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Logical Consequences of Formula@

® Recall: Fis a logical consequence of P (i.e. P  F)
ift
Every model of P is also a model of F.

® Since there are (in general) infinitely many possible
interpretations, how can we check if F is a logical
consequence of P?

® Solution: choose (one) "canonical" model I such that

[EP and IEF 2> PEF
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‘Definite Clauses

* Aformula of the formp(t;, t,, .., t,), wherep/nisan n-ary

predicate symbol and t; are all terms is said to be atomic.

If A is an atomic formula then:
® A is said to be a positive literal

® A is said to be a negative literal

A formula of the form V(L; VL, V ... V L)) where each L, is a literal

(negative or positive) is called a clause.

A clause V(L; V L, V ... V L) where exactly one literal is positive is

called a definite clause (also called Horn clause).
® A definite clause is usually written as:

VA,V A;V...VTA)

or equivalently as: Ay <«— A, A,, ... A..

A deﬁm'te program is a set of definite clauses.
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Herbrand Universe

® Given an alphabet A, the set of all ground

terms constructed from the constant and

function symbols of A is called the H erbrand

Universe of A (denoted by U,).
® Consider the program:

p (zero) . <
P (s(s(X))) < P (X) . Jacqueserbrand

(1908 -1931)

® The Herbrand Universe of the prograrn's alphabet

is: U, = {zero,s (zero) ,s (s (zero)),...}
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"Herbrand Universe: Example

® Consider the "relations" program:

parent (pam, bob). parent (bob, ann).
parent (tom, bob). parent (bob, pat).
parent (tom, 1liz). parent (pat, Jjim).
grandparent (X,Y) :-

parent (X,2), parent(Z,Y).
® The Herbrand Universe of the program's
alphabet is:

U, = {pam, bob, tom, liz, ann, pat, jim}
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/Herbrand Base

® Given an alphabet A, the set of all ground

atomic formulas over A is called the
Herbrand Base of A (denoted by B,)

® Consider the program:

p (zero) .
p(s(s(X))) - p(X).

® The Herbrand Base of the program's alphabet

is: B,={p(zero), p(s(zero)),

p(s(s(zero))),...}
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"Herbrand Base: Example

® Consider the "relations" program:

parent (tom, 1liz). parent (pat,
grandparent (X,Y) :-
parent (X,2), parent(Z,Y).

BA:{parent(pam, pam) , parent (pam, bob),
parent (pam, tom), ..., parent(bob, pam),
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parent (pam, bob). parent (bob, ann).
parent (tom, bob). parent (bob, pat).

Jim) .

® The Herbrand Base of the program's alphabet is:

M 4

grandparent (pam,pam) , ... ,grandparent (bob,pam),
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Herbrand Interpretations and Models

* A Herbrand Interpretation of a program P is an

interpretation I such that:
® The domain of the interpretation: |I| = U,
® bor every constant C: €y = C
® For every function symbol £ /n:
£ o(xy,...,x)) = £(x;,..,%x)
® For every predicate symbol p/n: p; € (Up)"

(i.e. some subset of n-tuples of ground terms)

e A Herbrand Model of a program P is a Herbrand

interpretation that is a model of P.
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/Herbrand Models :

e All Herbrand interpretations of a program give the

same “meam‘ng” to the constant and function
symbols

® Different Herbrand interpretations differ only in the
“meam‘ng” they give to the predicate symbols

(c) Paul Fodor (CS Stony Brook) and Elsevier




/Herbrand Models

® We often write a Herbrand model simply by
listing the subset of the Herbrand base that is true
in the model

® Example: Consider our numbers program, where
{p(zero), p(s(s(zero))), p(s(s(s(s(zero))))),..}

represents the Herbrand model that treats
p={zero,s(s(zero)) ,s(s(s(s(zero)))),

as the meaning of p.

® [f we have several predicates, the Herbrand interpretation

would be a single set of all true predicates
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@uffioiency of Herbrand Models

® [ et P be a definite program. [f I'is a model of P then
[={A E€Bp | I' EA} isa Herbrand model of P.

Proof ( by contradiction):

® Assume that I' is a model of P but I (detined above) is not a
model.

® Then there is some ground instance of a clause in P:

AO . - Al / c o o g An N
® whichisnot trueinli.e., IF A, ..., TEA_butl [FA,
® By definition of I then, I' EA,, ...,I' E A butl' ¥ A,

® Thus, I' is not a model of P, which contradicts our earlier

assumption.
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Definite programs only

® [ et P be a definite program. [f I'is a model of P then
[={A E€Bp | I' EA} isa Herbrand model of P.

® This property holds only for definite programs!
® Example: Consider P = {7p(a), IX.p(X)}

There are two Herbrand interpretations:I,={p(a)} and I,={}
* The first is not a model of P since I; ¥ 7'p(a)
* The second is not a model of P since I, IF 3X.p(X)
But there are non-Herbrand models, such as I:
* | I | = N (the set of natural numbers)
°a, =0

* p; = “is odd”
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@roperties of Herbrand Models

1.

For any definite program P, if every Herbrand Model
of P is also a Herbrand Model of F, then P E F.

. If M is a set of Herbrand Models of a definite program
P, then MM is also a Herbrand Model of P.

model Mp such that:
a) Mp is a Herbrand Model of P and,
b) for every Herbrand Model M, Mp & M.

4. Mp = the set of all grouné_ logical consequences of P.

(-
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@roperties of Herbrand Models

o[t M, and M, are Herbrand models of P, then

M:MlﬂM2 is a model of P.
Prootf:
® Assume M=M, ﬂMz is not a model.

® Then there is some clause Ay:— A, ..., A such
that MEA,,..., M EA_butM IF A,

®* Which means A, & M1 or A, & M2 by def. of N
°ButA,,..., A, EM, as well as M,.

®*Hence one ot M, or M, is not a model.
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@roperties of Herbrand Models

®There is a unique least Herbrand model.
Proof:

°Let M, and M, are two incomparable minimal

Herbrand models (incomparable means neither
one is a subset of the other), but M=M, (1M, is

also a Herbrand model (previous theorem), and
MCM, or MCM,

®*Thus M, on M, is not minimal.
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Least Herbrand Model

® The least Herbrand model Mp of a definite
program P is the set of all ground logical

consequences of the program:
Mp={AEBp | PFA}
Proof:

oFirst, Mp 2 {AE€Bp | PEA} (i.e.,,Mpisa
superset of the logical consequences {AEBp |PFA}):

By definition of logical consequence, P = A means that A
must be in every model of P and hence also in the

@ least Herbrand model.
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Least Herbrand Model

®Second, Mp & {A €EBp | P EA} (i.e., Mp is a subset
of the logical consequences{AEBp |PEA}):

Assume that A is in Mp. Hence, A is in every Herbrand model

of P by def. of Mp (i.e., subset of all models)

Assume that A is not true in some non-Herbrand model of P:

[' E-=A

By sufficiency of Herbrand models (i.e., If I' is a model of P then

[={A €Bp | I' EA!} is a Herbrand model of P), there is some
Herbrand model [ such that I E =aA

Hence A cannot be an element of the Herbrand model 1

This contradicts that A is in every Herbrand model of P, and

their intersection Mp
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Construction of Least Herbrand Model

® Definition: Immediate consequence operator:

® Given an interpretation I & Bp, construct I' such that
I'={Ay€Bp | Ag«<—A,,...,A isaground
instance of a clause in P and A4,...,A_ €I}
®[' is said to be the immediate consequence of 1
written as I' = Tp(I), where Tp is called the immediate

consequence operator.

* Consider the sequence:
D, Tp(D), Tp(Tp(D)),..., Tp'(D),...
* Mp 2 Tpi((Z)) foralli (Mpisa superset of all Tpi(Q)))
*LetTp T w =U_,,Tp(D)
Then Mp =Tp T w
@ (c) Paul Fodor (CS Stony Brook) and Elsevier
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Computing Least Herbrand Models: An Example

parent (pam, bob).
parent (tom, bob).
parent (tom, 1liz).
parent (bob, ann).
parent (bob, pat).
parent (pat, Jjim).

M, 0
M, = Tp(M;) = {parent (pam,bob),
parent (tom,bob),

parent (tom,1iz),
parent (bob,ann),
parent (bob, pat),
parent (pat, jim) }
anc(X,Y) :- Ms; = Tp(M;) = {anc(pam,bob), anc (tom,bob),
parent (X,Y) . anc(tom,1liz), anc (bob,ann),
anc(X,Y) :- anc(bob,pat), anc(pat,jim) }
parent(X,Z), U M
anc (Z,Y) . Ms = Tp(M3) = {anc(pam,ann), anc (pam, pat),
anc (tom,ann), anc (tom,pat),
anc(bob, jim) } U Ms
Ms = Tp(Ms) = {anc(pam,jim), {anc(tom,jim) }

Mo = Tp(Ms) =
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/Computing Mp -

® Computing the least Herbrand model, Mp, as the least fixed
point of Tp:

® terminates for Datalog programs (1.e., programs w/o

function symbols)
® may not terminate in general (because it could be infinite)
For programs with function symbols
* Even for Datalog programs, computing least fixed point directly
using the Tp operator is wasteful (known as Naive evaluation)
® Note that Tpi(@) S Tp'" /(D) for all i
® We can calculate ATp™ (@) =Tp™" (@) — Tp' (@) [The difference

between the sets computed in two successive iterations] (this

strategy is known as the semi-naive evaluation)
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