Definite Logic Programs: Models

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Logical Consequences of Formulae

• Recall: \(F \) is a *logical consequence* of \(P \) (i.e. \(P \models F \)) iff

 Every model of \(P \) is also a model of \(F \).

• Since there are (in general) infinitely many possible interpretations, how can we check if \(F \) is a logical consequence of \(P \)?

• Solution: choose one "canonical" model \(I \) such that

 \[
 I \models P \quad \text{and} \quad I \models F \quad \Rightarrow \quad P \models F
 \]
Definite Clauses

- A formula of the form $p(t_1, t_2, \ldots, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be atomic.

- If A is an atomic formula then
 - A is said to be a positive literal
 - $\neg A$ is said to be a negative literal

- A formula of the form $\forall(L_1 \lor L_2 \lor \ldots \lor L_n)$ where each L_i is a literal (negative or positive) is called a clause.

- A clause $\forall(L_1 \lor L_2 \lor \ldots \lor L_n)$ where exactly one literal is positive is called a definite clause (also called Horn clause).

 - A definite clause is usually written as:
 - $\forall(A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n)$
 - or equivalently as $A_0 \leftarrow A_1, A_2, \ldots, A_n$.

- A definite program is a set of definite clauses.
Herbrand Universe

• Given an alphabet A, the set of all **ground terms** constructed from the constant and function symbols of A is called the *Herbrand Universe* of A (denoted by U_A).

• Consider the program:

\[
p(zero).
p(s(s(X))) \leftarrow p(X).\]

• The Herbrand Universe of the program's alphabet is: $U_A = \{zero, s(zero), s(s(zero)), \ldots\}$
Herbrand Universe: Example

- Consider the "relations" program:

\[
\text{parent}(\text{pam}, \text{bob}). \quad \text{parent}(\text{bob}, \text{ann}). \\
\text{parent}(\text{tom}, \text{bob}). \quad \text{parent}(\text{bob}, \text{pat}). \\
\text{parent}(\text{tom}, \text{liz}). \quad \text{parent}(\text{pat}, \text{jim}). \\
\text{grandparent}(X,Y) :- \\
\quad \text{parent}(X,Z), \text{parent}(Z,Y).
\]

- The Herbrand Universe of the program's alphabet is:

\[
U_A = \{\text{pam, bob, tom, liz, ann, pat, jim}\}
\]
Herbrand Base

• Given an alphabet A, the set of all \textbf{ground atomic formulas} over A is called the \textit{Herbrand Base} of A (denoted by B_A).

• Consider the program:

$$p(zero).$$

$$p(s(s(X))) \leftarrow p(X).$$

• The Herbrand Base of the program's alphabet is:

$$B_A = \{ p(zero), p(s(zero)), p(s(s(zero))), \ldots \}$$
Herbrand Base: Example

- Consider the "relations" program:

 parent(pam, bob).
 parent(bob, ann).
 parent(tom, bob).
 parent(bob, pat).
 parent(tom, liz).
 parent(pat, jim).
 grandparent(X,Y) :-
 parent(X,Z), parent(Z,Y).

- The Herbrand Base of the program's alphabet is:

 \(B_A = \{ \text{parent(pam, pam), parent(pam, bob), parent(pam, tom), ..., parent(bob, pam), ..., grandparent(pam, pam), ..., grandparent(bob, pam)} \} \).
A **Herbrand Interpretation** of a program P is an interpretation I such that:

- The domain of the interpretation: $|I| = U_p$
- For every constant c: $c_I = c$
- For every function symbol f/n: $f_I(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$
- For every predicate symbol p/n: $p_I \subseteq (U_p)^n$ (i.e. some subset of n-tuples of ground terms)

A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

- All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
- Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
- We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.
- Example: Consider our numbers program, where

\{p(zero), \ p(s(s(zero))), \ p(s(s(s(s(zero)))))\}, \ldots\}

represents the Herbrand model that treats

\(p_I=\{zero, s(s(zero)), s(s(s(s(zero))))\}, \ldots\}

as the meaning of \(p\).
Sufficiency of Herbrand Models

- Let P be a definite program. If I' is a model of P then
 $I = \{ A \in Bp \mid I' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

Let I be a Herbrand interpretation.
Assume that I' is a model of P but I is not a model.
Then there is some ground instance of a clause in P:

$$A_0 \leftarrow A_1, \ldots, A_n.$$

which is not true in I i.e., $I \models A_1, \ldots, I \models A_n$ but $I \not\models A_0$.

By definition of I then, $I' \models A_1, \ldots, I' \models A_n$ but $I' \not\models A_0$.
Thus, I' is not a model of P, which contradicts our earlier assumption.
Definite programs only

Let P be a definite program. If I' is a model of P then $I = \{A \in Bp \mid I' \models A\}$ is a Herbrand model of P.

This property holds only for definite programs!

Consider $P = \{\neg p(a), \exists X.p(X)\}$

- There are two Herbrand interpretations: $I_1 = \{p(a)\}$ and $I_2 = \{\}$
 - The first is not a model of P since $I_1 \not\models \neg p(a)$.
 - The second is not a model of P since $I_2 \not\models \exists X.p(X)$

But there is a non-Herbrand model I:
- $|I| = \mathbb{N}$, the set of natural numbers
- $a_1 = 0$
- $p_1 = \text{“is odd”}
Properties of Herbrand Models

1) If M is a set of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

2) For every definite program P there is a unique least model M_p such that:
 - M_p is a Herbrand Model of P and,
 - for every Herbrand Model M, $M_p \subseteq M$.

3) For any definite program, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

4) $M_p = \text{the set of all ground logical consequences of } P$.
Properties of Herbrand Models

• If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
• Assume M is not a model.
• Then there is some clause $A_0 : \neg A_1, \ldots, A_n$ such that $M \models A_1, \ldots, M \models A_n$ but $M \not\models A_0$.
• Which means $A_0 \notin M_1$ or $A_0 \notin M_2$.
• But $A_1, \ldots, A_n \in M_1$ as well as M_2.
• Hence one of M_1 or M_2 is not a model.
Properties of Herbrand Models

• There is a unique least Herbrand model

• Let M_1 and M_2 are two incomparable minimal Herbrand models, i.e., $M = M_1 \cap M_2$ is also a Herbrand model (previous theorem), and $M \subseteq M_1$ and $M \subseteq M_2$

• Thus M_1 and M_2 are not minimal.
Least Herbrand Model

• The *least Herbrand model* M_p of a definite program P is the set of all ground logical consequences of the program.

$$M_p = \{ A \in B_p \mid P \models A \}$$

• First, $M_p \supseteq \{ A \in B_p \mid P \models A \}$:
 • By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

• Second, $M_p \subseteq \{ A \in B_p \mid P \models A \}$:
 • If $M_p \models A$ then A is in every Herbrand model of P.
 • But assume there is some model $I' \models \neg A$.
 • By sufficiency of Herbrand models, there is some Herbrand model I such that $I \models \neg A$.
 • Hence A is not in some Herbrand model, and hence is not in M_p.
Finding the Least Herbrand Model

- **Immediate consequence operator:**
 - Given $I \subseteq B_p$, construct I' such that

 $$I' = \{ A_0 \in B_p \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}$$
 - I' is said to be the immediate consequence of I.
 - Written as $I' = T_p(I)$, T_p is called the immediate consequence operator.

- Consider the sequence:

 $$\emptyset, T_p(\emptyset), T_p(T_p(\emptyset)), \ldots, T_p^i(\emptyset), \ldots$$

- $M_p \supseteq T_p^i(\emptyset)$ for all i.

- Let $T_p \uparrow \omega = \bigcup_{i=0,\infty} T_p^i(\emptyset)$

- Then $M_p \subseteq T_p \uparrow \omega$
Computing Least Herbrand Models: An Example

\[\text{parent}(pam, \text{bob}). \]
\[\text{parent}(\text{tom}, \text{bob}). \]
\[\text{parent}(\text{tom}, \text{liz}). \]
\[\text{parent}(\text{bob}, \text{ann}). \]
\[\text{parent}(\text{bob}, \text{pat}). \]
\[\text{parent}(\text{pat}, \text{jim}). \]

\[
\text{anc}(X,Y) : - \\
\text{parent}(X,Y). \\
\text{anc}(X,Y) : - \\
\text{parent}(X,Z), \text{anc}(Z,Y).
\]

<table>
<thead>
<tr>
<th>M_1</th>
<th>\emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2 = T_P(M_1) =$</td>
<td>{parent(pam,bob), parent(tom,bob), parent(tom,liz), parent(bob,ann), parent(bob,pat), parent(pat,jim)}</td>
</tr>
<tr>
<td>$M_3 = T_P(M_2) =$</td>
<td>{anc(pam,bob), anc(tom,bob), anc(tom,liz), anc(bob,ann), anc(bob,pat), anc(pat,jim)} \cup M_2</td>
</tr>
<tr>
<td>$M_4 = T_P(M_3) =$</td>
<td>{anc(pam,ann), anc(pam,pat), anc(tom,ann), anc(tom,pat), anc(bob,jim)} \cup M_3</td>
</tr>
<tr>
<td>$M_5 = T_P(M_4) =$</td>
<td>{anc(pam,jim), {anc(tom,jim)}} \cup M_4</td>
</tr>
<tr>
<td>$M_6 = T_P(M_5) =$</td>
<td>M_5</td>
</tr>
</tbody>
</table>

(c) Paul Fodor (CS Stony Brook) and Elsevier
Computing Mp: Practical Considerations

- Computing the least Herbrand model, Mp, as the least fixed point of Tp:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general.
- For programs with function symbols, computing logical consequence by first computing Mp is impractical.
- Even for Datalog programs, computing least fixed point directly using the Tp operator is wasteful (known as Naive evaluation).
- Note that $T_p^i(\emptyset) \subseteq T_p^{i+1}(\emptyset)$.
- We can calculate $\Delta T_p^{i+1}(\emptyset) = T_p^{i+1}(\emptyset) - T_p^i(\emptyset)$ [The difference between the sets computed in two successive iterations] This strategy is known as semi-naive evaluation.