Definite Logic Programs: Models

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Logical Consequences of Formulae

• Recall: F is a *logical consequence* of P (i.e. $P \models F$) iff

 Every model of P is also a model of F.

• Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?

• Solution: choose (one) "*canonical*" model I such that

 $I \models P$ and $I \models F \implies P \models F$
Definite Clauses

- A formula of the form \(p(t_1, t_2, \ldots, t_n) \), where \(p/n \) is an \(n \)-ary predicate symbol and \(t_i \) are all terms is said to be \textit{atomic}.

- If \(A \) is an atomic formula then
 - \(A \) is said to be a \textit{positive literal}
 - \(\neg A \) is said to be a \textit{negative literal}

- A formula of the form \(\forall (L_1 \lor L_2 \lor \ldots \lor L_n) \) where each \(L_i \) is a literal (negative or positive) is called a \textit{clause}.

- A clause \(\forall (L_1 \lor L_2 \lor \ldots \lor L_n) \) where exactly one literal is positive is called a \textit{definite clause} (also called \textit{Horn clause}).

- A definite clause is usually written as:
 - \(\forall (A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n) \)
 - or equivalently as \(A_0 \leftarrow A_1, A_2, \ldots, A_n \).

- A \textit{definite program} is a set of definite clauses.
Herbrand Universe

• Given an alphabet A, the set of all ground terms constructed from the constant and function symbols of A is called the Herbrand Universe of A (denoted by U_A).

• Consider the program:

\[
p(zero) \cdot \\
p(s(s(X))) \leftarrow p(X). \\
\]

• The Herbrand Universe of the program's alphabet is: $U_A = \{zero, s(zero), s(s(zero)), \ldots\}$
Herbrand Universe: Example

- Consider the "relations" program:

 \[
 \text{parent}(\text{pam}, \text{bob}) . \quad \text{parent}(\text{bob}, \text{ann}) . \\
 \text{parent}(\text{tom}, \text{bob}) . \quad \text{parent}(\text{bob}, \text{pat}) . \\
 \text{parent}(\text{tom}, \text{liz}) . \quad \text{parent}(\text{pat}, \text{jim}).
 \]

 \[
 \text{grandparent}(X,Y) :- \\
 \quad \text{parent}(X,Z), \text{parent}(Z,Y).
 \]

- The Herbrand Universe of the program's alphabet is:

 \[
 U_A = \{ \text{pam, bob, tom, liz, ann, pat, jim} \}
 \]
Herbrand Base

- Given an alphabet A, the set of all **ground atomic formulas** over A is called the **Herbrand Base** of A (denoted by B_A).

- Consider the program:

 $$
 p(\text{zero}).
 $$

 $$
 p(s(s(X))) \leftarrow p(X).
 $$

- The Herbrand Base of the program's alphabet is: $B_A = \{ p(\text{zero}), p(s(\text{zero})), p(s(s(\text{zero}))), \ldots \}$
Herbrand Base: Example

- Consider the "relations" program:

 \[
 \begin{align*}
 \text{parent(pam, bob).} & \quad \text{parent(bob, ann).} \\
 \text{parent(tom, bob).} & \quad \text{parent(bob, pat).} \\
 \text{parent(tom, liz).} & \quad \text{parent(pat, jim).} \\
 \text{grandparent(X,Y) :-} \\
 & \quad \text{parent(X,Z), parent(Z,Y).}
 \end{align*}
 \]

- The Herbrand Base of the program's alphabet is:

 \[
 B_A = \{ \text{parent(pam, pam), parent(pam, bob),} \\
 \text{parent(pam, tom), \ldots, parent(bob, pam), \ldots,} \\
 \text{grandparent(pam,pam), \ldots,grandparent(bob,pam),} \\
 \ldots \}\.
 \]
Herbrand Interpretations and Models

• A **Herbrand Interpretation** of a program P is an interpretation I such that:

 • The domain of the interpretation: $|I| = U_P$

 • For every constant c: $c_I = c$

 • For every function symbol f/n: $f_I(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$

 • For every predicate symbol p/n: $p_I \subseteq (U_P)^n$ (i.e. some subset of n-tuples of ground terms)

• A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

- All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
- Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
- We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.
- Example: Consider our numbers program, where
 \{p(zero), \ p(s(s(zero))), \ p(s(s(s(s(zero)))))\}, \ldots\}
 represents the Herbrand model that treats
 \p_I = \{zero, s(s(zero)), s(s(s(s(zero))))\}, \ldots\}
 as the meaning of p.
Sufficiency of Herbrand Models

- Let P be a definite program. If I' is a model of P then $I = \{ A \in B_p \mid I' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):
Let I be a Herbrand interpretation.
Assume that I' is a model of P but I is not a model.
Then there is some ground instance of a clause in P:

$$A_0 \leftarrow A_1, \ldots, A_n.$$

which is not true in I i.e., $I \models A_1, \ldots, I \models A_n$ but $I \not\models A_0$

By definition of I then, $I' \models A_1, \ldots, I' \models A_n$ but $I' \not\models A_0$

Thus, I' is not a model of P, which contradicts our earlier assumption.
Definite programs only

- Let P be a definite program. If I' is a model of P then
 \[I = \{ A \in B_P \mid I' \models A \} \]
 is a Herbrand model of P.

This property holds only for definite programs!

- Consider \(P = \{ \neg p(a), \exists X. p(X) \} \)
 - There are two Herbrand interpretations: \(I_1 = \{ p(a) \} \) and \(I_2 = \{ \} \)
 - The first is not a model of P since \(I_1 \not\models \neg p(a) \)
 - The second is not a model of P since \(I_2 \not\models \exists X. p(X) \)
 - But there are non-Herbrand models, such as I:
 - \(| I | = \mathbb{N} \) (the set of natural numbers)
 - \(a_I = 0 \)
 - \(p_I = \text{"is odd"} \)
Properties of Herbrand Models

1. For any definite program, if every Herbrand Model of P is also a Herbrand Model of F, then P ⊨ F.

2. If M is a set of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

3. For every definite program P there is a unique least model M_p such that:
 a) M_p is a Herbrand Model of P and,
 b) for every Herbrand Model M, $M_p \subseteq M$.

4. $M_p = \text{the set of all ground logical consequences of P.}$
Properties of Herbrand Models

• If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.

• Assume M is not a model.

• Then there is some clause $A_0 : \neg A_1, \ldots, A_n$ such that $M \models A_1, \ldots, M \models A_n$ but $M \not\models A_0$

• Which means $A_0 \notin M_1$ or $A_0 \notin M_2$ by def. of \cap

• But $A_1, \ldots, A_n \in M_1$ as well as M_2.

• Hence one of M_1 or M_2 is not a model.
Properties of Herbrand Models

• There is a unique least Herbrand model

• Let M_1 and M_2 are two incomparable minimal Herbrand models, but $M = M_1 \cap M_2$ is also a Herbrand model (previous theorem), and $M \subseteq M_1$ and $M \subseteq M_2$

• Thus M_1 and M_2 are not minimal.
Least Herbrand Model

- The *least Herbrand model* M_p of a definite program P is the set of all ground logical consequences of the program:

$$M_p = \{A \in B_p \mid P \models A\}$$

- First, $M_p \supseteq \{A \in B_p \mid P \models A\}$ (i.e., M_p is a superset of the logical consequences $\{A \in B_p \mid P \models A\}$):
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

- Second, $M_p \subseteq \{A \in B_p \mid P \models A\}$ (i.e., M_p is a subset of the logical consequences $\{A \in B_p \mid P \models A\}$):
 - Assume that A is in M_p. Hence, A is in every Herbrand model of P by def. of M_p.
 - Assume that it is not true in some non-Herbrand model of P: $I' \models \neg A$
 - By sufficiency of Herbrand models (i.e., If I' is a model of P then $I = \{A \in B_p \mid I' \models A\}$ is a Herbrand model of P), there is some Herbrand model I such that $I \models \neg A$.
 - Hence A cannot be an element of I. This contradicts that A is in every Herbrand model of P by def. of M_p.
Construction of Least Herbrand Models

• **Immediate consequence operator:**
 • Given an interpretation $I \subseteq Bp$, construct I' such that

 $I' = \{ A_0 \in Bp \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}$
 • I' is said to be the *immediate consequence of* I written as $I' = Tp(I)$, where Tp is called the **immediate consequence operator**
 • Consider the sequence:

 $\emptyset, Tp(\emptyset), Tp(Tp(\emptyset)), \ldots, Tp^i(\emptyset), \ldots$
 • $Mp \supseteq Tp^i(\emptyset)$ for all i (Mp is a superset of all $Tp^i(\emptyset)$).
 • Let $Tp \uparrow \omega = \bigcup_{i=0,\infty} Tp^i(\emptyset)$
 • Then $Mp = Tp \uparrow \omega$
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[\text{anc}(X,Y) :\begin{array}{l}
\text{parent}(X,Y) \\
\text{parent}(X,Z), \text{anc}(Z,Y)
\end{array} \]

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(\emptyset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_2 = T_P(M_1) = {\text{parent}(pam, bob),)</td>
<td>{\text{parent}(pam, bob), \text{parent}(tom, bob), \text{parent}(tom, liz), \text{parent}(bob, ann), \text{parent}(bob, pat), \text{parent}(pat, jim) }</td>
</tr>
<tr>
<td>(M_3 = T_P(M_2) = {\text{anc}(pam, bob), \text{anc}(tom, bob), \text{anc}(tom, liz), \text{anc}(bob, ann), \text{anc}(bob, pat), \text{anc}(pat, jim) } \cup M_2)</td>
<td></td>
</tr>
<tr>
<td>(M_4 = T_P(M_3) = {\text{anc}(pam, ann), \text{anc}(pam, pat), \text{anc}(tom, ann), \text{anc}(tom, pat), \text{anc}(bob, jim) } \cup M_3)</td>
<td></td>
</tr>
<tr>
<td>(M_5 = T_P(M_4) = {\text{anc}(pam, jim), {\text{anc}(tom, jim) } \cup M_4)</td>
<td></td>
</tr>
<tr>
<td>(M_6 = T_P(M_5) = M_5)</td>
<td></td>
</tr>
</tbody>
</table>
Computing M_p: Practical Considerations

- Computing the least Herbrand model, M_p, as the **least fixed point** of T_p:
 - terminates for *Datalog* programs (programs w/o function symbols)
 - may not terminate in general (because it could be infinite)
 - For programs with function symbols, computing logical consequence by first computing M_p is **impractical**.
- Even for Datalog programs, computing least fixed point directly using the T_p operator is wasteful (known as *Naive* evaluation)
- Note that $T_p^i(\emptyset) \subseteq T_p^{i+1}(\emptyset)$ for all i.
- We can calculate $\Delta T_p^{i+1}(\emptyset) = T_p^{i+1}(\emptyset) - T_p^i(\emptyset)$ [The difference between the sets computed in two successive iterations]
 - This strategy is known as **semi-naive** evaluation.