Definite Logic Programs:
Derivation and Proof Trees

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Refutation in Predicate Logic

\[
\text{parent(pam, bob).} \quad \text{anc}(X,Y) \leftarrow \text{parent}(X,Y).
\]
\[
\text{parent(tom, bob).} \quad \text{anc}(X,Y) \leftarrow \text{parent}(X,Z), \quad \text{anc}(Z,Y).
\]
\[
\text{parent(tom, liz).} \quad \ldots \quad \text{anc}(Z,Y).
\]

- For what values of \(Q \) is \(\text{anc}(\text{tom}, Q) \) a logical consequence of the above program?

- Negate the goal \(F \): i.e. \(\neg F = \forall Q. \neg \text{anc}(\text{tom}, Q) \).

- Consider the clauses in \(P \cup \neg F \)

 - Note that a program clause written as \(p(A,B) \leftarrow q(A,C), r(B,C) \)
 can be rewritten as: \(\forall A,B,C \ (p(A,B) \lor \neg q(A,C) \lor \neg r(B,C)) \)

 I.e., l.h.s. literal is positive, while all r.h.s. literals are negative

- Note also that all variables are universally quantified in a clause!
Refutation: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X, Y) :-
 parent(X, Y).

anc(X, Y) :-
 parent(X, Z),
 anc(Z, Y).

\(\text{anc}(X, Y) \leftarrow \text{parent}(X, Y) \)
\(\text{anc}(X, Y) \leftarrow \text{parent}(X, Z), \text{anc}(Z, Y) \)
\(\text{anc}(X, Y) \leftarrow \text{parent}(X, Q) \)
\(\text{anc}(X, Y) \leftarrow \text{parent}(X, Q), \text{anc}(Q, Y) \)

Q = bob
Refutation: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X, Y) :-
 parent(X, Y).

anc(X, Y) :-
 parent(X, Z),
 anc(Z, Y).

(\(\text{Q=ann}\))
Unification

• Operation done to “match” the goal atom with the head of a clause in the program.
• Forms the basis for the matching operation we used for Prolog evaluation.
 • \(f(a, Y) \) and \(f(X, b) \) unify when \(X=a \) and \(Y=b \)
 • \(f(a, X) \) and \(f(X, b) \) do not unify
Substitutions

• A substitution is a mapping between variables and values (terms)
 • Denoted by \(\{X_1/t_1, X_2/t_2, \ldots, X_n/t_n\} \) such that
 • \(X_i \neq t_i \), and
 • \(X_i \) and \(X_j \) are distinct variables when \(i \neq j \).
 • The empty substitution is denoted by \(\varepsilon \) (or \{\}).
 • A substitution is said to be a **renaming** if it is of the form \(\{X_1/Y_1, \ldots, X_n/Y_n\} \) and \(Y_1, \ldots, Y_n \) is a permutation of \(X_1, \ldots, X_n \).
 • Example: \(\{X/Y, Y/X\} \) is a renaming substitution.
Substitutions and Terms

• Application of a substitution:
 • \(X\theta = t \) if \(X/t \in \theta \).
 • \(X\theta = X \) if \(X/t \notin \theta \) for any term \(t \).

• Application of a substitution \(\{X_1/t_1, \ldots, X_n/t_n\} \) to a term/formula \(F \):
 • is a term/formula obtained by simultaneously replacing every free occurrence of \(X_i \) in \(F \) by \(t_i \).
 • Denoted by \(F\theta \) [and \(F\theta \) is said to be an instance of \(F \)].

• Example:

\[
p(f(X, Z), f(Y, a)) \{X/g(Y), Y/Z, Z/a\} = p(f(g(Y), a), f(Z, a))
\]
Composition of Substitutions

- Composition of substitutions $\theta = \{X_1/s_1, \ldots, X_m/s_m\}$ and $\sigma = \{Y_1/t_1, \ldots, Y_n/t_n\}$:
 - First form the set $\{X_1/s_1\sigma, \ldots, X_m/s_m\sigma, Y_1/t_1, \ldots, Y_n/t_n\}$
 - Remove from the set $X_i/s_i\sigma$ if $s_i\sigma = X_i$
 - Remove from the set Y_j/t_j if Y_j is identical to some variable X_i

- Example: Let $\theta = \sigma = \{X/g(Y), Y/Z, Z/a\}$. Then $\theta\sigma = \{X/g(Y), Y/Z, Z/a\}$

- More examples: Let $\theta = \{X/f(Y)\}$ and $\sigma = \{Y/a\}$
 - $\theta\sigma = \{X/f(a), Y/a\}$
 - $\sigma\theta = \{Y/a, X/f(Y)\}$

- Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$

- Also, $E(\theta\sigma) = (E\theta)\sigma$
Idempotence

• A substitution θ is idempotent iff $\theta \theta = \theta$.

• Examples:
 • $\{X/g(Y), Y/Z, Z/a\}$ is not idempotent since $\{X/g(Y), Y/Z, Z/a\} \{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$
 • $\{X/g(Z), Y/a, Z/a\}$ is not idempotent either since $\{X/g(Z), Y/a, Z/a\} \{X/g(Z), Y/a, Z/a\} = \{X/g(a), Y/a, Z/a\}$
 • $\{X/g(a), Y/a, Z/a\}$ is idempotent

• For a substitution $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$,
 • $\text{Dom}(\theta) = \{X_1, X_2, \ldots X_n\}$
 • $\text{Range}(\theta) =$ set of all variables in t_1, \ldots, t_n

• A substitution θ is idempotent iff $\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset$
Unifiers

- A substitution θ is a **unifier** of two terms s and t if $s\theta$ is identical to $t\theta$
- θ is a unifier of a set of equations $\{s_1 = t_1, \ldots, s_n = t_n\}$, if for all i, $s_i\theta = t_i\theta$
- A substitution θ is more general than σ (written as $\theta \geq \sigma$) if there is a substitution ω such that $\sigma = \theta\omega$
- A substitution θ is a **most general unifier** (mgu) of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \geq \sigma$
- Example: Consider two terms $f(g(X), Y, a)$ and $f(Z, W, X)$.
 - $\theta_1 = \{X/a, Y/b, Z/g(a), W/b\}$ is a unifier
 - $\theta_2 = \{X/a, Y/W, Z/g(a)\}$ is also a unifier
 - θ_2 is a most general unifier
Equations and Unifiers

• A set of equations E is in **solved form** if it is of the form \(\{X_1 = t_1, \ldots, X_n = t_n\} \) iff no \(X_i \) appears in any \(t_j \).

• Given a set of equations \(E = \{X_1 = t_1, \ldots, X_n = t_n\} \) the substitution \(\{X_1/t_1, \ldots, X_n/t_n\} \) is an idempotent mgu of E.

• Two sets of equations \(E_1 \) and \(E_2 \) are said to be **equivalent** iff they have the same set of unifiers.

• To find the mgu of two terms \(s \) and \(t \), try to find a set of equations in solved form that is equivalent to \(\{s = t\} \).

If there is no equivalent solved form, there is no mgu.
A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$
 \[
 \{f(X, g(Y)) = f(g(Z), Z)\} \Rightarrow \{X = g(Z), g(Y) = Z\} \\
 \Rightarrow \{X = g(Z), Z = g(Y)\} \\
 \Rightarrow \{X = g(g(Y)), Z = g(Y)\}
 \]

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$
 \[
 \{f(X, g(X), b) = f(a, g(Z), Z)\} \Rightarrow \{X = a, g(X) = g(Z), b = Z\} \\
 \Rightarrow \{X = a, g(a) = g(Z), b = Z\} \\
 \Rightarrow \{X = a, a = Z, b = Z\} \\
 \Rightarrow \{X = a, Z = a, b = Z\} \\
 \Rightarrow \{X = a, Z = a, b = a\} \\
 \Rightarrow \text{fail}
 \]
A Simple Unification Algorithm

Given a set of equations E:
repeat
 select $s = t \in E$;
 case $s = t$ of
 1. $f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$:
 replace the equation by $s_i = t_i$ for all i
 2. $f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m), f \neq g$ or $n \neq m$:
 halt with failure
 3. $X = X$: remove the equation
 4. $t = X$: where t is not a variable
 replace equation by $X = t$
 5. $X = t$: where $X \neq t$ and X occurs more than once in E:
 if X is a proper subterm of t
 then halt with failure (5a)
 else replace all other X in E by t (5b)
 until no action is possible for any equation in E
return E
A Simple Unification Algorithm

Example: Find the mgu of \(f(X, g(Y)) \) and \(f(g(Z), Z) \)

\[
\{f(X, g(Y)) = f(g(Z), Z)\}
\]
\[\Rightarrow \{X = g(Z), g(Y) = Z\}\]
\[\Rightarrow \{X = g(Z), Z = g(Y)\}\]
\[\Rightarrow \{X = g(g(Y)), Z = g(Y)\}\]

\(\text{case 1}\)
\(\text{case 4}\)
\(\text{case 5b}\)
Example: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

\[
\{f(X, g(X)) = f(Z, Z)\} \\
\Rightarrow \{X = Z, g(X) = Z\} \quad \text{case 1} \\
\Rightarrow \{X = Z, g(Z) = Z\} \quad \text{case 5b} \\
\Rightarrow \{X = Z, Z = g(Z)\} \quad \text{case 4} \\
\Rightarrow \text{fail} \quad \text{case 5a}
\]
Complexity of the unification algorithm

- Consider \(E = \{ g(X_1, \ldots, X_n) = g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1}) \} \)
 - By applying case 1 of the algorithm, we get
 \[\{ X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), X_3 = f(X_2, X_2), \ldots, X_n = f(X_{n-1}, X_{n-1}) \} \]
 - If terms are kept as trees, the final value for \(X_n \) is a tree of size \(O(2^n) \).
 - Recall that for case 5 we need to first check if a variable appears in a term, and this could now take \(O(2^n) \) time.
 - There are linear-time unification algorithms that share structures (terms as DAGs).
 - \(X = t \) is the most common case for unification in Prolog. The fastest algorithms are linear in \(t \).
 - Prolog cuts corners by omitting case 5a (the occur check), thereby doing \(X = t \) in constant time.
Most General Unifiers

- Note that mgu stands for a most general unifier.
- There may be more than one mgu. E.g. \(f(X) = f(Y) \) has two mgus:
 - \(\{X / Y\} \)
 - \(\{Y / X\} \)
- If \(\theta \) is an mgu of \(s \) and \(t \), and \(\omega \) is a renaming, then \(\theta \omega \) is an mgu of \(s \) and \(t \).
- If \(\theta \) and \(\sigma \) are mgus of \(s \) and \(t \), then there is a renaming \(\omega \) such that \(\theta = \sigma \omega \).
- MGU is unique up to renaming
SLD Resolution

- Selective Linear Definite clause Resolution:

\[\leftarrow A_1, \ldots, A_{i-1}, \textcolor{red}{A_i}, A_{i+1}, \ldots, A_m \quad B_0 \leftarrow B_1, \ldots, B_n \]

\[\leftarrow (A_1, \ldots, A_{i-1}, \textcolor{red}{B_1}, \ldots, B_n, A_{i+1}, \ldots, A_m) \theta \]

where:
1. \(A_j \) are atomic formulas
2. \(B_0 \leftarrow B_1, \ldots, B_n \) is a (renamed) definite clause in the program
3. \(\theta = \text{mgu}(A_i, B_0) \)
 - \(A_i \) is called the selected atom
 - Given a goal \(\leftarrow A_1, \ldots, A_n \) a function called the selection function or computation rule selects \(A_i \)
SLD Resolution (cont.)

• When the resolution rule is applied, from a goal G and a clause C, we get a new goal G'

• We then say that G' is derived directly from G and C:

$$G \overset{C}{\Rightarrow} G'$$

• An **SLD Derivation** is a sequence

$$G_0 \overset{C_0}{\Rightarrow} G_1 \cdots G_i \overset{C_i}{\Rightarrow} G_{i+1} \cdots$$
parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[
\text{anc}(X,Y) :- \\
\text{parent}(X,Y).
\]

\[
\text{anc}(X,Y) :- \\
\text{parent}(X,Z), \\
\text{anc}(Z,Y).
\]

\[
\text{anc}(X,Y) \leftarrow \text{parent}(X,Y)
\]

\[
\text{anc}(X,Y) \leftarrow \text{parent}(\text{tom}, Q)
\]

\[
\text{anc}(X,Y) \leftarrow \text{parent}(\text{tom}, \text{bob})
\]

\[
\text{anc}(\text{tom}, Q)
\]

\[
\text{Q} = \text{bob}
\]

\[
\text{parent}(\text{tom}, Q)
\]

\[
\square
\]
Refutation & SLD Derivation

\[
\begin{align*}
\text{parent}(pam, bob) &. \\
\text{parent}(tom, bob) &. \\
\text{parent}(tom, liz) &. \\
\text{parent}(bob, ann) &. \\
\text{parent}(bob, pat) &. \\
\text{parent}(pat, jim) &. \\
\text{anc}(X, Y) &::= \\
& \quad \text{parent}(X, Y). \\
\text{anc}(X, Y) &::= \\
& \quad \text{parent}(X, Z), \text{anc}(Z, Y). \\
\rightarrow \quad \text{anc}(tom, Q) &. \\
\rightarrow \quad \text{parent}(tom, Z'), \text{anc}(Z', Q) &. \\
\rightarrow \quad \text{parent}(bob, Q) &. \\
\rightarrow \quad \text{parent}(bob, ann) &. \\
\rightarrow \quad \text{anc}(tom, Q) &. \\
\rightarrow \quad \text{parent}(tom, Z') &. \\
\rightarrow \quad \text{anc}(Z', Q) &. \\
\rightarrow \quad \text{anc}(bob, Q) &. \\
\rightarrow \quad \text{parent}(bob, Q) &. \\
\rightarrow \quad \square &.
\end{align*}
\]
Computed Answer Substitution

- Let $\theta_0, \theta_1, \ldots, \theta_{n-1}$ be the sequence of mgus used in derivation
 \[G_0 \xrightarrow{C_0} G_1 \cdots G_{n-1} \xrightarrow{C_{n-1}} G_n \]
 Then $\theta = \theta_0 \theta_1 \cdots \theta_{n-1}$ is the computed substitution of the derivation

- Example:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Clause Used</th>
<th>mgu</th>
</tr>
</thead>
</table>
| $\text{anc(\text{tom, Q})}$ | anc(X',Y') :-
 $\text{parent(X',Z'), \text{anc(Z',Y')}}$ | $\theta_0 = \{X'/\text{tom}, Y'/Q\}$ |
| $\text{parent(\text{tom, Z'}),}$ | $\text{parent(\text{tom, bob}).}$ | $\theta_1 = \{Z'/\text{bob}\}$ |
| $\text{anc(\text{bob, Q})}$ | anc(X'', Y'') :-
 $\text{parent(X'', Y'}).$ | $\theta_2 = \{X''/\text{bob}, Y''/Q\}$ |
| $\text{parent(\text{bob, Q})}$ | $\text{parent(\text{bob, ann}).}$ | $\theta_3 = \{Q/\text{ann}\}$ |

- Computed substitution for the above derivation is
 $\theta_0 \theta_1 \theta_2 \theta_3 = \{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\}$
Computed Answer Substitution

- A finite derivation of the form
 \[G_0 \xrightarrow{c_0} G_1 \cdots G_{n-1} \xrightarrow{c_{n-1}} G_n \]
 where \(G_n = \) (i.e., an empty goal) is an **SLD refutation** of \(G_0 \)
- The computed substitution of an SLD refutation of \(G \), restricted to variables of \(G \), is a **computed answer substitution** for \(G \).
- Example (contd.): The computed answer substitution for the above SLD refutation is
 \[\{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann\} \]
 restricted to \(Q \):
 \[\{Q/ann\} \]
Failed SLD Derivation

• A derivation of a goal clause G0 whose last element is not empty, and cannot be resolved with any clause of the program.

• Example: consider the following program:

 grandfather(X,Z) :- father(X,Y), parent(Y,Z).
 parent(X,Y) :- father(X,Y).
 parent(X,Y) :- mother(X,Y).
 father(a,b).
 mother(b,c).

• A derivation of grandfather(a,Q) is:

 ~⇒ father(a,Y’), parent(Y’,Q)
 ~⇒ parent(b,Q)
 ~⇒ father(b,Q)
SLD Tree

- A tree where every path is an SLD derivation

\[
\text{grandfather}(X,Z) :- \\
\quad \text{father}(X,Y), \text{parent}(Y,Z).
\]
\[
\text{parent}(X,Y) :- \text{father}(X,Y).
\]
\[
\text{parent}(X,Y) :- \text{mother}(X,Y).
\]
\[
\text{father}(a,b).
\]
\[
\text{mother}(b,c).
\]
Soundness of SLD resolution

- Let P be a definite program, R be a computation rule, and θ be a computed answer substitution for a goal G. Then $\forall G \theta$ is a logical consequence of P.
- Proof is by induction on the number of resolution steps used in the refutation of G.
- Base case uses the following lemma:
 - Let F be a formula and F' be an instance of F, $F' = F\theta$ for some substitution θ.
 - Then $(\forall F) | = (\forall F')$.