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Logical Consequences of Formulae
Recall: F is a logical consequence of P (i.e. P ⊨ F) 

iff

Every model of P is also a model of F.

 Since there are (in general) infinitely many possible 

interpretations, how can we check if F is a logical 

consequence of P?
Solution: choose (one) "canonical" model I such that

I ⊨ P   and   I ⊨ F    → P ⊨ F
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Definite Clauses
 A formula of the form p(t1, t2, …, tn), where p/n is an n-ary

predicate symbol and ti are all terms is said to be atomic.

 If A is an atomic formula then:

 A is said to be a positive literal

 ¬A is said to be a negative literal

 A formula of the form ∀(L1 ∨ L2 ∨… ∨ Ln) where each Li is a literal 

(negative or positive) is called a clause.

 A clause ∀(L1 ∨ L2 ∨… ∨ Ln) where exactly one literal is positive is 

called a definite clause (also called Horn clause).

 A definite clause is usually written as:

 ∀(A0 ∨ ¬A1 ∨… ∨ ¬An) 

 or equivalently as:   A0← A1, A2, …, An.

 A definite program is a set of definite clauses.
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Herbrand Universe
Given an alphabet A, the set of all ground 

terms constructed from the constant and 

function symbols of A is called the Herbrand

Universe of A (denoted by UA).

Consider the program:

p(zero).

p(s(s(X))) ← p(X).

The Herbrand Universe of the program's alphabet 

is: UA = {zero,s(zero),s(s(zero)),…}
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Herbrand Universe: Example
Consider the "relations" program:

parent(pam, bob).    parent(bob, ann).

parent(tom, bob).    parent(bob, pat).

parent(tom, liz).    parent(pat, jim).

grandparent(X,Y) :-

parent(X,Z), parent(Z,Y).

The Herbrand Universe of the program's 

alphabet is: 

UA = {pam, bob, tom, liz, ann, pat, jim}
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Herbrand Base
Given an alphabet A, the set of all ground 

atomic formulas over A is called the 

Herbrand Base of A (denoted by BA)

Consider the program:

p(zero).

p(s(s(X))) ← p(X).

The Herbrand Base of the program's alphabet 

is: BA={p(zero), p(s(zero)), 

p(s(s(zero))),…}
6



(c) Paul Fodor (CS Stony Brook) and Elsevier

Herbrand Base: Example
Consider the "relations" program:

parent(pam, bob).    parent(bob, ann).

parent(tom, bob).    parent(bob, pat).

parent(tom, liz).    parent(pat, jim).

grandparent(X,Y) :-

parent(X,Z), parent(Z,Y).

The Herbrand Base of the program's alphabet is: 

BA={parent(pam, pam), parent(pam, bob), 
parent(pam, tom), ..., parent(bob, pam), ..., 

grandparent(pam,pam),...,grandparent(bob,pam),

...}.
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Herbrand Interpretations and Models
 A Herbrand Interpretation of a program P is an 

interpretation I such that:

The domain of the interpretation: |I| = UP

For every constant c: cI = c

For every function symbol f/n: 

fI(x1,…,xn) = f(x1,…,xn)

For every predicate symbol p/n: pI⊆ (UP)n

(i.e. some subset of n-tuples of ground terms)

 A Herbrand Model of a program P is a Herbrand

interpretation that is a model of P.
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Herbrand Models
All Herbrand interpretations of a program give the 

same “meaning” to the constant and function 

symbols 

Different Herbrand interpretations differ only in the 

“meaning” they give to the predicate symbols
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Herbrand Models
We often write a Herbrand model simply by 

listing the subset of the Herbrand base that is true 

in the model 

Example: Consider our numbers program, where

{p(zero), p(s(s(zero))), p(s(s(s(s(zero))))),…}

represents the Herbrand model that treats 

pI={zero,s(s(zero)),s(s(s(s(zero)))), . . .} 

as the meaning of p.

 If we have several predicates, the Herbrand interpretation 

would be a single set of all true predicates
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Sufficiency of Herbrand Models
 Let P be a definite program. If I' is a model of P then 

I={A ∈ Bp | I' ⊨ A} is a Herbrand model of P. 

Proof (by contradiction): 

 Assume that I' is a model of P but I (defined above) is not a 

model. 

 Then there is some ground instance of a clause in P: 

A0 :− A1, ..., An.

 which is not true in I i.e., I ⊨ A1, ..., I ⊨ An but I ⊯A0
 By definition of I then, I' ⊨ A1, ..., I' ⊨ An but I' ⊯ A0

 Thus, I' is not a model of P, which contradicts our earlier 

assumption. 
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Definite programs only
 Let P be a definite program. If I' is a model of P then 

I={A ∈ Bp | I' ⊨ A} is a Herbrand model of P. 

 This property holds only for definite programs!

 Example: Consider P = {¬p(a), ∃X.p(X)}
 There are two Herbrand interpretations:I1={p(a)} and I2={}

 The first is not a model of P since I1 ⊯ ¬p(a) 

 The second is not a model of P since I2 ⊯ ∃X.p(X) 

 But there are non-Herbrand models, such as I:

 | I | = N (the set of natural numbers) 

 aI = 0 

 pI = “is odd”
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Properties of Herbrand Models 
1. For any definite program P, if every Herbrand Model 

of P is also a Herbrand Model of F, then P ⊨ F. 

2. If M is a set of Herbrand Models of a definite program 

P, then ∩M is also a Herbrand Model of P. 

3. For every definite program P there is a unique least 

model Mp such that:

a) Mp is a Herbrand Model of P and, 

b) for every Herbrand Model M, Mp⊆M. 

4. Mp = the set of all ground logical consequences of P.
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Properties of Herbrand Models
If M1 and M2 are Herbrand models of P, then 

M=M1∩M2 is a model of P.

Proof:
Assume M=M1∩M2 is not a model. 

Then there is some clause A0:− A1, ..., An such 

that M⊨A1,…, M ⊨ An but M ⊯ A0

Which means A0 ∉M1 or A0 ∉M2 by def. of ∩

But A1,..., An ∈M1 as well as M2. 

Hence one of M1 or M2 is not a model. 
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Properties of Herbrand Models
There is a unique least Herbrand model.

Proof:

Let M1 and M2 are two incomparable minimal

Herbrand models (incomparable means neither 

one is a subset of the other), but M=M1∩M2 is 

also a Herbrand model (previous theorem), and 

M⊂M1 or M⊂M2

Thus M1 on M2 is not minimal.
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Least Herbrand Model 
The least Herbrand model Mp of a definite 

program P is the set of all ground logical 

consequences of the program:

Mp = {A ∈ Bp | P ⊨ A} 
Proof:

First, Mp ⊇ {A ∈ Bp | P ⊨ A} (i.e., Mp is a 

superset of the logical consequences{A∈Bp|P⊨A}): 

By definition of logical consequence, P ⊨ A means that A

must be in every model of P and hence also in the 

least Herbrand model. 
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Least Herbrand Model 
Second, Mp⊆ {A ∈ Bp | P ⊨A} (i.e., Mp is a subset

of the logical consequences{A∈Bp|P⊨A}): 
 Assume that A is in Mp. Hence, A is in every Herbrand model 

of P by def. of Mp (i.e., subset of all models) 

 Assume that A is not true in some non-Herbrand model of P: 

I' ⊨ ¬A

 By sufficiency of Herbrand models (i.e., If I' is a model of P then 

I={A ∈ Bp | I' ⊨ A} is a Herbrand model of P), there is some 

Herbrand model I such that I ⊨ ¬A

 Hence A cannot be an element of the Herbrand model I

 This contradicts that A is in every Herbrand model of P, and 

their intersection Mp
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Construction of Least Herbrand Models
 Definition: Immediate consequence operator: 

Given an interpretation I ⊆ Bp, construct I' such that 

I' = {A0 ∈ Bp | A0← A1,..., An is a ground 

instance of a clause in P and A1,..., An ∈ I} 

 I' is said to be the immediate consequence of I 

written as I' = Tp(I), where Tp is called the immediate 

consequence operator.

 Consider the sequence: 

∅, Tp(∅), Tp(Tp(∅)),..., Tpi(∅),... 

Mp ⊇Tpi(∅) for all i (Mp is a superset of  all Tpi(∅)) 

Let Tp ↑ω = ∪i=0,∞ Tpi(∅) 

Then Mp = Tp ↑ω
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Computing Least Herbrand Models: An Example 
parent(pam, bob). 

parent(tom, bob). 

parent(tom, liz). 

parent(bob, ann). 

parent(bob, pat). 

parent(pat, jim). 

anc(X,Y) :-

parent(X,Y). 

anc(X,Y) :-

parent(X,Z), 

anc(Z,Y).
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Computing Mp
 Computing the least Herbrand model, Mp, as the least fixed 

point of Tp: 

 terminates for Datalog programs (i.e., programs w/o 

function symbols) 

 may not terminate in general (because it could be infinite)

 For programs with function symbols 

 Even for Datalog programs, computing least fixed point directly 

using the Tp operator is wasteful (known as Naive evaluation) 

 Note that Tpi(∅) ⊆Tpi+1(∅) for all i

 We can calculate ∆Tpi+1(∅) = Tpi+1(∅) − Tpi(∅) [The difference 

between the sets computed in two successive iterations] (this 

strategy is known as the semi-naive evaluation)
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