Predicate Logic

CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

The alphabet of predicate logic

- Variables
- Constants (identifiers, numbers etc.)
- Functors (identifiers with arity >0; e.g. date/3, tree/3)
- Predicate symbols (identifiers with arity >=0; e.g. append/3)
- Connectives:
 - \(\Lambda\) (conjunction)
 - V (disjunction)
 - ¬ (negation)
 - (logical equivalence)
 - \rightarrow (implication)
- Quantifiers: ∀ (universal), ∃ (existential)
- Auxiliary symbols such as parentheses and comma

Predicate Logic Formulas

- *Terms* (T) over an alphabet A is the smallest set such that:
 - Every constant $c \in A$ is also $c \in T$
 - Every variable $\mathbf{x} \in A$ is also $\mathbf{x} \in T$
 - If $f/n \in A$ and $t_1, t_2, ..., t_n \in T$ then $f(t_1, t_2, ..., t_n) \in T$
- *Well-formed formulas* (*wffs*, denoted by *F*) over alphabet A is the smallest set such that:
 - If p/n is a predicate symbol in A and $t_1, t_2, ..., t_n \in T$ then $p(t_1, t_2, ..., t_n) \in F$ (called atomic formula)

Note: variable-free atomic formulas are called ground atomic formulas

- If $F,G \in F$ then so are $(\neg F)$, $(F \land G)$, $(F \lor G)$, $(F \to G)$ and $(F \biguplus G)$
- If $F \in F$ and X is a variable in A then $(\forall X F)$ and $(\exists X F) \in F$

Bound and Free Variables

- A variable **X** is *bound* in formula F if $(\forall \mathbf{X} G)$ or $(\exists \mathbf{X} G)$ is a sub-formula of F
- A variable that occurs in F, but is not bound in F is said to be *free* in F
- A formula F is *closed* if it has no free variables
- Let $X_1, X_2, ..., X_n$ be all the free variables in F. Then:
 - $(\forall \mathbf{X_1} \ (\dots (\forall \mathbf{X_n} \ F) \ \dots))$ is the *universal closure* of F, and is denoted by $\forall F$
 - $(\exists \mathbf{X_1} \ (\dots (\exists \mathbf{X_n} \ F) \ \dots))$ is the *existential closure* of F, and is denoted by $\exists F$

Interpretation

- An *interpretation* I of an alphabet is:
 - a non-empty domain D, and
 - a mapping that associates:
 - each constant $\mathbf{c} \in A$ with an element $\mathbf{c}_{\mathsf{T}} \in D$
 - each n-ary functor $\mathbf{f} \in A$ with an function $\mathbf{f}_{\mathbf{I}} : D^n \to D$
 - each n-ary predicate symbol $\mathbf{p} \in A$ with an relation $\mathbf{p}_{\mathbf{I}} \subseteq D^n$
- For instance, one interpretation of the symbols in our "relations" program is that 'bob', 'pam' et. al. are people in some set, and parent/2 is the parent-of relation, etc.
- Another interpretation could be that 'bob', 'pam', etc. are natural numbers, parent/2 is the greater-than relation, etc.

Valuation

• Given an interpretation I, the semantics of a variable-free (a.k.a. *ground*) term is clear from I itself:

$$I(f(t_1, t_2,..., t_n)) = f_I(I(t_1), I(t_2),..., I(t_n))$$

- But to attach a meaning to terms with variables, we must first **give a meaning to its variables**!
 - This is done by a *valuation*: which is a <u>mapping</u> from variables to the domain D of an interpretation:

$$\phi = \{\mathbf{X_1} \rightarrow \mathbf{d_1}, \mathbf{X_2} \rightarrow \mathbf{d_2}, \dots, \mathbf{X_n} \rightarrow \mathbf{d_n}\}$$

• $\phi[X \rightarrow d]$ is identical to ϕ except that it maps X to d

Semantics of terms

- Terms are given a meaning with respect to a valuation:
 - Given an interpretation I and valuation φ , the *meaning* of a term t, denoted by $\varphi_{I}(t)$ is defined as:
 - if t is a constant c then $\phi_{I}(t) = c_{I}$
 - if **t** is a variable **X** then $\phi_{\tau}(t) = \phi X$
 - if \mathbf{t} is a structure $\mathbf{f}(\mathbf{t_1}, \mathbf{t_2}, \dots, \mathbf{t_n})$ then $\phi_{\mathbf{I}}(\mathbf{t}) = \mathbf{f}_{\mathbf{I}}(\phi_{\mathbf{I}}(\mathbf{t_1}), \phi_{\mathbf{I}}(\mathbf{t_2}), \dots, \phi_{\mathbf{I}}(\mathbf{t_n}))$

Example

- Let **A** be an alphabet containing constant **zero**, a unary functor **s/1** and a binary functor **plus/2**
- I, defined as follows, is an interpretation with **N** (the set of natural numbers) as its domain, such as:
 - $zero_{\tau} = 0$
 - $\bullet s_{I}(x) = 1 + x_{I}$
 - plus_I(x, y) = $x_I + y_I$
- Now, if $\phi = \{\mathbf{x} \rightarrow \mathbf{1}\}$, then

$$\phi_{\text{I}}(\text{plus (s (zero) , X)}) = \phi_{\text{I}}(\text{s (zero)}) + \phi_{\text{I}}(\text{X})$$

$$= (1 + \phi_T(zero)) + \phi(X)$$

$$= (1 + 0) + 1 = 2$$

(c) Paul Fodor (CS Stony Brook) and Elsevier

Semantics of Well-Formed Formulae

- \bullet A formula's meaning is given w.r.t. an interpretation I and valuation ϕ
 - $I \models \phi \ p(t_1, t_2, ..., t_n) \ iff \ (\phi_I(t_1), \phi_I(t_2), ..., \phi_I(t_n)) \in p_I$
 - $I \models \phi \neg F \text{ iff } I \not\models \phi F$
 - $I \models \phi F \land G \text{ iff } I \models \phi F \text{ and } I \models \phi G$
 - $I \models \phi F \lor G \text{ iff } I \models \phi F \text{ or } I \models \phi G \text{ (or both)}$
 - $I \models \phi F \rightarrow G \text{ iff } I \models \phi G \text{ whenever } I \models \phi F$
 - $I \models \phi F \iff G \text{ iff } I \models \phi F \rightarrow G \text{ and } I \models \phi G \rightarrow F$
 - $I \models \phi \ \forall X \ F \ \text{iff} \ I[X \rightarrow d] \models \phi \ F \ \text{for every} \ d \in |I| \ \text{(the domain D of I)}$
 - $I \models \phi \exists X \text{ F iff } I[X \rightarrow d] \models \phi \text{ F for some } d \in |I|$

Semantics of Well-Formed Formulae

• Given a set of closed formulas P, an interpretation I is said to be a *model* of P iff every formula of P is true in I

Example 1.

- Consider the language with zero as the lone constant,
 s/1 as the only functor symbol, and a predicate symbol
 p/1
- Consider an interpretation I with |I| = N (the set of natural numbers), $zero_I = 0$ and $s_I(x) = 1 + x_I$
- Now consider the formula:

```
F1 = p(zero) \land (\forall X p(s(s(X))) \leftrightarrow p(X))
```

• Find interpretations for p/1 such that $I \models F1$

$$\bullet p_{II} = \{0, 2, 4, 6, 8, 10, ...\}$$

$$\mathbf{p}_{T2} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, ...\}$$

Example 2.

• Recall Example 1:

$$F1 = p(zero) \land (\forall X p(s(s(X))) \leftrightarrow p(X))$$

• Extend the previous example with another predicate symbol **q/1**, and consider the formula:

$$F2 = q(s(zero)) \land (\forall X q(s(s(X))) \leftrightarrow q(X))$$

• Now extend the previous interpretations such that:

$$I \models F1 \land F2$$

Example 2.

- $\mathbf{p}_{\text{I}1} = \{0, 2, 4, 6, 8, 10, ...\}$ • $\mathbf{q}_{\text{T}1} = \{1, 3, 5, 7, 9, 11, ...\}$
- $p_{T2} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$
- $q_{12} = \{1, 3, 5, 7, 9, 11, ...\}$
- $p_{T3} = \{0, 2, 4, 6, 8, 10, ...\}$
- $q_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$
- $p_{T4} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$
- $q_{T4} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$

Example 3.

• Recall Example 2:

F1 =
$$p(zero) \land (\forall X p(s(s(X))) \leftrightarrow p(X))$$

F2 = $q(s(zero)) \land (\forall X q(s(s(X))) \leftrightarrow q(X))$

• Consider a new formula:

$$F3 = (\forall X \ q(s(X)) \leftrightarrow p(X))$$

• Now extend the previous interpretations such that:

$$I \models F1 \land F2 \land F3$$

Example 3.

- $p_{II} = \{0, 2, 4, 6, 8, 10, ...\}$ • $q_{II} = \{1, 3, 5, 7, 9, 11, ...\}$
- $p_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$
- $q_{T4} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$

Interpretations and Consequences

•So, are there any interpretations \mathbf{I} such that $\mathbf{I} \models \mathbf{F1} \land \mathbf{F2}$, but $\mathbf{I} \not\models \mathbf{F3}$?

•Yes:

```
p_{I2} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}
q_{I2} = \{1, 3, 5, 7, 9, 11, ...\}
p_{I3} = \{0, 2, 4, 6, 8, 10, ...\}
q_{I3} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}
```

Logical Consequence

- •Let P and F be closed formulas.
 - •F is a *logical consequence* of P (denoted by $P \models F$) iff
 - •F is true in every model of P.

Logical Consequence: An Example

- 1) ($\forall X$ ($\forall Y$ (mother(X) \land child(Y,X)) \rightarrow loves(X,Y)))
- 2) mother(mary) A child(tom, mary)
- Is **loves (mary, tom)** a logical consequence of the above two statements?

Yes. Proof:

• For 1) to be true in some interpretation **I**:

```
I \models \phi (mother(X) \land child(Y,X)) \rightarrow loves(X,Y)

<u>must hold for any valuation</u> \phi.
```

- Specifically, for $\varphi = [X \rightarrow mary, Y \rightarrow tom]$
- I ⊨ φ(mother(mary) ∧child(tom, mary)) →
 loves(mary, tom)
- Hence loves (mary, tom) is true in I if 2) above is true in I.