1 = t_1, \ldots, X_n = t_n\}$ the
 substitution $\{X_1/t_1, \ldots, X_n/t_n\}$ is an idempotent mgu of E.

- Two sets of equations E_1 and E_2 are said to be **equivalent** iff
 they have the same set of unifiers.

- To find the mgu of two terms s and t, try to find a set of
 equations in solved form that is equivalent to \{s = t\}. If there is
 no equivalent solved form, there is no mgu.
A Simple Unification Algorithm (via Examples)

- **Example 1:** Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$
 \[
 \{f(X, g(Y)) = f(g(Z), Z)\} \Rightarrow \{X = g(Z), g(Y) = Z\} \\
 \Rightarrow \{X = g(Z), Z = g(Y)\} \\
 \Rightarrow \{X = g(g(Y)), Z = g(Y)\}
 \]

- **Example 2:** Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$
 \[
 \{f(X, g(X), b) = f(a, g(Z), Z)\} \Rightarrow \{X = a, g(X) = g(Z), b = Z\} \\
 \Rightarrow \{X = a, g(a) = g(Z), b = Z\} \\
 \Rightarrow \{X = a, a = Z, b = Z\} \\
 \Rightarrow \{X = a, Z = a, b = Z\} \\
 \Rightarrow \{X = a, Z = a, b = a\} \\
 \Rightarrow \text{fail}
 \]
A Simple Unification Algorithm

Given a set of equations E:

repeat

select s = t ∈ E;

case s = t of

1. f(s1, ..., sn) = f(t1, ..., tn):
 replace the equation by si = ti for all i

2. f(s1, ..., sn) = g(t1, ..., tm), f ≠ g or n ≠ m:
 halt with failure

3. X = X : remove the equation

4. t = X : where t is not a variable
 replace equation by X = t

5. X = t : where X ≠ t and X occurs more than once in E:
 if X is a proper subterm of t
 then halt with failure (5a)
 else replace all other X in E by t (5b)

until no action is possible for any equation in E

return E
A Simple Unification Algorithm

Example: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

\[
\{f(X, g(Y)) = f(g(Z), Z)\}
\]

$\Rightarrow \{X = g(Z), g(Y) = Z\}$ \quad \text{case 1}

$\Rightarrow \{X = g(Z), Z = g(Y)\}$ \quad \text{case 4}

$\Rightarrow \{X = g(g(Y)), Z = g(Y)\}$ \quad \text{case 5b}
A Simple Unification Algorithm

Example: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

$$\{f(X, g(X)) = f(Z, Z)\}$$

$\Rightarrow \{X = Z, g(X) = Z\}$ \hspace{1cm} \text{case 1}

$\Rightarrow \{X = Z, g(Z) = Z\}$ \hspace{1cm} \text{case 5b}

$\Rightarrow \{X = Z, Z = g(Z)\}$ \hspace{1cm} \text{case 4}

$\Rightarrow \text{fail}$ \hspace{1cm} \text{case 5a}
Complexity of the unification algorithm

- Consider $E = \{g(X_1, \ldots, X_n) = g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1})\}$

- By applying case 1 of the algorithm, we get
 \[
 \{X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), X_3 = f(X_2, X_2), \ldots, X_n = f(X_{n-1}, X_{n-1})\}
 \]

- If terms are kept as trees, the final value for X_n is a tree of size $O(2^n)$.

- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take $O(2^n)$ time.

- There are linear-time unification algorithms that share structures (terms as DAGs).

- $X = t$ is the most common case for unification in Prolog. The fastest algorithms are linear in t.

- Prolog cuts corners by omitting case 5a (the occur check), thereby doing $X = t$ in constant time.
Most General Unifiers

• Note that mgu stands for a most general unifier.
• There may be more than one mgu. E.g. \(f(X) = f(Y) \) has two mgus:
 • \(\{X / Y\} \)
 • \(\{Y / X\} \)
• If \(\theta \) is an mgu of \(s \) and \(t \), and \(\omega \) is a renaming, then \(\theta\omega \) is an mgu of \(s \) and \(t \).
• If \(\theta \) and \(\sigma \) are mgus of \(s \) and \(t \), then there is a renaming \(\omega \) such that \(\theta = \sigma\omega \).
• MGU is unique up to renaming
SLD Resolution

- Selective Linear Definite clause Resolution:

\[
\leftarrow A_1, \ldots , A_{i-1}, A_i, A_{i+1}, \ldots , A_m \quad B_0 \leftarrow B_1, \ldots , B_n
\]

\[
\leftarrow (A_1, \ldots , A_{i-1}, B_1, \ldots , B_n, A_{i+1}, \ldots , A_m) \theta
\]

where:

1. \(A_j \) are atomic formulas
2. \(B_0 \leftarrow B_1, \ldots , B_n \) is a (renamed) definite clause in the program
3. \(\theta = \text{mgu}(A_i, B_0) \)
 - \(A_i \) is called the selected atom
 - Given a goal \(\leftarrow A_1, \ldots , A_n \) a function called the selection function or computation rule selects \(A_i \)
When the resolution rule is applied, from a goal G and a clause C, we get a new goal G'.

We then say that G' is derived directly from G and C:

$$G \overset{C}{\rightarrow} G'$$

An *SLD Derivation* is a sequence

$$G_0 \overset{C_0}{\rightarrow} G_1 \cdots G_i \overset{C_i}{\rightarrow} G_{i+1} \cdots$$
Refutation & SLD Derivation

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).

anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

\[\text{anc}(tom, Q)\]
\[\text{parent}(tom, Q)\]
\[\text{parent}(tom, bob)\]
\[Q = \text{bob}\]

anc(tom, Q)
\[\rightsquigarrow \text{parent}(tom, Q)\]
\[\rightsquigarrow \square\]
Refutation & SLD Derivation

\[
\text{parent}(pam, bob).
\text{parent}(tom, bob).
\text{parent}(tom, liz).
\text{parent}(bob, ann).
\text{parent}(bob, pat).
\text{parent}(pat, jim).
\]

\[
\text{anc}(X,Y) :-
\text{parent}(X,Y).
\text{anc}(X,Y) :-
\text{parent}(X,Z), \text{anc}(Z,Y).
\]

\[
\leftarrow \text{anc}(tom, Q)
\]

\[
\rightarrow \text{anc}(X,Y)
\leftarrow \text{parent}(X,Z), \text{anc}(Z,Y)
\]

\[
\leftarrow \text{parent}(tom, Z'), \text{anc}(Z', Q)
\]

\[
\leftarrow \text{anc}(bob, Q)
\rightarrow \text{parent}(tom, bob)
\]

\[
\leftarrow \text{anc}(bob, Q)
\rightarrow \text{parent}(bob, Q)
\rightarrow \text{parent}(bob, ann)
\rightarrow \square
\]

\[
\square Q=\text{ann}
\]

\[
\text{anc}(tom, Q)
\rightarrow \text{parent}(tom, Z')
\text{anc}(Z', Q)
\rightarrow \text{anc}(bob, Q)
\rightarrow \text{parent}(bob, Q)
\rightarrow \square
\]
Computed Answer Substitution

- Let $\theta_0, \theta_1, \ldots, \theta_{n-1}$ be the sequence of mgus used in derivation

\[
G_0 \xrightarrow{C_0} G_1 \cdots G_{n-1} \xrightarrow{C_{n-1}} G_n
\]

Then $\theta = \theta_0 \theta_1 \cdots \theta_{n-1}$ is the computed substitution of the derivation

- Example:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Clause Used</th>
<th>mgu</th>
</tr>
</thead>
</table>
| anc(tom, Q) | $\text{anc}(X', Y') :-$
 | $\text{parent}(X', Z'), \text{anc}(Z', Y')$ | $\theta_0 = \{X'/\text{tom}, Y'/Q\}$ |
| | $\text{parent}(\text{tom}, \text{bob})$. |
| | $\text{anc}(X'', Y'') :-$
 | $\text{parent}(X'', Y'').$ | $\theta_1 = \{Z'/\text{bob}\}$ | | |
| parent(tom, Z'), | $\text{anc}(Y', Q)$ | $\theta_2 = \{X''/\text{bob}, Y''/Q\}$ |
| anc(Z', Q) | $\text{parent}(\text{bob}, \text{ann})$.| | $\theta_3 = \{Q/\text{ann}\}$ |
| anc(bob, Q) | | | |
| parent(bob, Q) | | | |

- Computed substitution for the above derivation is

$\theta_0 \theta_1 \theta_2 \theta_3 = \{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\}$
Computed Answer Substitution

- A finite derivation of the form
 \[G_0 \xrightarrow{C_0} G_1 \cdots G_{n-1} \xrightarrow{C_{n-1}} G_n \]
 where \(G_n = (\text{i.e., an empty goal}) \) is an SLD refutation of \(G_0 \)
- The computed substitution of an SLD refutation of \(G \), restricted to variables of \(G \), is a computed answer substitution for \(G \).
- Example (contd.): The computed answer substitution for the above SLD refutation is
 \[\{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\} \]
 restricted to \(Q \):
 \[\{Q/\text{ann}\} \]
Failed SLD Derivation

- *A derivation of a goal clause G0 whose last element is not empty, and cannot be resolved with any clause of the program.*

- **Example:** consider the following program:

  ```prolog
  grandfather(X,Z) :- father(X,Y), parent(Y,Z).
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  father(a,b).
  mother(b,c).
  ```

- *A derivation of grandfather(a,Q) is:*

 \[\rightarrow \text{father}(a,Y'), \text{parent}(Y', Q) \]

 \[\rightarrow \text{parent}(b, Q) \]

 \[\rightarrow \text{father}(b, Q) \]
SLD Tree

- A tree where every path is an SLD derivation

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

father(a,b).

mother(b,c).

\[\text{grandfather}(a, Q) \]
\[\text{father}(a, Z', \text{parent}(Z', Q)) \]
\[\text{father}(b, Q), \text{mother}(b, Q) \]
Soundness of SLD resolution

• Let P be a definite program, R be a computation rule, and θ be a computed answer substitution for a goal G. Then $\forall G \theta$ is a logical consequence of P.

• Proof is by induction on the number of resolution steps used in the refutation of G.

• Base case uses the following lemma:
 • Let F be a formula and F' be an instance of F, i.e. $F' = F\theta$ for some substitution θ.
 Then $(\forall F) \models (\forall F')$.