Definite Logic Programs: Models

CSE 505 – Computing with Logic
Stony Brook University

htTp://www.cs.stonybrook.edu/~cse505
Logical Consequences of Formulae

- Recall: F is a logical consequence of P (i.e. $P \models F$) iff Every model of P is also a model of F.
- Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?
- Solution: choose one "canonical" model I such that $I \models P$ and $I \models F \implies P \models F$
Definite Clauses

- A formula of the form $p(t_1, t_2, \ldots, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be **atomic**.
- If A is an atomic formula then
 - A is said to be a **positive literal**
 - $\neg A$ is said to be a **negative literal**
- A formula of the form $\forall (L_1 \lor L_2 \lor \ldots \lor L_n)$ where each L_i is a literal (negative or positive) is called a **clause**.
- A clause $\forall (L_1 \lor L_2 \lor \ldots \lor L_n)$ where exactly one literal is positive is called a **definite clause**.

A definite clause is usually written as:

- $\forall (A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n)$
- or equivalently as $A_0 \leftarrow A_1, A_2, \ldots, A_n$

- A **definite program** is a set of definite clauses.
Herbrand Universe

• Given an alphabet \(A \), the set of all ground terms constructed from the constant and function symbols of \(A \) is called the \textit{Herbrand Universe} of \(A \) (denoted by \(U_A \)).

• Consider the program:

\[
p(\text{zero}).
\]

\[
p(s(s(X))) \leftarrow p(X).
\]

• The Herbrand Universe of the program's alphabet is: \(U_A = \{\text{zero, } s(\text{zero}), \ s(s(\text{zero})), \ldots\} \).
Herbrand Universe: Example

- Consider the "relations" program:

 parent(pam, bob). parent(bob, ann).
 parent(tom, bob). parent(bob, pat).
 parent(tom, liz). parent(pat, jim).

 grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

- The Herbrand Universe of the program's alphabet is:

 \[UA = \{ \text{pam, bob, tom, liz, ann, pat, jim} \} \]
Herbrand Base

• Given an alphabet A, the set of all *ground atomic formulas* over A is called the *Herbrand Base* of A (denoted by BA).

• Consider the program:

 \[
 p(\text{zero}).
 \]

 \[
 p(s(s(X))) \leftarrow p(X)
 \]

• The Herbrand Base of the program's alphabet is: \(BA = \{ p(\text{zero}), p(s(\text{zero})), p(s(s(\text{zero}))), \ldots \} \)
Herbrand Base: Example

- Consider the "relations" program:
 parent(pam, bob). parent(bob, ann).
 parent(tom, bob). parent(bob, pat).
 parent(tom, liz). parent(pat, jim).
 grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

- The Herbrand Base of the program's alphabet is:
 BA = \{parent(pam, pam), parent(pam, bob),
 parent(pam, tom), ..., parent(bob, pam), ...,
 grandparent(pam, pam), ..., grandparent(bob, pam), ... \}.
Herbrand Interpretations and Models

- A **Herbrand Interpretation** of a program P is I such that:
 - The domain of the interpretation: $|I| = UP$
 - For every constant c: $c_I = c$
 - For every function symbol f/n: $f_I(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$
 - For every predicate symbol p/n: $p_I \subseteq (UP)^n$ (i.e. some subset of n-tuples of ground terms)

- A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

• All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
• Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
• We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.
 • Example: Consider our numbers program, where
 \{\text{p(zero), p(s(s(zero))), p(s(s(s(s(zero)))))), \ldots}\}
 represents the Herbrand model that treats
 \text{pI=\{zero,s(s(zero)),s(s(s(s(zero)))))), \ldots\}}
 as the meaning of p.
Properties of Herbrand Models

1) If M is a family of Herbrand Models of a definite program P, then $\cap M$ is also a Herbrand Model of P.

2) For every definite program P there is a unique least model M_p such that:
 - M_p is a Herbrand Model of P and,
 - for every Herbrand Model M, $M_p \subseteq M$.

3) For any definite program, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

4) $M_p = \text{the set of all ground logical consequences of } P$.
Sufficiency of Herbrand Models

Let P be a definite program. If I' is a model of P then $I = \{ A \in B_P \mid I' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):
Let I be a Herbrand interpretation.
Assume that I' is a model but I is not a model.
Then there is some ground instance of a clause in P:

$$A_0 :\neg A_1, \ldots, A_n.$$

which is not true in I i.e., $I \models A_1, \ldots, I \models A_n$ but $I \not\models A_0$.
By definition of I then, $I' \models A_1, \ldots, I' \models A_n$ but $I' \not\models A_0$.
Thus, I' is not a model, which contradicts our earlier assumption.
Sufficiency of Herbrand Models

- Let P be a definite program. If I' is a model of P then $I = \{ A \in B_p \mid I' \models A \}$ is a Herbrand model of P.
- This holds only for definite programs.
- Consider $P = \{ \neg p(a), \exists X.p(X) \}$
 - There are two Herbrand interpretations: $I_1 = \{ p(a) \}$ and $I_2 = \{ \}$
 - The first is not a model of P since $I_1 \not\models \neg p(a)$.
 - The second is not a model of P since $I_2 \not\models \exists X.p(X)$
 - But there is a non-Herbrand model I:
 - $| I | = N$, the set of natural numbers
 - $aI = 0$
 - $pI = \text{"is odd"}$
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
- Assume M is not a model.
- Then there is some clause $A_0: \neg A_1, \ldots, A_n$ such that $M \models A_1, \ldots, M \models A_n$ but $M \not\models A_0$.
- Which means $A_0 \notin M_1$ or $A_0 \notin M_2$.
- But $A_1, \ldots, A_n \in M_1$ as well as M_2.
- Hence one of M_1 or M_2 is not a model.
Properties of Herbrand Models

- There is a unique least Herbrand model
- Let M_1 and M_2 are two incomparable minimal Herbrand models, i.e., $M = M_1 \cap M_2$ is also a Herbrand model (previous theorem), and $M \subseteq M_1$ and $M \subseteq M_2$
- Thus M_1 and M_2 are not minimal
Least Herbrand Model

• The least Herbrand model M_p of a definite program P is the set of all ground logical consequences of the program.

• $M_p = \{ A \in B_p \mid P \models A \}$

• First, $M_p \supseteq \{ A \in B_p \mid P \models A \}$:
 • By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

The least Herbrand model M_p of a definite program P is the set of all ground logical consequences of the program.

Second, $M_p \subseteq \{A \in B_p \mid P \models A\}$:

- If $M_p \models A$ then A is in every Herbrand model of P.
- But assume there is some model $I' \models \neg A$.
- By sufficiency of Herbrand models, there is some Herbrand model I such that $I \models \neg A$.
- Hence A is not in some Herbrand model, and hence is not in M_p.
Finding the Least Herbrand Model

• Immediate consequence operator:
 • Given $I \subseteq B_p$, construct I' such that

 $I' = \{ A_0 \in B_p \mid A_0 \leftarrow A_1, \ldots, A_n$ is a ground instance of a clause in P and $A_1, \ldots, A_n \in I \}$

 I' is said to be the immediate consequence of I.

 Written as $I' = T_p(I)$, T_p is called the immediate consequence operator.

• Consider the sequence: $\emptyset, T_p(\emptyset), T_p(T_p(\emptyset)), \ldots, T_p^i(\emptyset), \ldots$

• $M_p \supseteq T_p^i(\emptyset)$ for all i.

• Let $T_p \uparrow \omega = \bigcup_{i=0,\infty} T_p^i(\emptyset)$

• Then $M_p \subseteq T_p \uparrow \omega$
parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[M_1 = \emptyset \]

\[M_2 = T_P(M_1) = \{\text{parent}(pam,bob), \text{parent}(tom,bob), \text{parent}(tom,liz), \text{parent}(bob,ann), \text{parent}(bob,pat), \text{parent}(pat,jim)\} \]

\[M_3 = T_P(M_2) = \{\text{anc}(pam,bob), \text{anc}(tom,bob), \text{anc}(tom,liz), \text{anc}(bob,ann), \text{anc}(bob,pat), \text{anc}(pat,jim)\} \cup M_2 \]

\[M_4 = T_P(M_3) = \{\text{anc}(pam,ann), \text{anc}(pam,pat), \text{anc}(tom,ann), \text{anc}(tom,pat), \text{anc}(bob,jim)\} \cup M_3 \]

\[M_5 = T_P(M_4) = \{\text{anc}(pam,jim), \{\text{anc}(tom,jim)\}\} \cup M_4 \]

\[M_6 = T_P(M_5) = M_5 \]
Computing M_p: Practical Considerations

- Computing the least Herbrand model, M_p, as the least fixed point of T_p:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
- For programs with function symbols, computing logical consequence by first computing M_p is impractical.
- Even for Datalog programs, computing least fixed point directly using the T_p operator is wasteful (known as Naive evaluation).
- Note that T_p^i(∅) ⊆ T_p^{i+1}(∅).
- We can calculate ΔT_p^{i+1}(∅) = T_p^{i+1}(∅) − T_p^i(∅) [The difference between the sets computed in two successive iterations] This strategy is known as semi-naive evaluation.