Definite Logic Programs: Models

CSE 505 – Computing with Logic
Stony Brook University

htTp://www.cs.stonybrook.edu/~cse505
Logical Consequences of Formulae

• Recall: F is a logical consequence of P (i.e. $P \models F$) iff
 Every model of P is also a model of F.
• Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?
• Solution: choose (one) "canonical" model I such that
 $I \models P$ and $I \models F \implies P \models F$
Definite Clauses

- A formula of the form \(p(t_1, t_2, \ldots, t_n) \), where \(p/n \) is an \(n \)-ary predicate symbol and \(t_i \) are all terms is said to be atomic.

- If \(A \) is an atomic formula then
 - \(A \) is said to be a positive literal
 - \(\neg A \) is said to be a negative literal

- A formula of the form \(\forall(L_1 \lor L_2 \lor \ldots \lor L_n) \) where each \(L_i \) is a literal (negative or positive) is called a clause.

- A clause \(\forall(L_1 \lor L_2 \lor \ldots \lor L_n) \) where exactly one literal is positive is called a definite clause (also called Horn clause).

- A definite clause is usually written as:
 - \(\forall(A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n) \)
 - or equivalently as \(A_0 \leftarrow A_1, A_2, \ldots, A_n \).

- A definite program is a set of definite clauses.
Herbrand Universe

- Given an alphabet A, the set of all ground terms constructed from the constant and function symbols of A is called the Herbrand Universe of A (denoted by U_A).
- Consider the program:

 $p(zero).$

 $p(s(s(X))) \leftarrow p(X).$

- The Herbrand Universe of the program's alphabet is: $U_A = \{zero, s(zero), s(s(zero)), \ldots\}$
Herbrand Universe: Example

- Consider the "relations" program:

\[
\text{parent}(\text{pam, bob}). \quad \text{parent}(\text{bob, ann}). \\
\text{parent}(\text{tom, bob}). \quad \text{parent}(\text{bob, pat}). \\
\text{parent}(\text{tom, liz}). \quad \text{parent}(\text{pat, jim}). \\
\text{grandparent}(X,Y) : - \\
\quad \text{parent}(X,Z), \text{parent}(Z,Y).
\]

- The Herbrand Universe of the program's alphabet is:

\[U_A = \{\text{pam, bob, tom, liz, ann, pat, jim}\}\]
Herbrand Base

• Given an alphabet A, the set of all ground atomic formulas over A is called the Herbrand Base of A (denoted by B_A).

• Consider the program:

$$p(\text{zero}).$$

$$p(s(s(X))) \leftarrow p(X).$$

• The Herbrand Base of the program's alphabet is: $B_A = \{p(\text{zero}), p(s(\text{zero})), p(s(s(\text{zero}))), \ldots\}$
Herbrand Base: Example

- Consider the "relations" program:

 parent(pam, bob).
 parent(bob, ann).
 parent(tom, bob).
 parent(bob, pat).
 parent(tom, liz).
 parent(pat, jim).
 grandparent(X,Y) :-
 parent(X,Z), parent(Z,Y).

- The Herbrand Base of the program's alphabet is:

 \[B_A = \{ parent(pam, pam), parent(pam, bob), \\
 parent(pam, tom), \ldots, parent(bob, pam), \ldots, \\
 grandparent(pam, pam), \ldots, grandparent(bob, pam), \\
 \ldots \}. \]
Herbrand Interpretations and Models

- A **Herbrand Interpretation** of a program P is an interpretation I such that:
 - The domain of the interpretation: $|I| = U_P$
 - For every constant c: $c_I = c$
 - For every function symbol f/n:
 $f_I(x_1, ..., x_n) = f(x_1, ..., x_n)$
 - For every predicate symbol p/n:
 $p_I \subseteq (U_P)^n$
 (i.e. some subset of n-tuples of ground terms)
- A **Herbrand Model** of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

• All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
• Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
• We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.
• Example: Consider our numbers program, where
 \{p(zero), p(s(s(zero))), p(s(s(s(s(zero)))))), \ldots\}
 represents the Herbrand model that treats
 p_I=\{zero,s(s(zero)),s(s(s(s(zero)))))), \ldots\}
 as the meaning of p.
Sufficiency of Herbrand Models

Let P be a definite program. If I' is a model of P then $I = \{ A \in B_p \mid I' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

- Assume that I' is a model of P but I (defined above) is not a model.
- Then there is some ground instance of a clause in P: $A_0 :\neg A_1, \ldots, A_n$.
- which is not true in I i.e., $I \models A_1, \ldots, I \models A_n$ but $I \not\models A_0$
- By definition of I then, $I' \models A_1, \ldots, I' \models A_n$ but $I' \not\models A_0$
- Thus, I' is not a model of P, which contradicts our earlier assumption.
Definite programs only

- Let P be a definite program. If I' is a model of P then
 \(I = \{ A \in Bp \mid I' \models A \} \) is a Herbrand model of P.

- **This property holds only for definite programs!**
 - Example: Consider \(P = \{ \neg p(a), \exists X. p(X) \} \)
 - There are two Herbrand interpretations: \(I_1 = \{ p(a) \} \) and \(I_2 = \{ \} \)
 - The first is not a model of P since \(I_1 \not\models \neg p(a) \)
 - The second is not a model of P since \(I_2 \not\models \exists X. p(X) \)
 - But there are non-Herbrand models, such as I:
 - \(| I | = N \) (the set of natural numbers)
 - \(a_I = 0 \)
 - \(p_I = \text{“is odd”} \)
Properties of Herbrand Models

1. For any definite program P, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

2. If M is a set of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

3. For every definite program P there is a unique least model M_p such that:
 a) M_p is a Herbrand Model of P and,
 b) for every Herbrand Model M, $M_p \subseteq M$.

4. $M_p = \text{the set of all ground logical consequences of } P$.
Properties of Herbrand Models

• If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.

Proof:

• Assume $M = M_1 \cap M_2$ is not a model.
• Then there is some clause $A_0 : \neg A_1, \ldots, A_n$ such that $M \models A_1, \ldots, M \models A_n$ but $M \not\models A_0$
• Which means $A_0 \notin M_1$ or $A_0 \notin M_2$ by def. of \cap
• But $A_1, \ldots, A_n \in M_1$ as well as M_2.
• Hence one of M_1 or M_2 is not a model.
Properties of Herbrand Models

• There is a unique least Herbrand model

Proof:

• Let \(M_1 \) and \(M_2 \) are two incomparable \textbf{minimal} Herbrand models (incomparable means neither one is a subset of the other), but \(M = M_1 \cap M_2 \) is also a Herbrand model (previous theorem), and \(M \subset M_1 \) and \(M \subset M_2 \)

• Thus \(M_1 \) and \(M_2 \) are not minimal.
Least Herbrand Model

- The *least Herbrand model* M_p of a definite program P is the set of all ground logical consequences of the program:

$$M_p = \{ A \in B_p \mid P \models A \}$$

Proof:

- First, $M_p \supseteq \{ A \in B_p \mid P \models A \}$ (i.e., M_p is a superset of the logical consequences $\{A \in B_p \mid P \models A\}$):
 - By definition of logical consequence, $P \models A$ means that A must be in every model of P and hence also in the least Herbrand model.
Least Herbrand Model

• Second, $Mp \subseteq \{ A \in Bp \mid P \models A \}$ (i.e., Mp is a subset of the logical consequences $\{ A \in Bp \mid P \models A \}$):
 • Assume that A is in Mp. Hence, A is in every Herbrand model of P by def. of Mp (i.e., subset of all models)
 • Assume that A is not true in some non-Herbrand model of P: $I' \models \neg A$
 • By sufficiency of Herbrand models (i.e., If I' is a model of P then $I = \{ A \in Bp \mid I' \models A \}$ is a Herbrand model of P), there is some Herbrand model I such that $I \models \neg A$
 • Hence A cannot be an element of the Herbrand model I
 • This contradicts that A is in every Herbrand model of P, and their intersection Mp
Construction of Least Herbrand Models

- **Def.**: *Immediate consequence operator:*
 - Given an interpretation $I \subseteq Bp$, construct I' such that
 $$I' = \{ A_0 \in Bp \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}$$
 - I' is said to be the *immediate consequence of* I
 written as $I' = Tp(I)$, where Tp is called the *immediate consequence operator*

- Consider the sequence:
 $$\emptyset, Tp(\emptyset), Tp(Tp(\emptyset)), \ldots, Tp^i(\emptyset), \ldots$$

- $Mp \supseteq Tp^i(\emptyset)$ for all i (Mp is a *superset* of all $Tp^i(\emptyset)$)

- Let $Tp \uparrow \omega = \bigcup_{i=0,\infty} Tp^i(\emptyset)$

Then $Mp = Tp \uparrow \omega$
Computing Least Herbrand Models: An Example

\begin{align*}
\text{parent}(pam, \text{ bob}). \\
\text{parent}(tom, \text{ bob}). \\
\text{parent}(tom, \text{ liz}). \\
\text{parent}(bob, \text{ ann}). \\
\text{parent}(bob, \text{ pat}). \\
\text{parent}(pat, \text{ jim}). \\
\text{anc}(X,Y) : - \\
\text{parent}(X,Y). \\
\text{anc}(X,Y) : - \\
\text{parent}(X,Z), \\
\text{anc}(Z,Y).
\end{align*}

\[
\begin{array}{ll}
M_1 & \emptyset \\
M_2 = T_P(M_1) &= \{\text{parent}(pam,bob), \\
& \text{parent}(tom,bob), \\
& \text{parent}(tom,liz), \\
& \text{parent}(bob,ann), \\
& \text{parent}(bob,pat), \\
& \text{parent}(pat,jim) \} \\
M_3 = T_P(M_2) &= \{\text{anc}(pam,bob), \text{anc}(tom,bob), \\
& \text{anc}(tom,liz), \text{anc}(bob,ann), \\
& \text{anc}(bob,pat), \text{anc}(pat,jim) \} \\ & \cup M_2 \\
M_4 = T_P(M_3) &= \{\text{anc}(pam,ann), \text{anc}(pam,pat), \\
& \text{anc}(tom,ann), \text{anc}(tom,pat), \\
& \text{anc}(bob,jim) \} \cup M_3 \\
M_5 = T_P(M_4) &= \{\text{anc}(pam,jim), \{\text{anc}(tom,jim) \} \\ & \cup M_4 \\
M_6 = T_P(M_5) &= M_5
\end{array}
\]
Computing Mp: Practical Considerations

- Computing the least Herbrand model, Mp, as the least fixed point of Tp:
 - terminates for Datalog programs (i.e., programs w/o function symbols)
 - may not terminate in general (because it could be infinite)
 - For programs with function symbols, computing logical consequence by first computing Mp is impractical
- Even for Datalog programs, computing least fixed point directly using the Tp operator is wasteful (known as Naive evaluation)
- Note that $Tp^i(\emptyset) \subseteq Tp^{i+1}(\emptyset)$ for all i
- We can calculate $\Delta Tp^{i+1}(\emptyset) = Tp^{i+1}(\emptyset) - Tp^i(\emptyset)$ [The difference between the sets computed in two successive iterations] This strategy is known as the semi-naive evaluation