Definite Logic Programs: Models

CSE 505 – Computing with Logic Stony Brook University <u>htTp://www.cs.stonybrook.edu/~cse505</u>

Logical Consequences of Formulae

- Recall: F is a *logical consequence* of P (i.e. $P \models F$) iff
- Every model of P is also a model of F.
 Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?
 - Solution: choose (one) "*canonical*" model I such that

$I \vDash P$ and $I \vDash F \rightarrow P \vDash F$

Definite Clauses

- A formula of the form p(t₁, t₂, ..., t_n), where p/n is an n-ary predicate symbol and t_i are all terms is said to be *atomic*.
- If **A** is an atomic formula then:
 - **A** is said to be a *positive literal*
 - ¬A is said to be a *negative literal*
- A formula of the form \$\formstyle (\mathbf{L}_1 \vee \mathbf{L}_2 \vee \cdots ... \vee \mathbf{L}_n)\$ where each \$\mathbf{L}_1\$ is a literal (negative or positive) is called a *clause*.
- A clause ∀(L₁ ∨ L₂ ∨ ... ∨ L_n) where exactly one literal is positive is called a *definite clause* (also called *Horn clause*).
 - A definite clause is usually written as:
 - $\forall (\mathbf{A_0} \lor \neg \mathbf{A_1} \lor \ldots \lor \neg \mathbf{A_n})$
 - or equivalently as: $\mathbf{A}_0 \leftarrow \mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$.
- A *definite program* is a set of definite clauses.

Herbrand Universe

- Given an alphabet A, the set of all <u>ground</u>
 <u>terms</u> constructed from the constant and
 function symbols of A is called the *Herbrand Universe* of A (denoted by U_A).
- Consider the program:

p(zero).

- Jacques Herbrand (1908 –1931)
- The Herbrand Universe of the program's alphabet
 - is: $U_A = \{ \texttt{zero}, \texttt{s}(\texttt{zero}), \texttt{s}(\texttt{s}(\texttt{zero})), ... \}$

 $p(s(s(X))) \leftarrow p(X)$.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Herbrand Universe: Example Consider the "relations" program:

- parent(pam, bob). parent(bob, ann).
- parent(tom, bob). parent(bob, pat).
- parent(tom, liz). parent(pat, jim).
- grandparent(X,Y) :
 - parent(X,Z), parent(Z,Y).
- The Herbrand Universe of the program's alphabet is:
- $\mathbf{U}_{\mathbf{A}} = \{ \texttt{pam}, \texttt{bob}, \texttt{tom}, \texttt{liz}, \texttt{ann}, \texttt{pat}, \texttt{jim} \}$

Herbrand Base

- Given an alphabet A, the set of all <u>ground</u> atomic formulas over A is called the *Herbrand Base* of A (denoted by B_A)
- Consider the program:
 - p(zero).
 - $p(s(s(X))) \leftarrow p(X)$.
- The Herbrand Base of the program's alphabet
 is: B_A={p(zero), p(s(zero)),
 p(s(s(zero))),...}

Herbrand Base: Example

- Consider the "relations" program:
 - parent(pam, bob). parent(bob, ann).
 - parent(tom, bob). parent(bob, pat).
 - parent(tom, liz).
 - grandparent(X,Y) :-
- parent(pat, jim).
- parent(X,Z), parent(Z,Y).
- The Herbrand Base of the program's alphabet is: $B_A = \{parent(pam, pam), parent(pam, bob), parent(pam, tom), ..., parent(bob, pam), ..., grandparent(bob, pam), ..., grandparent(bbb, pam), ..., g$

Herbrand Interpretations and Models

- A *Herbrand Interpretation* of a program P is an interpretation I such that:
 - The domain of the interpretation: $|I| = U_p$
 - For every constant $\mathbf{c}: \mathbf{c}_{I} = \mathbf{c}$
 - For every function symbol **f/n**:

$$f_{I}(x_{1}, \dots, x_{n}) = f(x_{1}, \dots, x_{n})$$

- For every predicate symbol $\mathbf{p/n}: \mathbf{p}_{I} \subseteq (U_{P})^{n}$ (i.e. some subset of \mathbf{n} -tuples of ground terms)
- A *Herbrand Model* of a program P is a Herbrand interpretation that is a model of P.

Herbrand Models

- All Herbrand interpretations of a program give the same "meaning" to the constant and function symbols
 - Different Herbrand interpretations differ only in the *"meaning"* they give to the predicate symbols

Herbrand Models

- We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model
 - Example: Consider our numbers program, where
- {p(zero), p(s(s(zero))), p(s(s(s(zero))))),...}
 - represents the Herbrand model that treats
- $p_{I} = \{zero, s(s(zero)), s(s(s(zero)))), \ldots \}$
 - as the meaning of **p**.
 - If we have several predicates, the Herbrand interpretation would be a single set of all true predicates

Sufficiency of Herbrand Models

• Let P be a definite program. If I' is a <u>model of P</u> then $I = \{ \mathbf{A} \in Bp \mid I' \models \mathbf{A} \}$ is a <u>Herbrand model of P</u>.

Proof (by contradiction):

- Assume that I' is a model of P but I (defined above) is not a model.
- Then there is some ground instance of a clause in P:

 \mathbf{A}_0 :- \mathbf{A}_1 , ..., \mathbf{A}_n .

- which is not true in I i.e., $I \vDash A_1, ..., I \vDash A_n$ but $I \nvDash A_0$
- By definition of I then, $I' \vDash \mathbf{A_1}, ..., I' \vDash \mathbf{A_n}$ but I' $\nvDash \mathbf{A_0}$
- Thus, I' is not a model of P, which contradicts our earlier assumption.

Definite programs only

- Let P be a definite program. If I' is a model of P then $I = \{ \mathbf{A} \in Bp \mid I' \models \mathbf{A} \}$ is a Herbrand model of P.
- This property holds only for definite programs!
 - Example: Consider $P = \{\neg p(a), \exists X.p(X)\}$
 - There are two Herbrand interpretations: $I_1 = \{p(a)\}$ and $I_2 = \{\}$
 - The first is not a model of P since $I_1 \not\models \neg p(a)$
 - The second is not a model of P since $I_2 \not\models \exists X.p(X)$
 - But there are non-Herbrand models, such as I:
 - |I| = N (the set of natural numbers)

•
$$a_I \equiv 0$$

•
$$p_I =$$
"is odd"

Properties of Herbrand Models

- 1. For any definite program P, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.
- If M is a set of Herbrand Models of a definite program
 P, then ∩M is also a Herbrand Model of P.
- For every definite program P there is a <u>unique</u> *least* model Mp such that:
 - a) Mp is a Herbrand Model of P and,
 - b) for every Herbrand Model M, $Mp \subseteq M$.

4. Mp = the set of all ground logical consequences of P.

• If M_1 and M_2 are Herbrand models of P, then $M=M_1 \cap M_2$ is a model of P. Proof:

•Assume $M = M_1 \cap M_2$ is not a model.

- Then there is some clause $\mathbf{A}_0:=\mathbf{A}_1, \ldots, \mathbf{A}_n$ such that $M \models \mathbf{A}_1, \ldots, M \models \mathbf{A}_n$ but $M \models \mathbf{A}_0$
- Which means $\mathbf{A}_0 \notin M1$ or $\mathbf{A}_0 \notin M2$ by def. of \cap
- But $\mathbf{A_1}, \dots, \mathbf{A_n} \in M_1$ as well as M_2 .
- •Hence one of M_1 or M_2 is not a model.

Properties of Herbrand Models
There is a unique least Herbrand model.
<u>Proof:</u>

Let M₁ and M₂ are two incomparable <u>minimal</u> Herbrand models (incomparable means neither one is a subset of the other), but M=M₁∩M₂ is also a Herbrand model (previous theorem), and M⊂M₁ or M⊂M₂
Thus M₁ on M₂ is not minimal.

Least Herbrand Model • The *least Herbrand model* Mp of a definite program P is the set of all ground logical <u>consequences of the program:</u> $Mp = \{A \in Bp \mid P \models \mathbf{A}\}$ Proof:

First, Mp ⊇ {A ∈ Bp | P ⊨ A} (i.e., Mp is a superset of the logical consequences {A∈Bp | P⊨A}):
By definition of logical consequence, P ⊨ A means that A must be in every model of P and hence also in the least Herbrand model.

Least Herbrand Model

- Second, $Mp \subseteq \{A \in Bp \mid P \vDash A\}$ (i.e., Mp is a subset of the logical consequences $\{A \in Bp \mid P \vDash A\}$):
 - Assume that **A** is in Mp. Hence, **A** is in every Herbrand model of P by def. of Mp (i.e., subset of all models)
 - Assume that A is not true in some non-Herbrand model of P:
 I' ⊨ ¬A
 - By sufficiency of Herbrand models (i.e., If I' is a model of P then I={A∈Bp | I' ⊨ A} is a Herbrand model of P), there is some Herbrand model I such that I ⊨ ¬A
 - Hence **A** cannot be an element of the Herbrand model I
 - This contradicts that **A** is in every Herbrand model of P, and their intersection Mp

Construction of Least Herbrand Models

- Definition: *Immediate consequence operator:*
 - Given an interpretation $I \subseteq Bp$, construct I' such that
 - $I' = \{ \mathbf{A}_0 \in Bp \mid \mathbf{A}_0 \leftarrow \mathbf{A}_1, \dots, \mathbf{A}_n \text{ is a ground} \\ \text{instance of a clause in P and } \mathbf{A}_1, \dots, \mathbf{A}_n \in I \}$
 - I' is said to be the *immediate consequence of* I written as I' = Tp(I), where Tp is called the *immediate consequence operator*.
- Consider the sequence:
 - \emptyset , Tp(\emptyset), Tp(Tp(\emptyset)),..., Tpⁱ(\emptyset),...
 - Mp \supseteq Tpⁱ(\emptyset) for all i (Mp is a **superset** of all Tpⁱ(\emptyset))
 - Let $Tp \uparrow \omega = U_{i=0,\infty}Tp^i(\mathbf{0})$
 - Then Mp = Tp $\uparrow \omega$

Computing Least Herbrand Models: An Example

<pre>parent(pam, bob). parent(tom, bob). parent(tom, liz). parent(bob, ann). parent(bob, pat). parent(pat, jim).</pre>	$\frac{M_1}{M_2 = T_P(M_1) =}$	<pre>Ø {parent(pam,bob), parent(tom,bob), parent(tom,liz), parent(bob,ann), parent(bob,pat), parent(pat,jim) }</pre>
anc(X,Y) :-	$M_3 = T_P(M_2) =$	{anc(pam,bob), anc(tom,bob),
<pre>parent(X,Y).</pre>		anc(tom,liz), anc(bob,ann),
anc(X,Y) :-		<pre>anc(bob,pat), anc(pat,jim) }</pre>
<pre>parent(X,Z),</pre>		$\cup M_2$
anc(Z,Y).	$M_4 = T_P(M_3) =$	{anc(pam,ann), anc(pam,pat),
		anc(tom, ann), anc(tom, pat),
		anc(bob,jim) $\} \cup M_3$
	$M_5 = T_P(M_4) =$	
		$\cup M_4$
	$M_6 = T_P(M_5) =$	<i>M</i> ₅

Computing Mp

- Computing the least Herbrand model, Mp, as the <u>least fixed</u> <u>point</u> of Tp:
 - terminates for *Datalog* programs (i.e., programs w/o function symbols)
 - may not terminate in general (because it could be infinite)
 For programs with function symbols
- Even for Datalog programs, computing least fixed point directly using the Tp operator is <u>wasteful</u> (known as *Naive* evaluation)
 Note that Tpⁱ(Ø) ⊆ Tpⁱ⁺¹(Ø) for all i
 - We can calculate ΔTpⁱ⁺¹(Ø) = Tpⁱ⁺¹(Ø) Tpⁱ(Ø) [The difference between the sets computed in two successive iterations] (this strategy is known as the *semi-naive* evaluation)