Propositional Logic and Resolution

CSE 505 – Computing with Logic
Stony Brook University

http://www.cs.stonybrook.edu/~cse505
Propositional logic

• Alphabet A:
 • Propositional symbols (identifiers)
 • Connectives:
 • \wedge (conjunction),
 • \lor (disjunction),
 • \neg (negation),
 • \leftrightarrow (logical equivalence),
 • \rightarrow (implication).
Propositional logic

- **Well-formed formulas** (wffs, denoted by F) over alphabet A is the smallest set such that:
 - If p is a predicate symbol in A then $p \in F$.
 - If the wffs $F, G \in F$ then so are $\neg F$, $(F \land G)$, $(F \lor G)$, $(F \rightarrow G)$ and $(F \leftrightarrow G)$.
Interpretation

• An *interpretation* I is a subset of propositions in an alphabet A

• Alternatively, you can view I as a mapping from the set of all propositions in A to a 2-values Boolean domain \{true, false\}

• This name, “interpretation”, is more commonly used for predicate logic
 • in the propositional case, this is sometimes called a “substitution” or “truth assignment”
Semantics of Well-Formed Formulae

- A formula’s meaning is given w.r.t. an interpretation I:

 $I \vDash p$ iff $p \in I$

 $I \vDash \neg F$ iff $I \not\vDash F$ (i.e., I does not entail F)

 $I \vDash F \land G$ iff $I \vDash F$ and $I \vDash G$

 $I \vDash F \lor G$ iff $I \vDash F$ or $I \vDash G$ (or both)

 $I \vDash F \rightarrow G$ iff $I \vDash G$ whenever $I \vDash F$

 $I \vDash F \iff G$ iff $I \vDash F \rightarrow G$ and $I \vDash G \rightarrow F$

Notes: we read "\vDash" as *entails, models, is a semantic consequence of*'

We read $I \vDash p$ as "I entails p".
Models

• An interpretation I such that I ⊨ F is called “a model” of F.

• “G is a logical consequence of F” (denoted by F ⊨ G) iff every model of F is also a model of G.
 • in other words, G holds in every model of F;
 or G is true in every interpretation that makes F true
Models

- A formula that has at least one model is said to be "satisfiable".
- A formula for which every interpretation is a model is called a "tautology".
- A formula is "inconsistent" if it has no models.
Models

• Checking whether or not a formula is satisfiable is NP-Complete (the SAT problem) because there are exponentially many interpretations.

• Many interesting combinatorial problems can be reduced to checking satisfiability: hence, there is a significant interest in efficient algorithms/heuristics/systems for solving the SAT problem.
Logical Consequence

- Let P be a set of clauses $\{C_1, C_2, \ldots, C_n\}$, where
 - each clause C_i is of the form $(L_1 \lor L_2 \lor \ldots \lor L_k)$,
 - each L_j is a literal: i.e. a possibly negated proposition
- A model for P makes every one of C_is in P true.
- Let G be a literal (called “Goal”)
 - Consider the question: does $P \models G$?
 - We can use a proof procedure, based on resolution to answer this question.
Proof System for Resolution

\[
\frac{\{C\} \cup P \vdash C}{P \vdash (A \lor C_1)} \quad \frac{P \vdash (\neg A \lor C_2)}{P \vdash (C_1 \lor C_2)}
\]

Resolution

- The above notation is of “inference rules” where each rule is of the form:

 \[
 \text{Antecedent(s)} \quad \frac{}{\text{Conclusion}}
 \]

- \(P \vdash C \) is called as a “sequent”

- \(P \vdash C \) means \(C \) can be proved if \(P \) is assumed true
Proof System for Resolution

• The turnstile, \vdash, represents syntactic consequence (or "derivability").
 • $P \vdash C$ means that C is derivable from P
• It is often read as "yields" or "proves"
Proof System for Resolution

- Modus ponens can be seen as a special case of resolution (of a one-literal clause and a two-literal clause) because

\[
\frac{p \rightarrow q, p}{q} \quad \text{is equivalent to} \quad \frac{\neg p \lor q, p}{q}
\]
Proof System for Resolution

• Given a sequent, a \textit{derivation} of a sequent (sometimes called its “proof”) is a tree with:
 • that sequent as the root,
 • empty leaves, and
 • each internal node is an instance of an inference rule.

• A proof system based on Resolution is
 • Sound: i.e. if $F \vdash G$ then $F \models G$.
 • not Complete: i.e. there are F, G s.t. $F \models G$ but $F \not\vdash G$.
 • E.g., $p \models (p \lor q)$ but there is no way to derive $p \vdash (p \lor q)$.
Resolution Proof (in pictures)

\[P = \{(p \lor q), (\neg p \lor r), (\neg q \lor r)\} \]

\[
\begin{align*}
(p \lor q) & \quad (\neg p \lor r) \\
(q \lor r) & \quad (\neg q \lor r) \\
& \downarrow \\
r & \quad r
\end{align*}
\]
Resolution Proof (An Alternative View)

- The clauses of P are all in a “pool”/table.
- Resolution rule picks two clauses from the “pool”, of the form $A \lor C_1$ and $\neg A \lor C_2$.
- and adds $C_1 \lor C_2$ to the “pool”.
- The newly added clause can now interact with other clauses and produce yet more clauses.
- Ultimately, the “pool” consists of all clauses C such that $P \vdash C$.
Resolution Proof (An Example)

- \(P = \{ (p \lor q), (\neg p \lor r), (\neg q \lor r) \} \)

- Here is a proof for \(P \models r \):

<table>
<thead>
<tr>
<th>Clause Number</th>
<th>Clause</th>
<th>How Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p \lor q)</td>
<td>(\in P)</td>
</tr>
<tr>
<td>2</td>
<td>(\neg p \lor r)</td>
<td>(\in P)</td>
</tr>
<tr>
<td>3</td>
<td>(\neg q \lor r)</td>
<td>(\in P)</td>
</tr>
<tr>
<td>4</td>
<td>(q \lor r)</td>
<td>Res. 1 & 2</td>
</tr>
<tr>
<td>5</td>
<td>(r)</td>
<td>Res. 3 & 4</td>
</tr>
</tbody>
</table>

(c) Paul Fodor (CS Stony Brook) and Elsevier
Refutation Proofs

- While resolution alone is incomplete for determining logical consequences, resolution is sufficient to show **inconsistency** (i.e. show when \(P \) has no model).

- **Refutation** proofs (**Reductio ad absurdum** = **reduction to absurdity**) for showing logical consequence.
 - Say we want to determine \(P \models r \), where \(r \) is a proposition.
 - This is equivalent to checking if \(P \cup \{\neg r\} \) has an empty model.
 - This we can check by constructing a resolution proof for \(P \cup \{\neg r\} \vdash \Box \), where \(\Box \) denotes the unsatisfiable empty clause.
Refutation Proofs (An Example)

- Let $P = \{(p \lor q), (\neg p \lor r), (\neg q \lor r), (p \lor s)\}$, and
- $G = (r \lor s)$

<table>
<thead>
<tr>
<th>Clause Number</th>
<th>Clause</th>
<th>How Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$p \lor q$</td>
<td>$\in P \cup \neg G$</td>
</tr>
<tr>
<td>2</td>
<td>$\neg p \lor r$</td>
<td>$\in P \cup \neg G$</td>
</tr>
<tr>
<td>3</td>
<td>$\neg q \lor r$</td>
<td>$\in P \cup \neg G$</td>
</tr>
<tr>
<td>4</td>
<td>$\neg r$</td>
<td>$\in P \cup \neg G$</td>
</tr>
<tr>
<td>5</td>
<td>$\neg s$</td>
<td>$\in P \cup \neg G$</td>
</tr>
<tr>
<td>6</td>
<td>$q \lor r$</td>
<td>Res. 1 & 2</td>
</tr>
<tr>
<td>7</td>
<td>r</td>
<td>Res. 3 & 6</td>
</tr>
<tr>
<td>8</td>
<td>\Box</td>
<td>Res. 4 & 7</td>
</tr>
</tbody>
</table>
Clausal form

- Propositional Resolution works only on expressions in *clausal form*

- There is a simple procedure for **converting** an arbitrary set of Propositional Logic sentences to an equivalent set of clauses

- **Implications (I):**
 - $\phi \rightarrow \psi \rightarrow \neg\phi \lor \psi$
 - $\phi \leftarrow \psi \rightarrow \phi \lor \neg\psi$
 - $\phi \leftrightarrow \psi \rightarrow (\neg\phi \lor \psi) \land (\phi \lor \neg\psi)$

- **Negations (N):**
 - $\neg \neg \phi \rightarrow \phi$
 - $\neg(\phi \land \psi) \rightarrow \neg\phi \lor \neg\psi$
 - $\neg(\phi \lor \psi) \rightarrow \neg\phi \land \neg\psi$
Clausal form

• Distribution (D):
 • \(\phi \lor (\psi \land \chi) \rightarrow (\phi \lor \psi) \land (\phi \lor \chi) \)
 • \((\phi \land \psi) \lor \chi \rightarrow (\phi \lor \chi) \land (\psi \lor \chi) \)
 • \(\phi \lor (\phi_1 \lor \ldots \lor \phi_n) \rightarrow \phi \lor \phi_1 \lor \ldots \lor \phi_n \)
 • \((\phi_1 \lor \ldots \lor \phi_n) \lor \phi \rightarrow \phi_1 \lor \ldots \lor \phi_n \lor \phi \)
 • \(\phi \land (\phi_1 \land \ldots \land \phi_n) \rightarrow \phi \land \phi_1 \land \ldots \land \phi_n \)
 • \((\phi_1 \land \ldots \land \phi_n) \land \phi \rightarrow \phi_1 \land \ldots \land \phi_n \land \phi \)

• Operators (O):
 • \(\phi_1 \lor \ldots \lor \phi \rightarrow \{\phi_1, \ldots, \phi_n\} \)
 • \(\phi_1 \land \ldots \land \phi_n \rightarrow \{\phi_1\}, \ldots, \{\phi_n\} \)
Clausal form: Example

- Convert the sentence \((g \land (r \rightarrow f))\) to clausal form:

\[
g \land (r \rightarrow f)
\]

\[
I \quad g \land (\neg r \lor f)
\]

\[
N \quad g \land (\neg r \lor f)
\]

\[
D \quad g \land (\neg r \lor f)
\]

\[
O \quad \{g\}
\]

\[
\{\neg r, f\}
\]
Clausal form: Example

Convert the sentence $\neg(g \land (r \rightarrow f))$ to clausal form:

I \hspace{1cm} $\neg(g \land (\neg r \lor f))$

N \hspace{1cm} $\neg g \lor \neg(\neg r \lor f) = \neg g \lor (\neg \neg r \land \neg f)$

D \hspace{1cm} $(\neg g \lor r) \land (\neg g \lor \neg f)$

O \hspace{1cm} $\{\neg g, r\}$

$\{\neg g, \neg f\}$
Soundness of Resolution

• If \(F \vdash G \) then \(F \models G \):
 • For \(F \vdash G \), we will have a derivation (aka “proof”) of finite length.
 • We can show that \(F \models G \) by induction on the length of derivation.
Refutation-Completeness of Resolution

• If F is inconsistent, then $F \vdash \Box$:
 • Note that F is a set of clauses. A clause is called an unit clause if it consists of a single literal.
 • If all clauses in F are unit clauses, then for F to be inconsistent, clearly a literal and its negation will be two of the clauses in F. Then resolving those two will generate the empty clause.
 • A clause with $n + 1$ literals has “n excess literals”. The proof of refutation-completeness is by induction on the number of excess literals in F.
Refutation-Completeness of Resolution

- **If F is inconsistent, then F ⊬ □:**
 - Assume refutation completeness holds for all clauses with n excess literals; show that it holds for clauses with n + 1 excess literals.
 - From F, pick some clause C with excess literals. Pick some literal, say A from C. Consider C’ = C - {A}.
 - Both F1 = (F - {C}) ∪ {C'} and F2 = (F - {C}) ∪ {A} are inconsistent and have at most n excess literals.
 - By induction hypothesis, both have refutations. If there is a refutation of F1 not using C’, then that is a refutation for F as well.
 - If refutation of F1 uses C’, then construct a resolution of F by adding A to the first occurrence of C’ (and its descendants); that will end with {A}. From here on, follow the refutation of F2. This constructs a refutation of F.
A simple theorem prover in Prolog

- Operators for formulas:

  ```prolog
  :- op(100, fy, ~).  %Negation
  :- op(110, xfy, &).  %Conjunction
  :- op(120, xfy, v).  %Disjunction
  :- op(130, xfy, =>). %Implication
  :- op(800, xfx, --->).
  ```

- Clausal form:

  ```prolog
  transform(~ (~X), X) :- %Double negation
  !.
  transform(X => Y, ~X v Y) :- %Eliminate implication
  !.
  transform(~(X & Y), ~X v ~Y) :- %De Morgan's law
  !.
  transform(~(X v Y), ~X & ~Y) :- %De Morgan's law
  !.
  transform(X & Y v Z, (X v Z) & (Y v Z) ) :- %Distribution
  transform(X v Y & Z, (X v Y) & (X v Z) ) :- %Distribution
  transform(X v Y, X1 v Y) :- %Transform subexpression
  transform(X, X1), !.
  transform(X v Y, X v Y1):- %Transform subexpression
  transform(Y, Y1), !.
  transform(~X, ~X1) :- %Transform subexpression
  transform(X, X1).
  ```
Resolution:

```prolog
:- dynamic(done/3).
% Contradicting clauses
[clause(X), clause(~X)] --->
    [write('Contradiction found'), stop].
% Remove a true clause
[clause(C), in(P, C), in(~P, C)] --->
    [retract(C)].
% Simplify a clause
[clause(C), delete(P, C, C1), in(P, C1)] --->
    [replace(clause(C), clause(C1) )].
% Resolution step, a special case
[clause(P), clause(C), delete(~P, C, C1), not done(P, C, P)] --->
    [assert(clause(C1) ), assert(done(P, C, P) )].
% Resolution step, a special case
[clause(~P), clause(C), delete(P, C, C1), not done(~P, C, P)] --->
    [assert(clause(C1) ), assert(done(~P, C, P) )].
% Resolution step, general case
[clause(C1), delete(P, C1, CA), clause(C2),delete(~P,C2,CB), not
done(C1,C2,P)] --->
    [assert(clause(CA v CB) ), assert(done(C1, C2, P) )].
% Last rule: resolution process stuck
[] ---> [write('Not contradiction'), stop].
```
% delete(P, E, E1) means: delete a disjunctive subexpression P from E
% giving E1
delete(X, X v Y, Y).
delete(X, Y v X, Y).
delete(X, Y v Z, Y v Z1):-
 delete(X, Z, Z1).
delete(X, Y v Z, Y1 v Z) :-
 delete(X, Y, Y1).
% in(P, E) means: P is a disjunctive subexpression in E
in(X, X).
in(X, Y):-
 delete(X, Y, _).
% Translate conjunctive formula
translate(F & G) :-
 !,
 translate(F),
 translate(G).
% Transformation step on Formula
translate(Formula) :-
 transform(Formula, NewFormula),
 !,
 translate(NewFormula).
% No more transformation possible
translate(Formula) :-
 assert(clause(Formula)).
run :-
 Condition --> Action, % A production rule
 test(Condition), % Precondition satisfied?
 execute(Action).
run(State) :-
 Condition --> Action,
 test(Condition, State),
 execute(Action, State).
test([]). % Empty condition
test([First|Rest]):- % Test conjunctive condition
 call(First),
 test(Rest).
% execute([Action1, Action2, ...]): execute list of actions
execute([stop]) :- !. % Stop execution
execute([]) :- % Empty action (execution cycle completed)
 run. % Continue with next execution cycle
execute([First | Rest]) :-
 call(First),
 execute(Rest).
replace(A, B) :- % Replace A with B in database
 retract(A), !, % Retract once only
 assert(B).
?- translate(~(a => b) & (b => c) => (a => c)), run.
 Contradiction found
 yes