Definite Logic Programs: Derivation and Proof Trees

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Refutation in Predicate Logic

parent(pam, bob). parent(tom, bob).
parent(tom, liz). ...
anc(X,Y) :- parent(X,Y).
anc(X,Y) :- parent(X,Z), anc(Z,Y).

• **Goal G:** For what values of \(Q \) is \(\neg \text{anc(tom,Q)} \) a logical consequence of the above program?

• **Negate the goal G:** i.e. \(\neg G \equiv \forall Q \neg \text{anc(tom, Q)} \).

• Consider the clauses in the program \(P \cup \neg G \) and apply refutation

 • Note that a program clause written as \(p(A,B) :- q(A,C), r(B,C) \)
 can be rewritten as: \(\forall A, B, C \ (p(A, B) \lor \neg q(A, C) \lor \neg r(B, C)) \)
 i.e., l.h.s. literal is positive, while all r.h.s. literals are negative

 • Note also that all variables are universally quantified in a clause!

• Note on syntax: we use \(:- \), \? and \(\leftarrow \) for IMPLICATION
Refutation: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[\text{anc}(X, Y) \leftarrow \text{parent}(X, Y) \]
\[\text{anc}(X, Y) \leftarrow \text{parent}(X, Z), \text{anc}(Z, Y) \]

\[\text{anc}(X, Y) \leftarrow \text{parent}(X, Q) \]
\[\text{parent}(tom, Q) \]
\[\text{Q=bob} \]
Refutation: An Example

\texttt{parent}(pam, bob).
\texttt{parent}(tom, bob).
\texttt{parent}(tom, liz).
\texttt{parent}(bob, ann).
\texttt{parent}(bob, pat).
\texttt{parent}(pat, jim).

\texttt{anc}(X,Y) :-
 \texttt{parent}(X,Y).

\texttt{anc}(X,Y) :-
 \texttt{parent}(X,Z),
 \texttt{anc}(Z,Y).
Unification

- Operation done to “match” the goal atom with the head of a clause in the program.
- Forms the basis for the matching operation we used for Prolog evaluation:
 - \(f(a, Y) \) and \(f(X, b) \) unify when \(X = a \) and \(Y = b \)
 - \(f(a, X) \) and \(f(X, b) \) do not unify

That is, the query \(?- f(a, X) = f(X, b).\) fails in Prolog
Substitutions

- A substitution is a mapping between variables and values (terms).
- Denoted by $\{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\}$ such that
 - $x_i \neq t_i$, and
 - x_i and x_j are distinct variables when $i \neq j$.
- The empty substitution is denoted by $\{\}$ (or ε).
- A substitution is said to be a renaming if it is of the form $\{x_1/y_1, x_2/y_2, \ldots, x_n/y_n\}$ and y_1, y_2, \ldots, y_n is a permutation of x_1, x_2, \ldots, x_n.
- Example: $\{x/y, y/x\}$ is a renaming substitution.
Substitutions and Terms

• Application of a substitution:
 • $x\theta = t$ if $x/t \in \theta$.
 • $x\theta = x$ if $x/t \not\in \theta$ for any term t.

• Application of a substitution $\{x_1/t_1, \ldots, x_n/t_n\}$ to a term/formula F:
 • is a term/formula obtained by simultaneously replacing every free occurrence of x_i in F by t_i.
 • Denoted by $F\theta$ [and $F\theta$ is said to be an instance of F]

• Example:

$$p(f(X,Z), f(Y,a))\{X/g(Y), Y/Z, Z/a\} = p(f(g(Y),a), f(Z,a))$$
Composition of Substitutions

- **Composition** \(\theta \sigma \) of substitutions \(\theta = \{x_1/s_1, \ldots, x_m/s_m\} \) and \(\sigma = \{y_1/t_1, \ldots, y_n/t_n\} \):

 1. First form the set \(\{x_1/s_1\sigma, \ldots, x_m/s_m\sigma, \ y_1/t_1, \ldots, y_n/t_n\} \)
 2. Remove from the set \(x_i/s_i\sigma \) if \(s_i\sigma = x_i \)
 3. Remove from the set \(y_j/t_j \) if \(y_j \) is identical to some variable \(x_i \)

 - Example: Let \(\theta = \sigma = \{x/g(y), y/z, z/a\} \). Then \(\theta\sigma = \{x/g(y), y/z, z/a\}\{x/g(y), y/z, z/a\} = \{x/g(z), y/a, z/a\} \)

 - More examples: Let \(\theta = \{x/f(y)\} \) and \(\sigma = \{y/a\} \)
 - \(\theta\sigma = \{x/f(a), y/a\} \)
 - \(\sigma\theta = \{y/a, x/f(y)\} \)

 - Composition is not commutative but is associative: \(\theta(\sigma\gamma) = (\theta\sigma)\gamma \)
Idempotence

• A substitution θ is idempotent iff $\theta \theta = \theta$.

• Examples:
 • $\{X/g(Y), Y/Z, Z/a\}$ is not idempotent since
 $\{X/g(Y), Y/Z, Z/a\} \{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$
 • $\{X/g(Z), Y/a, Z/a\}$ is not idempotent either since
 $\{X/g(Z), Y/a, Z/a\} \{X/g(Z), Y/a, Z/a\} = \{X/g(a), Y/a, Z/a\}$
 • $\{X/g(a), Y/a, Z/a\}$ is idempotent

• For a substitution $\theta = \{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\}$,
 • $\text{Dom}(\theta) = \{x_1, x_2, \ldots, x_n\}$
 • $\text{Range}(\theta) = \text{set of all variables in } t_1, t_2, \ldots, t_n$
• A substitution θ is idempotent iff $\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset$
Unification

- **Unification** is a procedure that takes two atomic formulas as input, and either shows how they can be instantiated to identical atoms or, reports a failure.

- For example:

 \[- f(X, g(Y)) = f(a, g(X)) \, . \]

- Any solution of the equations: \(\{ X=a , \ g(Y)=g(X) \} \) must clearly be a solution of equation above

- Similarly, any solution of: \(\{ X = a , \ Y = X \} \) must be a solution of equations \(\{ X = a , \ g(Y) = g(X) \} \)

- Finally any solution of: \(\{ X = a , \ Y = a \} \) is a solution of \(\{ X = a , \ Y = X \} \)
Unifiers

- A substitution θ is a **unifier of** two terms s and t if $s\theta$ is identical to $t\theta$
- θ is a unifier of a set of equations $\{s_1=t_1, \ldots, s_n=t_n\}$, if for all $i, s_i\theta = t_i\theta$
- A substitution θ is *more general* than σ (written as $\theta \geq \sigma$) if there is a substitution ω such that $\sigma = \theta\omega$
- A substitution θ is a **most general unifier** (**mgu**) of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \geq \sigma$

Example: Consider two terms $f(g(X), Y, a)$ and $f(Z, W, X)$.

$\theta_1 = \{X/a, Y/b, Z/g(a), W/b\}$ is a unifier

$\theta_2 = \{X/a, Y/W, Z/g(a)\}$ is also a unifier

θ_2 is more general than θ_1 because $\theta_1 = \theta_2\omega$ where $\omega = \{W/b\}$

θ_2 is also the most general unifier of the 2 terms
Equations and Unifiers

• A set of equations E is in **solved form** if it is of the form
 \[\{x_1 = t_1, \ldots, x_n = t_n \} \text{ iff no } x_i \text{ appears in any } t_j. \]

• Given a set of equations $E = \{x_1 = t_1, \ldots, x_n = t_n\}$, the substitution
 \[\{x_1 / t_1, \ldots, x_n / t_n\} \] is an idempotent mgu of E.

• Two sets of equations E_1 and E_2 are said to be **equivalent** iff they have the same set of unifiers.

• To find the mgu of two terms s and t, try to find a set of equations in solved form that is equivalent to \(\{s = t\}. \) If there is no equivalent solved form, there is no mgu.
A Simple Unification Algorithm

Given a set of equations \(E \):

repeat

select \(s = t \in E \);

Case \(s = t \) of

1. \(f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n) \):
 replace the equation by \(s_i = t_i \) for all \(i \)

2. \(f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m) \), \(f \neq g \) or \(n \neq m \):
 halt with failure

3. \(X = X \) : remove the equation

4. \(t = X \) : where \(t \) is not a variable, \(X \) is a variable
 replace equation by \(X = t \)

5. \(X = t \) : where \(X \neq t \) and \(X \) occurs more than once in \(E \):
 if \(X \) is a proper subterm of \(t \)
 then halt with failure \((5a) \)
 else replace all other \(X \) in \(E \) by \(t \) \((5b) \)

until no action is possible for any equation in \(E \)

return \(E \)
Example: Find the mgu of \(f(X, g(Y)) \) and \(f(g(Z), Z) \)

\[
\begin{align*}
\{ f(X, g(Y)) &= f(g(Z), Z) \} & \Rightarrow \\
\Rightarrow & \{ X = g(Z), g(Y) = Z \} & \text{case 1} \\
\Rightarrow & \{ X = g(Z), Z = g(Y) \} & \text{case 4} \\
\Rightarrow & \{ X = g(g(Y)), Z = g(Y) \} & \text{case 5b}
\end{align*}
\]
Example: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

$$\{ f(X, g(X)) = f(Z, Z) \} \Rightarrow$$

$$\Rightarrow \{ X = Z, g(X) = Z \} \quad \text{case 1}$$

$$\Rightarrow \{ X = Z, g(Z) = Z \} \quad \text{case 5b}$$

$$\Rightarrow \{ X = Z, Z = g(Z) \} \quad \text{case 4}$$

$$\Rightarrow \text{fail} \quad \text{case 5a}$$
Example: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

\[
\{ f(X, g(X), b) = f(a, g(Z), Z) \} \Rightarrow
\]

$\Rightarrow \{ X = a, g(X) = g(Z), b = Z \}$ case 1

$\Rightarrow \{ X = a, g(a) = g(Z), b = Z \}$ case 5b

$\Rightarrow \{ X = a, a = Z, b = Z \}$ case 1

$\Rightarrow \{ X = a, Z = a, b = Z \}$ case 4

$\Rightarrow \{ X = a, Z = a, b = a \}$ case 2

$\Rightarrow \text{fail}$
Complexity of the unification algorithm

- Consider the set of equations:
 \[E = \{ g(X_1, \ldots, X_n) = g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1}) \} \]

 - By applying case 1 of the algorithm, we get
 \[\{ X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), X_3 = f(X_2, X_2), \ldots, X_n = f(X_{n-1}, X_{n-1}) \} \]

 - If terms are kept as trees, the final value for \(X_n \) is a tree of size \(O(2^n) \)

 - Recall that for case 5 we need to first check if a variable appears in a term, and this could now take \(O(2^n) \) time

- \(X = t \) is the most common case for unification in Prolog
 - There are linear-time unification algorithms that share structures (terms as DAGs)
 - Therefore, the fastest algorithms are linear in \(t \)
 - **Prolog cuts corners by omitting case 5a (called occur check), thereby doing \(X = t \) in constant time**
Most General Unifiers

- Note that mgu stands for a/one most general unifier
- There may be more than one mgu
- E.g. $f(X) = f(Y)$ has two mgus:
 - $\{X / Y\}$ (by our simple algorithm)
 - $\{Y / X\}$ (by definition of mgu)
- If θ is an mgu of s and t, and ω is a renaming, then $\theta\omega$ is a mgu of s and t
- If θ and σ are mgus of s and t, then there is a renaming ω such that $\theta = \sigma\omega$
- MGU is unique up to renaming!
SLD Resolution

- **Selective Linear** **Definite clause (SLD) Resolution:**

\[
\leftarrow A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_m \quad B_0 \leftarrow B_1, \ldots, B_n
\]

\[
\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_n, A_{i+1}, \ldots, A_m) \theta
\]

where:

1. \(A_j\) are atomic formulas
2. \(B_0 \leftarrow B_1, \ldots, B_n\) is a *(renamed variables)* definite clause in the program
3. \(\theta = \text{mgu}(A_i, B_0)\)
 - \(A_i\) is called the *selected* atom
 - Given a goal \(\leftarrow A_1, \ldots, A_n\) a function called the *selection function* or *computation rule* selects \(A_i\)
SLD Resolution (cont.)

- When the resolution rule is applied, from a goal G and a clause C, we get a new goal G'.
- We then say that G' is derived directly from G and C:

$$G \overset{C}{\Rightarrow} G'$$

- An *SLD Derivation* is a sequence:

$$G_0 \overset{C_0}{\Rightarrow} G_1 \ldots G_i \overset{C_i}{\Rightarrow} G_{i+1} \ldots$$
parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

← anc(tom, Q)

← parent(tom, Q)

anc(tom, Q)
⇒ parent(tom, Q)
⇒ □
SLD Derivation

\begin{align*}
\text{parent}(pam, bob). \\
\text{parent}(tom, bob). \\
\text{parent}(tom, liz). \\
\text{parent}(bob, ann). \\
\text{parent}(bob, pat). \\
\text{parent}(pat, jim). \\
\text{anc}(X, Y) :- \\
\quad \text{parent}(X, Y). \\
\text{anc}(X, Y) :- \\
\quad \text{parent}(X, Z), \text{anc}(Z, Y). \\
\end{align*}

\begin{align*}
\text{\textbf{\textLeftarrow anc}(tom, Q)} \\
\quad \text{anc}(X, Y) \\
\quad \quad \textbf{\textLeftarrow parent}(X, Z), \text{anc}(Z, Y). \\
\quad \text{\textbf{\textLeftarrow parent}(tom, Z'), \text{anc}(Z', Q)} \\
\quad \text{\quad parent}(tom, bob) \leftarrow \\
\quad \text{\textbf{\textLeftarrow anc}(bob, Q)} \\
\quad \quad \text{\quad anc}(X, Y) \\
\quad \quad \quad \textbf{\textLeftarrow parent}(X, Y). \\
\quad \quad \text{\textbf{\textLeftarrow parent}(bob, Q)} \\
\quad \quad \quad \quad \text{\quad parent}(bob, ann) \leftarrow \\
\quad \quad \text{\quad \textbf{\textLeftarrow parent}(bob, ann)} \\
\quad \quad \quad \quad \quad \text{\textbf{\textLeftarrow parent}(bob, Q)} \\
\quad \quad \quad \quad \quad \quad \textbf{\textLeftarrow parent}(bob, Q) \\
\quad \quad \quad \quad \quad \quad \quad \textbf{\textLeftarrow \Box} \\
\quad \quad \quad \quad \quad \quad \quad \text{Q=ann} \\
\text{anc}(tom, Q) \\
\quad \textbf{\textRightarrow parent}(tom, Z') \\
\quad \textbf{\textRightarrow \text{anc}(Z', Q)} \\
\quad \textbf{\textRightarrow \text{anc}(bob, Q)} \\
\quad \textbf{\textRightarrow parent}(bob, Q) \\
\quad \textbf{\textRightarrow \Box}
\end{align*}
Computed Answer Substitution

- Let $\theta_0, \theta_1, \ldots, \theta_{n-1}$ be the sequence of mgus used in derivation

\[
G_0 \xrightarrow{C_0} G_1 \cdots G_{n-1} \xrightarrow{C_{n-1}} G_n
\]

Then $\theta = \theta_0 \theta_1 \cdots \theta_{n-1}$ is the \textit{computed substitution} of the derivation

- Example derivation \textit{in tabled form}:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Clause Used</th>
<th>mgu</th>
</tr>
</thead>
<tbody>
<tr>
<td>anc(tom, Q)</td>
<td>$\text{anc}(X',Y') : -$</td>
<td>$\theta_0 = {X'/\text{tom}, Y'/Q}$</td>
</tr>
<tr>
<td></td>
<td>$\text{parent}(X',Z'), \text{anc}(Z',Y')$</td>
<td></td>
</tr>
<tr>
<td>parent(tom, Z')</td>
<td>$\text{parent}(\text{tom}, \text{bob})$.</td>
<td>$\theta_1 = {Z'/\text{bob}}$</td>
</tr>
<tr>
<td></td>
<td>$\text{anc}(X'',Y'') : -$</td>
<td>$\theta_2 = {X''/\text{bob}, Y''/Q}$</td>
</tr>
<tr>
<td>anc(bob, Q)</td>
<td>$\text{parent}(\text{bob}, \text{ann})$.</td>
<td>$\theta_3 = {Q/\text{ann}}$</td>
</tr>
<tr>
<td>parent(bob, Q)</td>
<td>$\text{parent}(\text{bob}, \text{ann})$.</td>
<td></td>
</tr>
</tbody>
</table>

- Computed substitution for the above derivation is

$\theta_0 \theta_1 \theta_2 \theta_3 = \{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\}$
Computed Answer Substitution

- A finite derivation of the form
 \[G_0 \xrightarrow{C_0} G_1 \cdots G_{n-1} \xrightarrow{C_{n-1}} G_n \]
 where \(G_n = \square \) (i.e., an empty goal) is an *SLD refutation* of \(G_0 \).

- The computed substitution of an SLD refutation of \(G \), restricted to variables of \(G \), is a *computed answer substitution* for \(G \).

- Example: the previous SLD-derivation is an SLD refutation.
 - The computed answer substitution is:
 \[\{ X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann} \} \]
 restricted to \(Q \) is: \(\{ Q/\text{ann} \} \)
Failed SLD Derivation

- A derivation of a goal clause \(G_0 \) whose last element is not empty, and cannot be resolved with any clause of the program.

- Example: consider the following program:

  ```prolog
  grandfather(X,Z) :- father(X,Y), parent(Y,Z).
  parent(X,Y) :- father(X,Y).
  parent(X,Y) :- mother(X,Y).
  father(a,b).
  mother(b,c).
  ```

- A failed SLD derivation of \(\text{grandfather}(a,Q) \) is:

  ```prolog
  grandfather(a,Q)
  \[\leadsto\] father(a,Y'), parent(Y',Q)
  \[\leadsto\] parent(b,Q)
  \[\leadsto\] father(b,Q)
  ```
OLD Resolution

- Prolog follows OLD resolution = SLD with **left-to-right literal selection**
- Prolog searches for OLD proofs by expanding the resolution tree depth first
- This depth-first expansion is close to how procedural programs are evaluated:
 - Consider a goal G_1, G_2, \ldots, G_n as a "procedure stack" with G_1, the selected literal on top
 - Call G_1
 - **If** and **when** G_1 returns, continue with the rest of the computation: call G_2, and upon its return call G_3, etc. until nothing is left
 - Note: G_2 is "opened up" only when G_1 returns, not after executing only some part of G_1
SLD Tree

- A tree where every path is an SLD derivation (special case is the tree corresponding to all paths for a Prolog query)

```
grandfather(X,Z) :-
    father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

father(a,b).
mother(b,c).
```

Diagram:

```
    grandfather(a, Q)
       /           \
  ← father(a,Z'), parent(Z', Q)
     /     \                        /   \
← parent(b, Q) ← father(b, Q)    ← mother(b, Q)
      /                     \          
← parent(b, Q)           \        
                         /          
                  ← mother(b, Q)
```
Soundness of SLD resolution

- Let P be a definite program, R be a computation rule, and θ be a computed answer substitution for a goal G.

Then $\forall G \theta$ is a logical consequence of P.

- Proof is by induction on the number of resolution steps used in the refutation of G.

 - Base case uses the following lemma:

 - Let F be a formula and F' be an instance of F, i.e., $F' = F \theta$ for some substitution θ.

Then $(\forall F) \models (\forall F')$.