Definite Logic Programs: Models

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Logical Consequences of Formulae

• Recall: F is a *logical consequence* of P (i.e. $P \models F$) iff

Every model of P is also a model of F.

• Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?

• Solution: choose (one) "canonical" model I such that

$I \models P$ and $I \models F \implies P \models F$
Definite Clauses

- A formula of the form $p(t_1, t_2, \ldots, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be atomic.

- If A is an atomic formula then:
 - A is said to be a positive literal
 - $\neg A$ is said to be a negative literal

- A formula of the form $\forall (L_1 \lor L_2 \lor \ldots \lor L_n)$ where each L_i is a literal (negative or positive) is called a clause.

- A clause $\forall (L_1 \lor L_2 \lor \ldots \lor L_n)$ where exactly one literal is positive is called a definite clause (also called Horn clause).

 - A definite clause is usually written as:
 - $\forall (A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n)$
 - or equivalently as: $A_0 \leftarrow A_1, A_2, \ldots, A_n$.

- A definite program is a set of definite clauses.
Herbrand Universe

• Given an alphabet A, the set of all **ground terms** constructed from the constant and function symbols of A is called the *Herbrand Universe* of A (denoted by U_A).

• Consider the program:

 $p(zero)$.

 $p(s(s(X))) \leftarrow p(X)$.

• The Herbrand Universe of the program's alphabet is: $U_A = \{zero, s(zero), s(s(zero)) , \ldots \}$
Herbrand Universe: Example

- Consider the "relations" program:

 \[
 \text{parent}(\text{pam}, \text{bob}). \quad \text{parent}(\text{bob}, \text{ann}). \\
 \text{parent}(\text{tom}, \text{bob}). \quad \text{parent}(\text{bob}, \text{pat}). \\
 \text{parent}(\text{tom}, \text{liz}). \quad \text{parent}(\text{pat}, \text{jim}).
 \]

 \text{grandparent}(X,Y) : - \\
 \quad \text{parent}(X,Z), \text{parent}(Z,Y).

- The Herbrand Universe of the program's alphabet is:

 \[
 U_A = \{\text{pam, bob, tom, liz, ann, pat, jim}\}
 \]
Herbrand Base

• Given an alphabet A, the set of all ground atomic formulas over A is called the Herbrand Base of A (denoted by B_A).

• Consider the program:

\[
p(zero).
\]

\[
p(s(s(X))) \leftarrow p(X).
\]

• The Herbrand Base of the program's alphabet is: $B_A = \{p(zero), p(s(zero)), p(s(s(zero))) \ldots \}$
Herbrand Base: Example

- Consider the "relations" program:

\[
\begin{align*}
\text{parent}(\text{pam}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{ann}). \\
\text{parent}(\text{tom}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{pat}). \\
\text{parent}(\text{tom}, \text{liz}). & \quad \text{parent}(\text{pat}, \text{jim}). \\
\text{grandparent}(X,Y) :- & \\
& \quad \text{parent}(X,Z), \text{parent}(Z,Y).
\end{align*}
\]

- The Herbrand Base of the program's alphabet is:

\[B_A = \{ \text{parent}(\text{pam}, \text{pam}), \text{parent}(\text{pam}, \text{bob}), \text{parent}(\text{pam}, \text{tom}), \ldots, \text{parent}(\text{bob}, \text{pam}), \ldots, \text{grandparent}(\text{pam}, \text{pam}), \ldots, \text{grandparent}(\text{bob}, \text{pam}), \ldots \}.\]
Herbrand Interpretations and Models

- A **Herbrand Interpretation** of a program P is an interpretation I such that:
 - The domain of the interpretation: $|I| = U_P$
 - For every constant c: $c_I = c$
 - For every function symbol f/n: $f_I(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$
 - For every predicate symbol p/n: $p_I \subseteq (U_P)^n$ (i.e. some subset of n-tuples of ground terms)
- A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

- All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
- Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
Herbrand Models

• We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.

• Example: Consider our numbers program, where

\{p(\text{zero}), \ p(s(s(\text{zero}))), \ p(s(s(s(s(\text{zero}))))), \ldots\}\}

represents the Herbrand model that treats

\[\text{p}_I=\{\text{zero}, s(s(\text{zero})), s(s(s(s(\text{zero}))))\}, \ldots \}

as the meaning of \(p\).

• If we have several predicates, the Herbrand interpretation would be a single set of all true predicates.
Sufficiency of Herbrand Models

- Let P be a definite program. If I' is a model of P then I = \{A \in Bp \mid I' \models A\} is a Herbrand model of P.

Proof (by contradiction):

- Assume that I' is a model of P but I (defined above) is not a model.
- Then there is some ground instance of a clause in P:
 \[A_0 : \neg A_1, \ldots, \neg A_n. \]
- which is not true in I i.e., I \models A_1, \ldots, I \models A_n but I \not\models A_0
- By definition of I then, I' \models A_1, \ldots, I' \models A_n but I' \not\models A_0
- Thus, I' is not a model of P, which contradicts our earlier assumption.
Definite programs only

- Let P be a definite program. If I' is a model of P then $I=\{A \in Bp \mid I' \models A\}$ is a Herbrand model of P.

This property holds only for definite programs!

- Example: Consider $P = \{\neg p(a), \exists X. p(X)\}$
 - There are two Herbrand interpretations: $I_1 = \{p(a)\}$ and $I_2 = \{\}$
 - The first is not a model of P since $I_1 \not\models \neg p(a)$
 - The second is not a model of P since $I_2 \not\models \exists X. p(X)$
 - But there are non-Herbrand models, such as I:
 - $| I | = N$ (the set of natural numbers)
 - $a_I = 0$
 - $p_I = \text{“is odd”}$
Properties of Herbrand Models

1. For any definite program P, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

2. If M is a set of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

3. For every definite program P there is a unique least model M_p such that:
 a) M_p is a Herbrand Model of P and,
 b) for every Herbrand Model M, $M_p \subseteq M$.

4. M_p = the set of all ground logical consequences of P.

Properties of Herbrand Models

- If \(M_1 \) and \(M_2 \) are Herbrand models of \(P \), then \(M = M_1 \cap M_2 \) is a model of \(P \).

Proof:
- Assume \(M = M_1 \cap M_2 \) is not a model.
- Then there is some clause \(A_0 : \neg A_1, \ldots, A_n \) such that \(M \models A_1, \ldots, M \models A_n \) but \(M \not\models A_0 \).
- Which means \(A_0 \not\in M_1 \) or \(A_0 \not\in M_2 \) by def. of \(\cap \).
- But \(A_1, \ldots, A_n \in M_1 \) as well as \(M_2 \).
- Hence one of \(M_1 \) or \(M_2 \) is not a model.
Properties of Herbrand Models

• There is a unique least Herbrand model.

Proof:

• Let M_1 and M_2 are two incomparable minimal Herbrand models (incomparable means neither one is a subset of the other), but $M = M_1 \cap M_2$ is also a Herbrand model (previous theorem), and $M \subset M_1$ or $M \subset M_2$

• Thus M_1 on M_2 is not minimal.
Least Herbrand Model

• The least Herbrand model M_p of a definite program P is the set of all ground logical consequences of the program:

$$M_p = \{ A \in B_p \mid P \models A \}$$

Proof:

• First, $M_p \supseteq \{ A \in B_p \mid P \models A \}$ (i.e., M_p is a superset of the logical consequences $\{ A \in B_p \mid P \models A \}$):
 • By definition of logical consequence, $P \models A$ means that A must be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

- Second, $M_p \subseteq \{ A \in B_p \mid P \models A \}$ (i.e., M_p is a subset of the logical consequences $\{ A \in B_p \mid P \models A \}$):
 - Assume that A is in M_p. Hence, A is in every Herbrand model of P by def. of M_p (i.e., subset of all models)
 - Assume that A is not true in some non-Herbrand model of P: $I' \models \neg A$
 - By sufficiency of Herbrand models (i.e., If I' is a model of P then $I' = \{ A \in B_p \mid I' \models A \}$ is a Herbrand model of P), there is some Herbrand model I such that $I \models \neg A$
 - Hence A cannot be an element of the Herbrand model I
 - This contradicts that A is in every Herbrand model of P, and their intersection M_p
Construction of Least Herbrand Models

- **Definition: Immediate consequence operator:**
 - Given an interpretation $I \subseteq Bp$, construct I' such that

 $I' = \{ A_0 \in Bp \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}$
 - I' is said to be the *immediate consequence of* I written as $I' = Tp(I)$, where Tp is called the *immediate consequence operator*.

- Consider the sequence:

 $\emptyset, Tp(\emptyset), Tp(Tp(\emptyset)), \ldots, Tp^i(\emptyset), \ldots$

- $Mp \supseteq Tp^i(\emptyset)$ for all i (*Mp is a superset of all $Tp^i(\emptyset)$*)

- Let $Tp \uparrow \omega = \bigcup_{i=0,\infty} Tp^i(\emptyset)$

Then $Mp = Tp \uparrow \omega$
Computing Least Herbrand Models: An Example

\[\text{parent}(pam, \text{bob}). \]
\[\text{parent}(tom, \text{bob}). \]
\[\text{parent}(tom, \text{liz}). \]
\[\text{parent}(bob, \text{ann}). \]
\[\text{parent}(bob, \text{pat}). \]
\[\text{parent}(pat, \text{jim}). \]

\[\text{anc}(X, Y) : - \text{parent}(X, Y). \]
\[\text{anc}(X, Y) : - \text{parent}(X, Z), \text{anc}(Z, Y). \]

\[M_1 = \emptyset \]
\[M_2 = T_P(M_1) = \{ \text{parent}(pam, bob), \text{parent}(tom, bob), \text{parent}(tom, liz), \text{parent}(bob, ann), \text{parent}(bob, pat), \text{parent}(pat, jim) \} \]
\[M_3 = T_P(M_2) = \{ \text{anc}(pam, bob), \text{anc}(tom, bob), \text{anc}(tom, liz), \text{anc}(bob, ann), \text{anc}(bob, pat), \text{anc}(pat, jim) \} \cup M_2 \]
\[M_4 = T_P(M_3) = \{ \text{anc}(pam, ann), \text{anc}(pam, pat), \text{anc}(tom, ann), \text{anc}(tom, pat), \text{anc}(bob, jim) \} \cup M_3 \]
\[M_5 = T_P(M_4) = \{ \text{anc}(pam, jim), \{ \text{anc}(tom, jim) \} \} \cup M_4 \]
\[M_6 = T_P(M_5) = M_5 \]
Computing Mp

- Computing the least Herbrand model, M_p, as the \textbf{least fixed point} of T_p:
 - terminates for $\textit{Datalog}$ programs (i.e., programs w/o function symbols)
 - may not terminate in general (because it could be infinite)
 - For programs with function symbols
 - Even for Datalog programs, computing least fixed point directly using the T_p operator is \underline{wasteful} (known as \textit{Naive} evaluation)
 - Note that $T_p^i(\emptyset) \subseteq T_p^{i+1}(\emptyset)$ for all i
 - We can calculate $\Delta T_p^{i+1}(\emptyset) = T_p^{i+1}(\emptyset) - T_p^i(\emptyset)$ [The difference between the sets computed in two successive iterations] (this strategy is known as the \textit{semi-naive} evaluation)