Definite Logic Programs: Models
Logical Consequences of Formulae

- Recall: F is a logical consequence of P (i.e. \(P \models F\)) iff

 Every model of P is also a model of F.

- Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?

- Solution: choose one "canonical" model I such that

 \(I \models P \quad \text{and} \quad I \models F \Rightarrow P \models F\)
Definite Clauses

- A formula of the form $p(t_1, t_2, \ldots, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be atomic.

- If A is an atomic formula then
 - A is said to be a positive literal
 - $\neg A$ is said to be a negative literal

- A formula of the form $\forall (L_1 \lor L_2 \lor \ldots \lor L_n)$ where each L_i is a literal (negative or positive) is called a clause.

- A clause $\forall (L_1 \lor L_2 \lor \ldots \lor L_n)$ where exactly one literal is positive is called a definite clause (also called Horn clause).

- A definite clause is usually written as:
 - $\forall (A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n)$
 - or equivalently as $A_0 \leftarrow A_1, A_2, \ldots, A_n$.

- A definite program is a set of definite clauses.
Herbrand Universe

• Given an alphabet A, the set of all ground terms constructed from the constant and function symbols of A is called the Herbrand Universe of A (denoted by U_A).

• Consider the program:

\[
p(zero).
\]
\[
p(s(s(X))) \leftarrow p(X).
\]

• The Herbrand Universe of the program's alphabet is: $U_A = \{zero, s(zero), s(s(zero)), \ldots\}$
Herbrand Universe: Example

- Consider the "relations" program:

 \[
 \begin{align*}
 &\text{parent}(\text{pam}, \text{bob}). & \text{parent}(\text{bob}, \text{ann}). \\
 &\text{parent}(\text{tom}, \text{bob}). & \text{parent}(\text{bob}, \text{pat}). \\
 &\text{parent}(\text{tom}, \text{liz}). & \text{parent}(\text{pat}, \text{jim}). \\
 &\text{grandparent}(X,Y) : - \\
 &\hspace{1cm} \text{parent}(X,Z), \text{parent}(Z,Y).
 \end{align*}
 \]

- The Herbrand Universe of the program's alphabet is:

 \[U_A = \{\text{pam, bob, tom, liz, ann, pat, jim}\}\]
Herbrand Base

• Given an alphabet A, the set of all **ground atomic formulas** over A is called the **Herbrand Base** of A (denoted by B_A).

• Consider the program:

 $p(\text{zero})$.

 $p(s(s(X))) \leftarrow p(X)$.

• The Herbrand Base of the program's alphabet is: $B_A = \{ p(\text{zero}), p(s(\text{zero})), p(s(s(\text{zero}))), \ldots \}$
Consider the "relations" program:

parent(pam, bob).
parent(bob, ann).
parent(tom, bob).
parent(bob, pat).
parent(tom, liz).
parent(pat, jim).

grandparent(X, Y) :-
 parent(X, Z), parent(Z, Y).

The Herbrand Base of the program's alphabet is:

\[B_A = \{ parent(pam, pam), parent(pam, bob), parent(pam, tom), \ldots, parent(bob, pam), \ldots, grandparent(pam, pam), \ldots, grandparent(bob, pam), \ldots \} \].
Herbrand Interpretations and Models

- A **Herbrand Interpretation** of a program P is an interpretation I such that:
 - The domain of the interpretation: $|I| = U_P$
 - For every constant c: $c_I = c$
 - For every function symbol f/n: $f_I(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$
 - For every predicate symbol p/n: $p_I \subseteq (U_P)^n$ (i.e. some subset of n-tuples of ground terms)

- A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

• All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
• Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
• We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.
• Example: Consider our numbers program, where
\{p(zero), \ p(s(s(zero))), \ p(s(s(s(s(zero))))), ...\}
represents the Herbrand model that treats
\p_I=\{zero, s(s(zero)), s(s(s(s(zero)))), ...\}
as the meaning of \(p\).
Sufficiency of Herbrand Models

• Let P be a definite program. If I' is a model of P then $I = \{A \in Bp \mid I' \models A\}$ is a Herbrand model of P.

Proof (by contradiction):

Let I be a Herbrand interpretation.

Assume that I' is a model of P but I is not a model.

Then there is some ground instance of a clause in P:

$$A_0 :\neg A_1, \ldots, A_n.$$

which is not true in I i.e., $I \models A_1, \ldots, I \models A_n$ but $I \not\models A_0$

By definition of I then, $I' \models A_1, \ldots, I' \models A_n$ but $I' \not\models A_0$

Thus, I' is not a model of P, which contradicts our earlier assumption.
Definite programs only

- Let P be a definite program. If I' is a model of P then
 \[I = \{ A \in B_p \mid I' \models A \} \]
 is a Herbrand model of P.

 This property holds only for definite programs!

- Consider \(P = \{ \neg p(a), \exists X . p(X) \} \)

 - There are two Herbrand interpretations:
 \(I_1 = \{ p(a) \} \) and \(I_2 = \{ \} \)
 - The first is not a model of P since \(I_1 \not\models \neg p(a) \).
 - The second is not a model of P since \(I_2 \not\models \exists X . p(X) \).

- But there is a non-Herbrand model I:
 - \(| I | = \mathbb{N} \), the set of natural numbers
 - \(a_1 = 0 \)
 - \(p_1 = \text{“is odd”} \)
Properties of Herbrand Models

1) If M is a set of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

2) For every definite program P there is a unique least model M_p such that:
 - M_p is a Herbrand Model of P and,
 - for every Herbrand Model M, $M_p \subseteq M$.

3) For any definite program, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

4) $M_p = \text{the set of all ground logical consequences of } P$.

Properties of Herbrand Models

- If \(M_1 \) and \(M_2 \) are Herbrand models of \(P \), then \(M = M_1 \cap M_2 \) is a model of \(P \).
- Assume \(M \) is not a model.
- Then there is some clause \(A_0 : \neg A_1, \ldots, A_n \) such that \(M \models A_1, \ldots, M \models A_n \) but \(M \not\models A_0 \).
- Which means \(A_0 \notin M_1 \) or \(A_0 \notin M_2 \).
- But \(A_1, \ldots, A_n \in M_1 \) as well as \(M_2 \).
- Hence one of \(M_1 \) or \(M_2 \) is not a model.
Properties of Herbrand Models

- There is a unique least Herbrand model
- Let M_1 and M_2 are two incomparable minimal Herbrand models, i.e., $M = M_1 \cap M_2$ is also a Herbrand model (previous theorem), and $M \subseteq M_1$ and $M \subseteq M_2$
- Thus M_1 and M_2 are not minimal.
Least Herbrand Model

- The **least Herbrand model** M_p of a definite program P is the set of all ground logical consequences of the program.

$$M_p = \{ A \in B_p \mid P \models A \}$$

- First, $M_p \supseteq \{ A \in B_p \mid P \models A \}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

- Second, $M_p \subseteq \{ A \in B_p \mid P \models A \}$:
 - If $M_p \models A$ then A is in every Herbrand model of P.
 - But assume there is some model $I' \models \neg A$.
 - By sufficiency of Herbrand models, there is some Herbrand model I such that $I \models \neg A$.
 - Hence A is not in some Herbrand model, and hence is not in M_p.
Finding the Least Herbrand Model

• **Immediate consequence operator:**
 - Given $I \subseteq Bp$, construct I' such that

 $I' = \{ A_0 \in Bp \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}$
 - I' is said to be the immediate consequence of I.
 - Written as $I' = Tp(I)$, Tp is called the *immediate consequence operator*.

• Consider the sequence:

 $\emptyset, Tp(\emptyset), Tp(Tp(\emptyset)), \ldots, Tp^i(\emptyset), \ldots$

 $Mp \supseteq Tp^i(\emptyset)$ for all i.

• Let $Tp \uparrow \omega = \bigcup_{i=0,\infty} Tp^i(\emptyset)$

• Then $Mp \subseteq Tp \uparrow \omega$
Computing Least Herbrand Models: An Example

\begin{tabular}{|l|l|}
\hline
\textbf{parent}(pam, bob). & \textbf{M}_1 = \emptyset \\
\textbf{parent}(tom, bob). & \textbf{M}_2 = T_P(\textbf{M}_1) = \{\text{parent}(pam, bob), \\
\textbf{parent}(tom, liz). & \text{parent}(tom, bob), \\
\textbf{parent}(bob, ann). & \text{parent}(tom, liz), \\
\textbf{parent}(bob, pat). & \text{parent}(bob, ann), \\
\textbf{parent}(pat, jim). & \text{parent}(bob, pat), \\
\textbf{anc}(X,Y) :- & \text{parent}(pat, jim) \} \\
\text{parent}(X,Y). & \textbf{M}_3 = T_P(\textbf{M}_2) = \{\text{anc}(pam, bob), \\
\textbf{anc}(X,Y) :- & \text{anc}(tom, bob), \\
\text{parent}(X,Z), & \text{anc}(tom, liz), \\
\text{anc}(Z,Y). & \text{anc}(bob, ann), \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline
\textbf{anc}(X,Y) :- & \text{anc}(bob, pat), \\
\text{parent}(X,Z), & \text{anc}(pat, jim) \} \\
\text{anc}(Z,Y). & \textbf{M}_4 = T_P(\textbf{M}_3) = \{\text{anc}(pam, ann), \\
\hline
\textbf{anc}(X,Y) :- & \text{anc}(pam, pat), \\
\text{parent}(X,Z), & \text{anc}(tom, ann), \\
\text{anc}(Z,Y). & \text{anc}(tom, pat), \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline
\textbf{anc}(X,Y) :- & \text{anc}(bob, jim) \} \cup \textbf{M}_2 \\
\text{parent}(X,Z), & \textbf{M}_5 = T_P(\textbf{M}_4) = \{\text{anc}(pam, jim), \\
\text{anc}(Z,Y). & \{\text{anc}(tom, jim) \} \} \cup \textbf{M}_4 \\
\hline
\textbf{anc}(X,Y) :- & \textbf{M}_6 = T_P(\textbf{M}_5) = \textbf{M}_5 \\
\text{parent}(X,Z), & \\
\text{anc}(Z,Y). & \\
\hline
\end{tabular}
Computing M_p: Practical Considerations

- Computing the least Herbrand model, M_p, as the least fixed point of T_p:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general.
- For programs with function symbols, computing logical consequence by first computing M_p is impractical.
- Even for Datalog programs, computing least fixed point directly using the T_p operator is wasteful (known as *Naive* evaluation).
- Note that $T_p^i(\emptyset) \subseteq T_p^{i+1}(\emptyset)$.
- We can calculate $\Delta T_p^{i+1}(\emptyset) = T_p^{i+1}(\emptyset) - T_p^i(\emptyset)$ [The difference between the sets computed in two successive iterations] This strategy is known as *semi-naive* evaluation.