Definite Logic Programs: Models

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Logical Consequences of Formulae

• Recall: F is a *logical consequence* of P (i.e. \(P \models F \)) iff

 Every model of P is also a model of F.

• Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?

• Solution: choose (one) "*canonical*" model I such that

 \[I \models P \quad \text{and} \quad I \models F \implies P \models F \]
Definite Clauses

- A formula of the form \(p(t_1, t_2, \ldots, t_n) \), where \(p/n \) is an \(n \)-ary predicate symbol and \(t_i \) are all terms is said to be **atomic**.

- If \(A \) is an atomic formula then
 - \(A \) is said to be a **positive literal**
 - \(\neg A \) is said to be a **negative literal**

- A formula of the form \(\forall(L_1 \lor L_2 \lor \ldots \lor L_n) \) where each \(L_i \) is a literal (negative or positive) is called a **clause**.

- A clause \(\forall(L_1 \lor L_2 \lor \ldots \lor L_n) \) where exactly one literal is positive is called a **definite clause** (also called **Horn clause**).
 - A definite clause is usually written as:
 - \(\forall(A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n) \)
 - or equivalently as \(A_0 \leftarrow A_1, A_2, \ldots, A_n \).

- A **definite program** is a set of definite clauses.
Herbrand Universe

• Given an alphabet A, the set of all \textbf{ground terms} constructed from the constant and function symbols of A is called the \textit{Herbrand Universe} of A (denoted by U_A).

• Consider the program:

\[
p(\text{zero}) .
\]

\[
p(s(s(X))) \leftarrow p(X) .
\]

• The Herbrand Universe of the program's alphabet is: $U_A = \{ \text{zero}, s(\text{zero}), s(s(\text{zero})), \ldots \}$

Jacques Herbrand (1908–1931)
Herbrand Universe: Example

• Consider the "relations" program:

\[
\begin{align*}
\text{parent}(\text{pam}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{ann}). \\
\text{parent}(\text{tom}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{pat}). \\
\text{parent}(\text{tom}, \text{liz}). & \quad \text{parent}(\text{pat}, \text{jim}).
\end{align*}
\]
\[
\text{grandparent}(X,Y) :-
\quad \text{parent}(X,Z), \text{parent}(Z,Y).
\]

• The Herbrand Universe of the program's alphabet is:

\[
U_A = \{ \text{pam, bob, tom, liz, ann, pat, jim} \}.
\]
Herbrand Base

• Given an alphabet A, the set of all ground atomic formulas over A is called the Herbrand Base of A (denoted by B_A).

• Consider the program:

$$p(\text{zero}).$$

$$p(s(s(x))) \leftarrow p(x).$$

• The Herbrand Base of the program's alphabet is: $B_A = \{ p(\text{zero}) , p(s(\text{zero})) , p(s(s(\text{zero}))) , \ldots \}$
Herbrand Base: Example

• Consider the "relations" program:

\[
\begin{align*}
\text{parent}(pam, \text{ bob}). & \quad \text{parent}(bob, \text{ ann}). \\
\text{parent}(tom, \text{ bob}). & \quad \text{parent}(bob, \text{ pat}). \\
\text{parent}(tom, \text{ liz}). & \quad \text{parent}(pat, \text{ jim}). \\
\text{grandparent}(X,Y) :& - \\
& \quad \text{parent}(X,Z), \text{ parent}(Z,Y).
\end{align*}
\]

• The Herbrand Base of the program's alphabet is:

\[B_A = \{\text{parent}(pam, pam), \text{parent}(pam, bob), \text{parent}(pam, tom), \ldots, \text{parent}(bob, pam), \ldots, \text{grandparent}(pam,pam), \ldots,\text{grandparent}(bob,pam), \ldots\}\].
Herbrand Interpretations and Models

• A **Herbrand Interpretation** of a program P is an interpretation I such that:
 • The domain of the interpretation: $|I| = U_P$
 • For every constant c: $c_I = c$
 • For every function symbol f/n:
 $f_I(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$
 • For every predicate symbol p/n:
 $p_I \subseteq (U_P)^n$
 (i.e. some subset of n-tuples of ground terms)
• A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

• All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols

• Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols

• We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model

• Example: Consider our numbers program, where

\{p(\text{zero}), \ p(s(s(\text{zero}))), \ p(s(s(s(s(\text{zero}))))), \ldots\}

represents the Herbrand model that treats

\ p_1=\{\text{zero}, s(s(\text{zero})), s(s(s(s(\text{zero}))))\}, \ldots\}

as the meaning of \(p\).
Sufficiency of Herbrand Models

Let P be a definite program. If I' is a model of P then $I = \{ A \in B_p \mid I' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

- Assume that I' is a model of P but I (defined above) is not a model.
- Then there is some ground instance of a clause in P:
 $$A_0 :\neg A_1, \ldots, A_n.$$
- which is not true in I i.e., $I \models A_1, \ldots, I \models A_n$ but $I \not\models A_0$.
- By definition of I then, $I' \models A_1, \ldots, I' \models A_n$ but $I' \not\models A_0$.
- Thus, I' is not a model of P, which contradicts our earlier assumption.
Definite programs only

- Let P be a definite program. If I' is a model of P then
 \(I = \{ A \in B_p \mid I' \models A \} \) is a Herbrand model of P.

- **This property holds only for definite programs!**
 - Example: Consider \(P = \{ \neg p(a), \exists X. p(X) \} \)
 - There are two Herbrand interpretations: \(I_1 = \{ p(a) \} \) and \(I_2 = \{ \} \)
 - The first is not a model of P since \(I_1 \not\models \neg p(a) \)
 - The second is not a model of P since \(I_2 \not\models \exists X. p(X) \)
 - But there are non-Herbrand models, such as I:
 - \(| I | = N \) (the set of natural numbers)
 - \(a_I = 0 \)
 - \(p_I = \text{“is odd”} \)
Properties of Herbrand Models

1. For any definite program P, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

2. If M is a set of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

3. For every definite program P there is a unique least model M_P such that:
 a) M_P is a Herbrand Model of P and,
 b) for every Herbrand Model M, $M_P \subseteq M$.

4. $M_P = \text{the set of all ground logical consequences of } P$.
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.

Proof:
- Assume $M = M_1 \cap M_2$ is not a model.
- Then there is some clause $A_0 : \neg A_1, \ldots, A_n$ such that $M \models A_1, \ldots, M \models A_n$ but $M \not\models A_0$.
- Which means $A_0 \notin M_1$ or $A_0 \notin M_2$ by def. of \cap.
- But $A_1, \ldots, A_n \in M_1$ as well as M_2.
- Hence one of M_1 or M_2 is not a model.
Properties of Herbrand Models

- There is a unique least Herbrand model

Proof:

- Let M_1 and M_2 are two incomparable minimal Herbrand models (incomparable means neither one is a subset of the other), but $M = M_1 \cap M_2$ is also a Herbrand model (previous theorem), and $M \subset M_1$ and $M \subset M_2$

- Thus M_1 and M_2 are not minimal.
Least Herbrand Model

• The least Herbrand model M_p of a definite program P is the set of all ground logical consequences of the program:

$$M_p = \{ A \in B_p \mid P \models A \}$$

Proof:

• First, $M_p \supseteq \{ A \in B_p \mid P \models A \}$ (i.e., M_p is a superset of the logical consequences $\{ A \in B_p \mid P \models A \}$):
 • By definition of logical consequence, $P \models A$ means that A must be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

- Second, $Mp \subseteq \{A \in Bp \mid P \models A\}$ (i.e., Mp is a subset of the logical consequences $\{A \in Bp \mid P \models A\}$):
 - Assume that A is in Mp. Hence, A is in every Herbrand model of P by def. of Mp (i.e., subset of all models)
 - Assume that A is not true in some non-Herbrand model of P: $I' \models \neg A$
 - By sufficiency of Herbrand models (i.e., If I' is a model of P then $I = \{A \in Bp \mid I' \models A\}$ is a Herbrand model of P), there is some Herbrand model I such that $I \models \neg A$
 - Hence A cannot be an element of the Herbrand model I
 - This contradicts that A is in every Herbrand model of P, and their intersection Mp
Construction of Least Herbrand Models

- **Def.:** **Immediate consequence operator:**
 - Given an interpretation $I \subseteq Bp$, construct I' such that
 \[I' = \{ A_0 \in Bp \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \} \]
 - I' is said to be the **immediate consequence of** I
 - written as $I' = Tp(I)$, where Tp is called the **immediate consequence operator**

- Consider the sequence:
 \[\emptyset, Tp(\emptyset), Tp(Tp(\emptyset)), \ldots, Tp^i(\emptyset), \ldots \]
 - $Mp \supseteq Tp^i(\emptyset)$ for all i (Mp is a **superset** of all $Tp^i(\emptyset)$)
 - Let $Tp \uparrow \omega = \bigcup_{i=0,\infty} Tp^i(\emptyset)$
 - Then $Mp = Tp \uparrow \omega$
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[
\text{anc}(X,Y) : - \text{parent}(X,Y).
\]

\[
\text{anc}(X,Y) : - \text{parent}(X,Z), \text{anc}(Z,Y).
\]

<table>
<thead>
<tr>
<th>M_1</th>
<th>\emptyset</th>
</tr>
</thead>
</table>
| $M_2 = T_P(M_1)$ | \{parent(pam, bob), \}
| | parent(tom, bob), \}
| | parent(tom, liz), \}
| | parent(bob, ann), \}
| | parent(bob, pat), \}
| | parent(pat, jim) \} |

\[
M_3 = T_P(M_2) = \{\text{anc}(pam, bob), \}
\]

\[
\text{anc}(tom, bob), \}
\]

\[
\text{anc}(tom, liz), \}
\]

\[
\text{anc}(bob, ann), \}
\]

\[
\text{anc}(bob, pat), \}
\]

\[
\text{anc}(pat, jim) \} \cup M_2
\]

\[
M_4 = T_P(M_3) = \{\text{anc}(pam, ann), \}
\]

\[
\text{anc}(pam, pat), \}
\]

\[
\text{anc}(tom, ann), \}
\]

\[
\text{anc}(tom, pat), \}
\]

\[
\text{anc}(bob, jim) \} \cup M_3
\]

\[
M_5 = T_P(M_4) = \{\text{anc}(pam, jim), \} \cup M_4
\]

\[
\text{anc}(tom, jim) \} \}
\]

\[
M_6 = T_P(M_5) = M_5
\]
Computing Mp: Practical Considerations

- Computing the least Herbrand model, Mp, as the **least fixed point** of Tp:
 - terminates for **Datalog** programs (i.e., programs w/o function symbols)
 - may not terminate in general (because it could be infinite)
 - For programs with function symbols, computing logical consequence by first computing Mp is impractical
- Even for Datalog programs, computing least fixed point directly using the Tp operator is wasteful (known as **Naive** evaluation)
- Note that $T^p_i(\emptyset) \subseteq T^p_{i+1}(\emptyset)$ for all i
- We can calculate $\Delta T^p_{i+1}(\emptyset) = T^p_{i+1}(\emptyset) - T^p_i(\emptyset)$ [The difference between the sets computed in two successive iterations] This strategy is known as the **semi-naive** evaluation