
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Programming in Prolog

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook) and Elsevier

Predicates/Relations
 Predicates (aka. relations) are building-blocks in

predicate calculus: p(a1,a2,...,ak)

parent(X, Y): X is a parent of Y.

parent(pam, bob). parent(bob, ann).

parent(tom, bob). parent(bob, pat).

parent(tom, liz). parent(pat, jim).

male(X): X is a male.

male(tom).

male(bob).

male(jim).

2

We attach meaning to them, but

within the logical system they

are simply structural building

blocks, with no meaning beyond

that provided by explicitly-stated

interrelationships

(c) Paul Fodor (CS Stony Brook) and Elsevier

Predicates
 female(X): X is a female.

female(pam).

female(pat).

female(ann).

female(liz).

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Predicates
parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

female(pam).

female(pat).

female(ann).

female(liz).

male(tom).

male(bob).

male(jim).4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Rules
 Rules: Consider the predicate mother(X, Y): X is the

mother of Y.

-In First Order Logic (FOL or predicate calculus):

∀X,Y (parent(X,Y) ∧ female(X) → mother(X,Y))

-In Prolog:

mother(X,Y) :-

parent(X,Y),

female(X).

all variables are universally quantified outside the rule

“,” means and (conjunction), “:-” means if

(implication) and “;” means or (disjunction).
5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Rules
 More rules:

grandparent(X,Y) :-

parent(X,Z),

parent(Z,Y).

can be read in two ways:

 For all X,Y and Z, if X is a parent of Z

and Z is a parent of Y, then X is a grandparent of Y.

is logical equivalent with:

 For all X and Y, X is a grandparent of Y if there is some Z such

that X is a parent of Z and Z is a parent of Y.
6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Rules

∀X,Y,Z (parent(X,Z) ∧ parent(Z,Y) → grandparent(X,Y))

≡ ∀X,Y,Z (~(parent(X,Z)∧parent(Z,Y)) ∨ grandparent(X,Y))

≡ ∀X,Y (∀Z~(parent(X,Z)∧parent(Z,Y)) ∨ grandparent(X,Y))

since Z is not in grandparent(X,Y) we can the universal quantifier pass the disjunction

≡ ∀X,Y (~Z(parent(X,Z)∧parent(Z,Y)) ∨ grandparent(X,Y))

≡ ∀X,Y ((Z(parent(X,Z)∧parent(Z,Y))) → grandparent(X,Y))

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Rules
sibling(X,Y) :- parent(Z,X),

parent(Z,Y), X \= Y.

?- sibling(ann,Y).

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Rules
 More rules:

cousin(X,Y) :- …

greatgrandparent(X,Y) :- …

greatgreatgrandparent(X,Y) :- …

9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
ancestor(X,Y) :-

parent(X,Y).

ancestor(X,Y) :-

parent(X,Z),

ancestor(Z,Y).

?- ancestor(X,jim).

?- ancestor(pam,X).

?- ancestor(X,Y).

10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
What about:

ancestor(X,Y) :-

ancestor(X,Z),

parent(Z,Y).

ancestor(X,Y) :-

parent(X,Y).

?- ancestor(X,Y).

INFINITE LOOP
11

(c) Paul Fodor (CS Stony Brook) and Elsevier

Rules

12

How to implement “I'm My Own Grandpa”?

https://www.youtube.com/watch?v=eYlJH81dSiw

https://www.youtube.com/watch?v=eYlJH81dSiw

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computations in Prolog

13

?- mother(M, bob).

?- parent(M, bob), female(M).

?- M=pam, female(pam).

M = pam true

?- father(M, bob).

?- parent(M, bob), male(M)

(i) ?- M=pam, male(pam).

fail

(ii) ?- M=tom, male(tom).

M = tom true

mother(X,Y):-

parent(X,Y),female(X).

father(X,Y):-

parent(X,Y),male(X).

(c) Paul Fodor (CS Stony Brook) and Elsevier

The XSB Prolog System
 http://xsb.sourceforge.net

 Developed at Stony Brook by David Warren and many

contributors

 Overview of Installation:

 Unzip/untar; this will create a subdirectory XSB

 Windows: you are done

 Linux:
cd XSB/build

./configure

./makexsb

That’s it!
 Cygwin under Windows: same as in Linux

14

http://xsb.sourceforge.net/

(c) Paul Fodor (CS Stony Brook) and Elsevier

Use of XSB
 Put your ruleset and data in a file with extension .P (or .pl)

p(X) :- q(X,_).

q(1,a).

q(2,a).

q(b,c).

 Don’t forget: all rules and facts end with a period (.)

 Comments: /*…*/ or %.... (% acts like // in Java/C++)

 Type
…/XSB/bin/xsb (Linux/Cygwin)
…\XSB\config\x86-pc-windows\bin\xsb (Windows)

where … is the path to the directory where you downloaded XSB

 You will see a prompt

| ?-
and are now ready to type queries.

15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Use of XSB
 Loading your program, myprog.P or myprog.pl

?- [myprog].

XSB will compile myprog.P (if necessary) and load it.

Now you can type further queries, e.g.

?- p(X). returns X=1; X=2; X=b

?- p(1). returns true

 Some Useful Built-ins:
 write(X) – write whatever X is bound to
 writeln(X) – write then put newline
 nl – output newline
 Equality: =
 Inequality: \=

http://xsb.sourceforge.net/manual1/index.html (Volume 1)
http://xsb.sourceforge.net/manual2/index.html (Volume 2)

16

http://xsb.sourceforge.net/manual1/index.html
http://xsb.sourceforge.net/manual2/index.html

(c) Paul Fodor (CS Stony Brook) and Elsevier

Use of XSB
 Some Useful Tricks:

 XSB returns only the first answer to the query

 To get the next, type ; <Return>. For instance:
| ?- p(X).
X = 1;
X = 2
yes

 Usually, typing the ;’s is tedious. To do this programmatically, use this
idiom:

| ?- (p(_X), write('X='), writeln(_X), fail ; true).

_X here tells XSB to not print its own answers, since we are printing
them by ourselves. (XSB won’t print answers for variables that are
prefixed with a _.)

17

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In logic, most statements can be written many ways

That's great for people but a nuisance for computers

 It turns out that if you make certain restrictions on

the format of statements you can prove theorems

mechanically

 Most common restriction is to have a single conclusion

implied by a conjunction of premises (i.e., Horn clauses)

 Horn clauses are named for the logician Alfred Horn, who

first pointed out their significance in 1951

 That's what logic programming systems do!

18

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logic Programming Concepts
 Operators:

conjunction, disjunction, negation, implication

 Universal and existential quantifiers

 Statements

sometimes true, sometimes false, sometimes

unknown

axioms - assumed true

 theorems – define what is provably true

goals - things we'd like to prove true

19

(c) Paul Fodor (CS Stony Brook) and Elsevier

Syntax of Prolog Programs
A Prolog program is a sequence of clauses

Each clause (sometimes called a rule or Horn rule)

is of the form:

Head :- Body.

Head is one term

Body is a comma-separated list of terms

A clause with an empty body is called a fact

20

(c) Paul Fodor (CS Stony Brook) and Elsevier
21

 The Prolog interpreter has a collection of facts and rules in its

DATABASE
 Facts (i.e., clauses with empty bodies):

raining(ny). raining(seattle).
➢ Facts are axioms (things the interpreter assumes to be true)

 Rules (i.e., clauses with both sides):

wet(X) :- raining(X).
➢ The meaning of a rule is that the conjunction of the structures in the body

implies the head.

➢ Single-assignment variables: X must have the same value on both sides.

❖Prolog provides an automatic way to deduce true results from facts

and rules:
 Query or goal (i.e., a clause with an empty head):

?- wet(X).

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 So, rules are theorems that allow the interpreter to infer things
 To be interesting, rules generally contain variables

employed(X) :- employs(Y,X).

can be read as:

"for all X, X is employed if there exists a Y such that Y employs X"
 Note the direction of the implication

 Also, the example does NOT say that X is employed

ONLY IF there is a Y that employs X
 there can be other ways for people to be employed

 like, we know that someone is employed, but we don't know who is

the employer or maybe they are self employed:

employed(bill).

employed(X) :- self_employed(X).

22

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 The scope of a variable is the clause in which it appears:

 Variables whose first appearance is on the left hand side of the

clause (i.e., in the head) have implicit universal quantifiers

 For example, we infer for all possible X that they are

employed

employed(X) :- employs(Y,X).

 Variables whose first appearance is in the body of the clause

have implicit existential quantifiers in that body

 For example, there exists some Y that employs X

 Note that these variables are also universally quantified

outside the rule (by logical equivalences)

23

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

grandmother(A, C) :-

mother(A, B),

mother(B, C).

can be read as:

"for all A, C [A is the grandmother of C if there exists a B

such that A is the mother of B and B is the mother of C]"

 We probably want another rule that says:

grandmother(A, C) :-

mother(A, B),

father(B, C).
24

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion in LP
 Transitive closure:

Example: a graph declared with facts (true statements)

edge(1,2).

edge(2,3).

edge(2,4).

1) if there's an edge from X to Y, we can reach Y from X:

reach(X,Y) :- edge(X,Y).

2) if there's an edge from X to Z, and we can reach Y from

Z, then we can reach Y from X:

reach(X,Y) :-

edge(X,Z),

reach(Z,Y).
25

(c) Paul Fodor (CS Stony Brook) and Elsevier
26

?- reach(X,Y).

X = 1

Y = 2; Type a semi-colon repeatedly for

X = 2 more answers

Y = 3;
X = 2

Y = 4;
X = 1

Y = 3;
X = 1

Y = 4;
no

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog Syntax
We will now explore Prolog programs in more

detail:

Syntax of Prolog Programs

Terms can be:

Atomic data

Variables

Structures

27

(c) Paul Fodor (CS Stony Brook) and Elsevier

Atomic Data
Numeric constants: integers, floating point

numbers (e.g. 1024, -42, 3.1415,

6.023e23,…)

Atoms:

Identifiers: sequence of letters, digits,

underscore, beginning with a lower case letter

(e.g. paul, r2d2, one_element).

Strings of characters enclosed in single quotes

(e.g. 'Stony Brook')

28

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
 Variables are denoted by identifiers beginning with an

Uppercase letter or underscore (e.g. X, Index, _param).

 These are Single-Assignment Logical variables:
 Variables can be assigned only once

 Different occurrences of the same variable in a clause denote the

same data

 Variables are implicitly declared upon first use
 Variables are not typed

 All types are discovered implicitly (no declarations in LP)

 If the variable does not start with underscore, it is assumed that it

appears multiple times in the rule.
 If is does not appear multiple times, then a warning is produced: "Singleton variable"

 You can use variables preceded with underscore to eliminate this warning

29

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
Warnings are used to identify bugs (most

because of copy-paste errors)

Instead of declarations and type checking

Fix all the warnings in a program, so you know

that you don't miss any logical error

30

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
 Anonymous variables (also called Don’t care variables): variables

beginning with "_"

 Underscore, by itself (i.e., _), represents a variable
has_a_child(X) :- parent(X,_).

 Each occurrence of _ corresponds to a different variable; even within

a clause,_ does not stand for one and the same object

somebody_has_a_child :- parent(_,_).

 A variable with a name beginning with "_", but has more characters.

E.g.: _radius, _Size

 we want to give it a descriptive name

 sometimes it is used to create relationships within a clause (and must

therefore be used more than once), but are not returned in the head

of the clause (we don't need to use _ in this case since it is not

singleton variable): r :- p(_X), q(_X).
31

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
 Variables can be assigned only once, but that value can be further refined:

?- X=f(Y),

Y=g(Z),

Z=2.

Therefore, X=f(g(2)), Y=g(2), Z=2

 The order also does not matter (nether in the rule or in the

matching/unification order):

?- 2=Z,

f(Y)=X,

g(Z)=Y.

Therefore, X = f(g(2)), Y=g(2), Z=2

 Even infinite structures:

?- X=f(X).

X=f(f(f(f(f(f(f(f(f(f(...))

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logic Programming Queries
 To run a Prolog program, one asks the interpreter a question

 This is done by asking a query which the interpreter tries to prove:

 If it can, it says yes

 If it can't, it says no

 If your query contained variables, the interpreter prints the values it

had to give them to make the query true

?- wet(ny). ?- reach(a, d). ?- reach(d, a).

Yes Yes No

?- wet(X). ?- reach(X, d). ?- reach(X, Y).

X = ny; X=a X=a, Y=d

X = seattle;?- reach(a, X).

no X=d

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

Meaning of Logic Programs
 Semantics:
Declarative Meaning: What are the logical

consequences of a program?

Procedural Meaning: For what values of the variables

in the query can I prove the query?
 That is, the user gives the system a goal:

The system attempts to find axioms + inference

rules to prove that goal

o If goal contains variables, then also gives the

values for those variables for which the goal is

proven

34

(c) Paul Fodor (CS Stony Brook) and Elsevier

Declarative Meaning
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 The logical consequences of a program L is the smallest set such that

 All facts of the program are in L,

 If H :- B1,B2, …, Bn . is an instance of a clause in the

program such that B1,B2, …, Bn are all in L, then H is also in L.

 For the above program we get dark(cat) and dark(bear) and

consequently dangerous(bear) in addition to the original facts.

L = {brown(bear), big(bear), gray(elephant), big(elephant),

black(cat), small(cat), dark(cat), dark(bear),

dangereous(bear) }
35

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 A query is, in general, a conjunction of goals: ?- G1,G2,…,Gn.

 To prove G1,G2,…,Gn:

 Find a clause H :- B1,B2, …, Bk such that G1 and H match

 Under the substitution for variables, prove B1,B2,…,Bk,G2,…,Gn
If nothing is left to prove then the proof succeeds!

If there are no more clauses to match, the proof fails!

36

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 To prove: ?- dangerous(Q).

1. Select dangerous(X):-dark(X),big(X) and prove
dark(Q),big(Q).

2. To prove dark(Q) select the first clause of dark, i.e.

dark(Z):-black(Z), and prove black(Q),big(Q).

3. Now select the fact black(cat) and prove big(cat).

4. Go back to step 2, and select the second clause of dark, i.e.

dark(Z):-brown(Z), and prove brown(Q),big(Q).
37

This proof fails!

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 To prove: ?- dangerous(Q).

5. Now select brown(bear) and prove big(bear).

6. Select the fact big(bear).

38

There is nothing left to prove, so the proof succeeds

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

39

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

40

 This procedural meaning/semantics of Prolog interpreters works by

what is called BACKWARD CHAINING (also called top-down,

goal directed)

 It begins with the thing it is trying to prove and works backwards looking

for things that would imply it, until it gets to facts.

 It is also possible to work forward from the facts trying to see if any

of the things you can prove from them are what you were looking for

 This methodology is called bottom-up resolution

 It can be very time-consuming

 Example systems: Answer set programming, DLV, Potassco (the Potsdam

Answer Set Solving Collection: clasp, clingo), OntoBroker

 They have very good applications in scheduling and planning (similar

to constraint solving)

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

41

 When it attempts resolution, the Prolog interpreter

pushes the current goal onto a stack, makes the first

term in the body the current goal, and goes back to the

beginning of the database and starts looking again

 If it gets through the first goal of a body successfully, the

interpreter continues with the next one

 If it gets all the way through the body, the goal is satisfied

and it backs up a level and proceeds

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

42

 The Prolog interpreter starts at the beginning of your database

(this ordering is part of Prolog, NOT of logic

programming in general) and looks for something with which

to unify the current goal

 If it finds a fact, great; it succeeds,

 If it finds a rule, it attempts to satisfy the terms in the body

of the rule depth first

 This process is motivated by the RESOLUTION PRINCIPLE,

due to Robinson, 1965:
 It says that if C1 and C2 are Horn clauses, where C2 represents a

true statement and the head of C2 unifies with one of the terms in

the body of C1, then we can replace the term in C1 with the body of

C2 to obtain another statement that is true if and only if C1 is true

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

43

 If it fails to satisfy the terms in the body of a rule, the

interpreter undoes the unification of the left hand side

(BACKTRACKING) (this includes un-instantiating any

variables that were given values as a result of the

unification) and keeps looking through the database for

something else with which to unify

 If the interpreter gets to the end of database without

succeeding, it backs out a level (that's how it might

fail to satisfy something in a body) and continues from

there

(c) Paul Fodor (CS Stony Brook) and Elsevier

PROLOG IS NOT PURELY DECLARATIVE:

The ordering of the database and the left-to-

right pursuit of sub-goals gives a deterministic

imperative semantics to searching and

backtracking

Changing the order of statements in the database

can give you different results:

 It can lead to infinite loops

 It can result in inefficiency

44

Procedural Meaning of Prolog

(c) Paul Fodor (CS Stony Brook) and Elsevier

Order of clauses
 Danger of indefinite looping – consider:

p :- p.

says that p is true if p is true.

 This is declaratively correct, but procedurally is quite useless and

causes problems to Prolog: the question ?- p. will loop infinitely:

the goal p is replaced by the same goal p; this will be in turn replaced

by p, etc.

45

(c) Paul Fodor (CS Stony Brook) and Elsevier

Transitive closure with left recursion in

Prolog will run into an infinite loop:
reach(X,Y) :-

reach(X,Z),

edge(Z, Y).

reach(X,Y) :-

edge(X,Y).

Query:
?- reach(A,B).

Infinite loop (it does not matter what edges

you have in the DB, they will never be used)
46

Procedural Meaning of Prolog

(c) Paul Fodor (CS Stony Brook) and Elsevier

Structures
 If f is an identifier and t1, t2, …, tn are terms,

then f(t1, t2, …, tn) is a term

()
 In the above, f is called a functor and tis are called

arguments

 Structures are used to group related data items together

(in some ways similar to struct in C and objects in Java)
 Structures are used to construct trees (and, as a special case of

trees, lists)
47

(c) Paul Fodor (CS Stony Brook) and Elsevier

Trees
Example: expression trees:

?- E = plus(minus(num(3),num(1)),star(num(4),num(2))).

 Data structures may have variables AND the same

variable may occur multiple times in a data structure

48

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching
 t1 = t2: finds substitutions for variables in

t1 and t2 that make the two terms identical

(We'll later introduce unification, a related

operation that has logical semantics)
?- plus(minus(num(3),num(X)),star(num(Y),num(2))) =

plus(minus(num(3),num(1)),star(num(4),num(2))).

49

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching through Examples
 Matching examples: given two terms, we can ask if they "match"

each other

 A constant matches with itself: 42 unifies with 42

 A variable matches with anything:
 if it matches with something other than a variable, then it instantiates,

 if it matches with a variable, then the two variables become associated.

 A=35, A=B ➔ B becomes 35

 A=B, A=35 ➔ B becomes 35

 Two structures match if they:
 Have the same functor,

 Have the same arity, and

 Match recursively

 foo(g(42),37)matches with foo(A,37),

foo(g(A),B), etc.50

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching Algorithm
The general Rules to decide whether two

terms S and T match are as follows:

If S and T are constants, S=T if both are
same object

If S is a variable and T is anything, T=S

If T is variable and S is anything, S=T

If S and T are structures, S=T if

S and T have same functor, same arity, and

All their corresponding arguments
components have to match

51

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching Examples

52

?- plus(minus(num(3),num(1)),star(num(4),num(2)))

= plus(minus(num(3),num(X)),star(num(Y),num(2))).

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching Examples

53

?- plus(minus(num(3),num(1)),star(num(4),num(2)))

= plus(minus(num(3),num(X)),star(num(X),num(2))).

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Which of these match?
 A

 100

 func(B)

 func(100)

 func(C, D)

 func(+(99, 1))

 Example:
?- A = 100. ?- func(100) = func(B,C).

A = 100 No

Yes

?- A = func(B).

A = func(_123)

Yes

54

Matching Examples

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Which of these match?
 A

 100

 func(B)

 func(100)

 func(C, D)

 func(+(99, 1))

 A matches with 100, func(B), func(100), func(C,D),

func(+(99, 1)).

 100 matches only with A.

 func(B) matches with A, func(100), func(+(99, 1))

 func(C, D) matches with A.

 func(+(99, 1)) matches with A and func(B).

55

Matching Examples

(c) Paul Fodor (CS Stony Brook) and Elsevier

Accessing arguments of a structure
 Matching is the predominant means for accessing

structures arguments

Let date('Jan', 1, 2020) be a structure used to

represent dates, with the month, day and year as the three

arguments (in that order!)

then ?- date(M,D,Y) = date('Jan',1,2020).

makes

M = 'Jan', D = 1, Y = 2020

 If we want to get only the day, we can write

?-date(_, D, _) = date('Jan', 1, 2020).

Then we only get: D = 1
56

(c) Paul Fodor (CS Stony Brook) and Elsevier

Operators are also functors
All structured objects in Prolog are trees –

including unevaluated arithmetical expressions:

?- E = (a+b)*(c-5).

E = *(+(a, b), -(c, 5))

yes

57

Note: arithmetical operators are not evaluated by default – we

will see this later.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Other Structure Examples: Simple

electronic circuits

58

(c) Paul Fodor (CS Stony Brook) and Elsevier

Simple geometric objects

59

 Let us choose the following functors: point for points,

seg for line segments, and triangle for triangle

?- P1 = point(l,l),

P2 = point(2,3),

S = seg(Pl,P2),

T = triangle(point(4,2),

point(6,4), point(7,l)).

S = seg(point(l,1), point(2,3))

 In three-dimensional space then we could use another

functor: point3(X,Y,Z) different from point because

each functor is defined by two things: name and arity

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
 Prolog uses a special syntax to represent and manipulate lists

 [1,2,3,4]: represents a list with 1, 2, 3 and 4, respectively.

 This can also be written as [1|[2,3,4]]: a list with 1 as the

head (first element) and [2,3,4] as its tail (the list of

remaining elements).

 If X = 1 and Y = [2,3,4] then [X|Y] is same as [1,2,3,4].

 The empty list is represented by [] or nil

 The symbol "|" (called pipe) and is used to separate the beginning

elements of a list from its tail

 As opposed to functional programming languages like SML, Prolog's pipe operator

can have multiple elements in the prefix of the list, e.g., [1,2|[3,4]]

 For example: [1,2,3,4] = [1|[2,3,4]] = [1|[2|[3,4]]] =
[1,2|[3,4]] = [1,2,3|[4]] = [1|[2|[3|[4|[]]]]]

60

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
 Lists are special cases of trees (a syntactic sugar, i.e.,

internally, they use structures)

 For instance, the list [1,2,3,4] is represented by the

following structure:

 where the function symbol ./2 is the list constructor:

[1,2,3,4] is same as .(1,.(2,.(3,.(4,[]))))

61

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
Strings: are sequences of characters surrounded

by double quotes "abc", "John

Smith", "to be, or not to be".

A string is equivalent to a list of the (numeric)

character codes:

?- X="abc".

X = [97,98,99]

62

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 member/2 finds if a given element occurs in a list:

The program:

member(X, [X|_]).

member(X, [_|Ys]) :-

member(X,Ys).

Example queries:

?- member(2,[1,2,3]).

?- member(X,[l,i,s,t]).

?- member(f(X),[f(1),g(2),f(3),h(4)]).

?- member(1,L).

63

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 append/3 concatenate two lists to form the third list:

The program:
 Empty list append L is L:

append([], L, L).
 Otherwise, break the first list up into the head X, and the tail L: if L append M is N,

then [X|L] append M is [X|N]:

append([X|L], M, [X|N]) :-

append(L, M, N).

Example queries:
?- append([1,2],[3,4],X).

?- append(X, Y, [1,2,3,4]).

?- append(X, [3,4], [1,2,3,4]).

?- append([1,2], Y, [1,2,3,4]).
64

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 Is the predicate a function?

 No.We are not applying arguments to get a result. Instead,

we are proving that a theorem holds. Therefore, we can leave

any variables unbound.
?- append(L, [2, 3], [1, 2, 3]).

L = [1]

?- append([1], L, [1, 2, 3]).

L = [2, 3]

?- append(L1, L2, [1, 2, 3]).

L1 = [], L2 = [1, 2, 3];

L1 = [1], L2 = [2, 3];

L1 = [1, 2], L2 = [3] ;

L1 = [1, 2, 3], L2 = [];

no

65

(c) Paul Fodor (CS Stony Brook) and Elsevier
66

append([],L,L).

append([X|L], M, [X|N]) :- append(L,M,N).

append([1,2],[3,4],X)?

Append example trace

66

(c) Paul Fodor (CS Stony Brook) and Elsevier
67

append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],A)? X=1,L=[2],M=[3,4],A=[X|N]

Append example trace

67

(c) Paul Fodor (CS Stony Brook) and Elsevier
68

append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],A)? X=1,L=[2],M=[3,4],A=[X|N]

append([2],[3,4],N)?

Append example trace

68

(c) Paul Fodor (CS Stony Brook) and Elsevier
69

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

Append example trace

69

(c) Paul Fodor (CS Stony Brook) and Elsevier
70

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)?

Append example trace

70

(c) Paul Fodor (CS Stony Brook) and Elsevier
71

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

Append example trace

71

(c) Paul Fodor (CS Stony Brook) and Elsevier
72

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

A = [1|N]

N = [2|N’]

N’= L

L = [3,4]

Answer: A = [1,2,3,4]

Append example trace

72

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 len/2 to find the length of a list (the first argument):

The program:
len([], 0).

len([_|Xs], N+1) :-

len(Xs, N).

Example queries:
?- len([], X).

X = 0

?- len([l,i,s,t], 4).

false

?- len([l,i,s,t], X).

X = 0+1+1+1+1

73

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arithmetic
?- 1+2 = 3.

false

In Predicate logic, the basis for Prolog, the

only symbols that have a meaning are the

predicates themselves

In particular, function symbols are

uninterpreted: have no special meaning and

can only be used to construct data structures

74

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arithmetic
 Meaning for arithmetic expressions is given by the

built-in predicate "is":

?- X is 1 + 2.

succeeds, binding X = 3.

?- 3 is 1 + 2.

succeeds.

 General form: R is E where E is an expression to be

evaluated and R is matched with the expression's value

 Y is X + 1, where X is a free variable, will give an

error because X does not (yet) have a value, so, X + 1

cannot be evaluated
75

(c) Paul Fodor (CS Stony Brook) and Elsevier

The list length example revisited
 length/2 finds the length of a list (first argument):

The program:
length([], 0).

length([_|Xs], M):-

length(Xs, N),

M is N+1.

Example queries:
?- length([], X).

?- length([l,i,s,t], 4).

?- length([l,i,s,t], X).

X = 4

?- length(List, 4).

List = [_1, _2, _3, _4]
76

(c) Paul Fodor (CS Stony Brook) and Elsevier

Conditional Evaluation
 Conditional operator: the if-then-else construct in

Prolog:

 if A then B else C is written as A -> B ; C

 To Prolog this means: try A. If you can prove it, go on to

prove B and ignore C. If A fails, however, go on to

prove C ignoring B.

max(X,Y,Z) :-

(X =< Y

-> Z = Y

; Z = X

).

77

Query:
?- max(1,2,X).

X = 2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Conditional Evaluation
 Standard logic priorities of operators apply: "," (conjunction)

has higher priority than ";" (disjunction)

P:- Q;R.

is read: P is true if Q is true or R is true.

o The meaning of the clause is the same as the meaning of the

following two clauses together:

P:- Q.

P:- R.

 The comma binds stronger than the semicolon, so the clause

P:- Q,R; S,T,U. %Parenthesis can be used for grouping

is understood as P :- (Q,R);(S,T,U). and means the

same as the clauses: P:- Q,R.

P:- S,T,U.
78

(c) Paul Fodor (CS Stony Brook) and Elsevier

Conditional Evaluation
 Consider the computation of n! (i.e. the factorial of n)

% factorial(+N, -F)

factorial(N, F) :- ...

Comments in Prolog: N is the input parameter ("+") and F is the output

parameter ("-"). "?" is used when the parameter can be either input or output.

 The body of the rule species how the output is related to the input:
 For factorial, there are two cases: N <= 0 and N > 0

 if N <= 0, then F = 1

 if N > 0, then F = N * factorial(N - 1)

factorial(N, F) :-

(N > 0

-> N1 is N-1,

factorial(N1, F1),

F is N*F1

; F = 1

).
79

?- factorial(12,X).

X = 479001600

(c) Paul Fodor (CS Stony Brook) and Elsevier

Imperative features
 Other imperative features: we can think of Prolog rules

as imperative programs with backtracking

program :-

member(X, [1, 2, 3, 4]),

write(X),

nl,

fail;

true.

?- program. % prints all solutions

 fail: always fails, causes backtracking

 ! is the cut operator: prevents other rules from

matching (we will see it later)
80

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arithmetic Operators
 Automatic detection of Integer/Floating Point

 Integer/Floating Point operators: +, -, *, /

 Integer operators: mod, // (integer division)

 Comparison operators: <, >, =<, >=,

Expr1 =:= Expr2 (succeeds if expression Expr1 evaluates to a

number equal to Expr2's evaluated value),

Expr1 =\= Expr2 (succeeds if expression Expr1 evaluates to a

number non-equal to Expr2's evaluated value)

81

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
Quicksort:

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(X0, Xs, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X =< Pivot,

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

X > Pivot,

partition(Pivot,Xs,Ys,Zs).
82

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
Quicksort:

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(X0, Xs, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X =< Pivot,

!, % cut

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

partition(Pivot,Xs,Ys,Zs).
83

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 We want to define delete/3, to remove a given

element from a list (called select/3 in XSB's basics

library):

 delete(2, [1,2,3], X) should succeed with
X=[1,3]

 delete(X, [1,2,3], [1,3]) should succeed with
X=2

 delete(2, [2,1,2], X) should succeed with
X=[1,2]; X =[2,1]; fail

 delete(2, X, [1,3]) should succeed with
X=[2,1,3]; X =[1,2,3]; X=[1,3,2]; fail

84

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
Algorithm:

When X is selected from [X|Ys], Ys

results as the rest of the list

When X is selected from the tail of

[H|Ys], [H|Zs] results, where Zs is

the result of taking X out of Ys

85

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
The program:

delete(X,[],_) :- fail.% not needed

delete(X, [X|Ys], Ys).

delete(X, [Y|Ys], [Y|Zs]) :-

delete(X, Ys, Zs).

Example queries:

?- delete(s, [l,i,s,t], Z).

X = [l, i, t]

?- delete(X, [l,i,s,t], Z).

?- delete(s, Y, [l,i,t]).

?- delete(X, Y, [l,i,s,t]).

86

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
The program:

delete(X, [X|Ys], Ys).

delete(X, [Y|Ys], [Y|Zs]) :-

delete(X, Ys, Zs).

Example queries:

?- delete(s, [l,i,s,t], Z).

X = [l, i, t]

?- delete(X, [l,i,s,t], Z).

?- delete(s, Y, [l,i,t]).

?- delete(X, Y, [l,i,s,t]).

87

(c) Paul Fodor (CS Stony Brook) and Elsevier

Permutations
 Define permute/2, to find a permutation of a given list
E.g. permute([1,2,3], X) should return

X=[1,2,3] and upon backtracking, X=[1,3,2],

X=[2,1,3], X=[2,3,1], X=[3,1,2], and

X=[3,2,1].

Hint: What is the relationship between the permutations of

[1,2,3] and the permutations of [2,3]?

88

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
The permute program:

permute([], []).

permute([X|Xs], Ys) :-

permute(Xs, Zs),

delete(X, Ys, Zs).

Example query:

?- permute([1,2,3], X).

X = [1,2,3];

X = [2,1,3];

X = [2,3,1];

X = [1,3,2] …
89

(c) Paul Fodor (CS Stony Brook) and Elsevier

The Issue of Efficiency
 Define a predicate, rev/2 that finds the reverse of a

given list
 E.g. rev([1,2,3],X) should succeed with X=[3,2,1]
 Hint: what is the relationship between the reverse of [1,2,3] and the

reverse of [2,3]? Answer: append([3,2],[1],[3,2,1])

rev([], []).

rev([X|Xs], Ys) :- rev(Xs, Zs),

append(Zs, [X], Ys).

 How long does it take to evaluate rev([1,2,…,n],X)?

T(n) = T(n - 1)+ time to add 1 element to the end of

an n - 1 element list = T(n - 1) + n – 1 =

T(n - 2) + n – 2 + n – 1 = ...

→ T(n) = O(n2) (quadratic)
90

(c) Paul Fodor (CS Stony Brook) and Elsevier

Making rev/2 faster
Keep an accumulator: stack all elements seen so far
 i.e. a list, with elements seen so far in reverse order

The program:
rev(L1, L2) :- rev_h(L1, [], L2).

rev_h([X|Xs], AccBefore, Out):-

rev_h(Xs, [X|AccBefore], Out).

rev_h([], Acc, Acc). % Base case

 Example query:

?- rev([1,2,3], X).

will call rev_h([1,2,3], [], X)

which calls rev_h([2,3], [1], X)

which calls rev_h([3], [2,1], X)

which calls rev_h([], [3,2,1], X)

which returns X = [3,2,1]

T(n)=O(n)(linear)91

(c) Paul Fodor (CS Stony Brook) and Elsevier

Palindrome
 Check if a list is a palindrome:

palindrome(X) :-

rev(X,X).

92

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tree Traversal
Assume you have a binary tree, represented by

node/3 facts for internal nodes: node(a,b,c)

means that a has b and c as children

leaf/1 facts: for leaves: leaf(a) means that a

is a leaf

Example:
node(5, 3, 6).

node(3, 1, 4).

leaf(1).

leaf(4).

leaf(6).
93

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tree Traversal
 Write a predicate preorder/2 that traverses the tree (starting

from a given node) and returns the list of nodes in pre-order

preorder(Root, [Root]) :-

leaf(Root).

preorder(Root, [Root|L]) :-

node(Root, Child1, Child2),

preorder(Child1, L1),

preorder(Child2, L2),

append(L1, L2, L).

?- preorder(5, L).

L = [5, 3, 1, 4, 6]

The program takes O(n2) time to traverse a tree with n

nodes. How to append 2 lists in shorter time?
94

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
The lists in Prolog are singly-linked; hence we can

access the first element in constant time, but

need to scan the entire list to get the last element

However, unlike functional languages like Lisp or

SML, we can use variables in data structures:

We can exploit this to make lists “open tailed”

(also called difference lists in Prolog): end the

list with a variable tail and pass that variable, so

we can add elements at the end of the list

95

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
When X=[1,2,3|Y], X is a list with 1, 2, 3 as

its first three elements, followed by Y

Now if Y=[4|Z] then X=[1,2,3,4|Z]

We can now think of Z as “pointing to” the end of X

We can now add an element to the end

of X in constant time!!

And continue adding more elements, e.g.

Z=[5|W]

96

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists: Conventions
A difference list is represented by two variables:

one referring to the entire list, and another to its

(uninstantiated) tail

e.g. X = [1,2,3|Z], Z

 Most Prolog programmers use the notation List-

Tail to denote a list List with tail Tail.

 e.g. X-Z

Note that “-” is used as a data structure infix symbol (not

used for arithmetic here)

97

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 Append 2 open ended lists:

dappend(X-T, Y-T2, L-T3) :-

T = Y,

T2 = T3,

L = X.
?- dappend([1,2,3|T]-T, [4,5,6|T2]-T2, L-T3).

L = [1,2,3,4,5,6|T3]

 Simplified version:

dappend(X-T, T-T2, X-T2).

?- dappend([1,2,3|T]-T, [4,5,6|T2]-T2, L-T3).

L = [1,2,3,4,5,6|T2]

98

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 Add an element at the end of a list:
add([], X, [X]). % linear time to add w/out diff lists

add([H|T], X, [H|T2]) :-

add(T, X, T2).

?- add([1,2,3],4,L).

 Much better with diff. lists:

add(L-T, X, L2-T2) :- % constant time

T = [X|T2],

L = L2.

?- add([1,2,3|T]-T, 4, L-T2).

L = [1,2,3,4|T2]

 We can simplify it as:
add(L-T, X, L-T2) :-

T = [X|T2].

 This can be simplified more like:

add(L-[X|T2], X, L-T2).

 Alternative add using dappend:
add(L-T, X, L-T2) :-

dappend(L-T,[X|T2]-T2,L-T2).

99

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 Check if a list is a palindrome:

palindrome(X) :-

palindromeHelp(X-[]).% helper

palindromeHelp(A-A). % an empty list

palindromeHelp([_|A]-A).%1-element list

palindromeHelp([C|A]-D) :-

B=[C|D],

palindromeHelp(A-B).

?- palindrome([1,2,2,1]).

yes

?- palindrome([1,2,3,2,1]).

yes

?- palindrome([1,2,3,4,5]).

no
100

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tree Traversal, Revisited
preorder(Node, List) :-

preorder1(Node, List-[]).

preorder1(Node, List-Tail) :-

node(Node, Child1, Child2),

List = [Node|List1],

preorder1(Child1, List1-Tail1),

preorder1(Child2, Tail1-Tail).

preorder1(Node, [Node|Tail]-Tail) :-

leaf(Node).

The program takes O(n) time to traverse a tree

with n nodes
101

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tree Traversal, Revisited
node(5, 3, 6).

node(3, 1, 4).

leaf(1).

leaf(4).

leaf(6).

?- preorder(5, List).

List = [5,3,1,4,6];

no

102

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 The preorder traversal program may be rewritten simpler as:

preorder1(Node, [Node|L]-T) :-

node(Node, Child1, Child2),

!,

preorder1(Child1, L-T1),

preorder1(Child2, T1-T).

preorder1(Node, [Node|T]-T).

103

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
The inorder traversal program:

inorder(Node,L):-

inorder1(Node, L-[]).

inorder1(Node, L-T) :-

node(Node, Child1, Child2),

!,

inorder1(Child1, L-T1),

T1 = [Node|T2],

inorder1(Child2, T2-T).

inorder1(Node, [Node|T]-T).

104

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 The postorder traversal program:

postorder(Node,L):-

postorder1(Node, L-[]).

postorder1(Node, L-T) :-

node(Node, Child1, Child2),

!,

postorder1(Child1, L-T1),

postorder1(Child2, T1-T2),

T2 = [Node|T].

postorder1(Node, [Node|T]-T).
105

(c) Paul Fodor (CS Stony Brook) and Elsevier

Negation
 The built-in Prolog predicate\+/1 provides negation as failure:

we derive \+ p as true if we fail to derive p

p :- q, \+ r.

q.

derives: \+ r and p as true

 Consider the rule:

legal(X) :- \+ illegal(X).

?- legal(smoking).

yes

 Prolog attempts to prove illegal(X). If a proof for that goal

can be found, the original goal (i.e., \+illegal(X)) fails. If no

proof can be found, the original goal succeeds.

106

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
 There are several ways to represent graphs in Prolog:

represent each edge separately as one clause (fact):
edge(a,b).

edge(b,c). …

 isolated nodes cannot be represented, unless we have also

node/1 facts

 the whole graph as one data structure term: a pair of

two args. nodes and edges: graph([a,b,c,d,f,g],
[e(a,b),e(b,c),e(b,f)])

 or just the list of arcs: [a-b, b-c, b-f] (same problem

with isolated nodes as above)

adjacency-list term: [n(a,[b]), n(b,[c,f]),
n(d,[])]

107

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
Path predicate to find paths from one

node to another one:
A predicate path(+G,+A,+B,-P) to find an

acyclic path P from node A to node B in the graph G

The predicate should also return all paths via

backtracking

We will solve it using the graph as a data object, like

in the term:
G=graph([a,b,c,d,f,g],[e(a,b),e(b,c),e(b,f)]

108

(c) Paul Fodor (CS Stony Brook) and Elsevier

directed vs. undirected graphs
adjacent for directed edges:

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

adjacent for undirected edges (ie. no distinction

between the two vertices associated with each edge):

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

adjacent(X,Y,graph(_,Es)) :-

member(e(Y,X),Es).

109

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
Path from one node to another one:
path(G,A,B,P) :-

pathHelper(G,A,[B],P).

% Base case

pathHelper(_,A,[A|P1],[A|P1]).

pathHelper(G,A,[Y|P1],P) :-

adjacent(X,Y,G),

\+ member(X,[Y|P1]),

pathHelper(G,A,[X,Y|P1],P).
110

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
Cycle from a given node in a directed graph:

a predicate cycle(G,A,Cycle) to find a

closed path (cycle) Cycle starting at a given

node A in the graph G

The predicate should return all cycles via

backtracking

cycle(G,A,Cycle) :-

adjacent(A,B,G),

path(G,B,A,P1),

Cycle = [A|P1].
111

(c) Paul Fodor (CS Stony Brook) and Elsevier

Complete program in XSB
:- import member/2 from basics.

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

path(G,A,B,P) :-

pathHelper(G,A,[B],P).

pathHelper(_,A,[A|P1],[A|P1]).

pathHelper(G,A,[Y|P1],P) :-

adjacent(X,Y,G),

\+ member(X,[Y|P1]),

pathHelper(G,A,[X,Y|P1],P).

cycle(G,A,Cycle) :-

adjacent(A,B,G),

path(G,B,A,P),

Cycle = [A|P].

?- Graph = graph([a,b,c,d,f,g],

[e(a,b), e(b,c),e(c,a),e(a,e),e(e,a)]),

cycle(Graph,a,Cycle),

writeln(Cycle),

fail; true.112

(c) Paul Fodor (CS Stony Brook) and Elsevier

Aggregates in XSB
 setof(Template,Goal,Set): Set is the set of all

instances of Template such that Goal is provable

 bagof(Template,Goal,Bag) has the same semantics as

setof/3 except that the third argument returns an unsorted list

that may contain duplicates.

 even if we collect only some variables, it groups the results on the other

vars

 if Goal is unsatisfiable, both setof and bagof fail

 findall(Template,Goal,List) is similar to predicate

bagof/3, except that, if Goal is unsatisfiable, it succeeds binding

List to the empty list, and all variables are existential(not collected)

 tfindall(Template,Goal,List) is similar to predicate

findall/3, but the Goal must be a call to a single tabled

predicate113

(c) Paul Fodor (CS Stony Brook) and Elsevier

Aggregates in XSB
p(1,1).

p(1,2).

p(2,1).

?- setof(Y, p(X,Y), L).

L=[1,2]

?- findall(Y, p(X,Y), L).

L=[1,2,1]

?- bagof(Y, p(X,Y), L).

X=1, L=[1,2] ;

X=2, L=[1] ;

fail
114

(c) Paul Fodor (CS Stony Brook) and Elsevier

Cut (logic programming)
 Cut (! in Prolog) is a goal which always succeeds, but cannot

be backtracked past:

max(X,Y,Y) :- X =< Y, !.

max(X,_,X).

 cut says “stop looking for alternatives”

 no check is needed in the second rule anymore because if we

got there, then X =< Ymust have failed, so X > Ymust be

true.

 Red cut: if someone deletes !, then the rule is incorrect - above

 Green cut: if someone deletes !, then the rule is correct
max(X,Y,Y) :- X =< Y, !.

max(X,Y,X) :- X > Y.

 by explicitly writing X > Y, it guarantees that the second rule will

always work even if the first one is removed by accident or changed

(cut is deleted)
115

(c) Paul Fodor (CS Stony Brook) and Elsevier

Cut (logic programming)
No backtracking pass the guard, but ok after:

p(a). p(b).

q(a). q(b). q(c).

?- p(X),!.

X=a ;

no

?- p(X),!,q(Y).

X=a, Y=a ;

X=a, Y=b ;

X=a, Y=c ;

no
116

(c) Paul Fodor (CS Stony Brook) and Elsevier

Testing types
 atom(X)

Tests whether X is bound to a symbolic atom
?- atom(a).

yes

?- atom(3).

no

 integer(X)

Tests whether X is bound to an integer

 real(X)

Tests whether X is bound to a real number

 number(X)

 atomic(X)
117

(c) Paul Fodor (CS Stony Brook) and Elsevier

Testing for variables
 ground(G)

Tests whether G has unbound logical variables

 var(X)

Tests whether X is bound to a Prolog variable

 is_list(L)

Tests whether L is bound to a list

118

(c) Paul Fodor (CS Stony Brook) and Elsevier

XSB Prolog
Read/write from and to files:
Edinburgh style:

?- tell('a.txt'),

write('Hello, World!'), told.

?- see('a.txt'), read(X), seen.

119

(c) Paul Fodor (CS Stony Brook) and Elsevier

XSB Prolog
Read/write from and to files:
ISO style:

?- open('a.txt', write, X),

write(X,'Hello, World!'),

close(X).

120

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
 call(P)

Force P to be a goal; succeed if P does, else fail

 copy_term(P,NewP)

Creates a new copy of the first parameter (with new

variables)

 It is used in iteration through non-ground clauses, so that

the original calls are not bound to values

121

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog terms
 functor(E,F,N)

E must be bound to a functor expression of the form

'f(...)'. F will be bound to 'f', and N will be

bound to the number of arguments that f has.

 arg(N,E,A)

E must be bound to a functor expression, N is a whole

number, and A will be bound to the Nth argument of E

122

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog terms and clauses
 =..

converts between term and list. For example,

?- parent(a,X) =.. L.

L = [parent, a, _X001]

?- [1] =.. X.

X = [.,1,[]]

123

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
Write a Prolog relation
map(BinaryRelation,InputList, OutputList)

which applies a binary relation on each of the elements of the list

InputList as the first argument and collects the second

argument in the result list.

Example:

?- map(inc1(X,Y),[5,6],R). returns R=[6,7]

where inc1(X,Y) was defined as:

inc1(X,Y) :-

Y is X+1.

124

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
map(_BinaryCall,[],[]).

map(BinaryCall,[X|T],[Y|T2]) :-

copy_term(BinaryCall, BinaryCall2),

BinaryCall2 =.. [_F,X,Y],

call(BinaryCall2),

map(BinaryCall, T, T2).

inc1(X,Y) :-

Y is X+1.

?- map(inc1(X,Y), [5,6], R).

R = [6,7]

125

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
square(X,Y) :-

Y is X*X.

?- map(square(E, E2), [2,3,1], R).

R = [4,9,1];

no

126

(c) Paul Fodor (CS Stony Brook) and Elsevier

Assert and retract
 asserta(C)

Assert clause C into database above other clauses with

the same predicate.

 assertz(C), assert(C)

Assert clause C into database below other clauses with

the same predicate.

 retract(C)

Retract C from the database. C must be sufficiently

instantiated to determine the predicate.

127

(c) Paul Fodor (CS Stony Brook) and Elsevier

Assert and retract
?- assert(fast(ann)).

?- assert(slow(tom)).

?- assert((faster(X,Y) :-

fast(X),slow(Y))).

?- faster(A, B).

A = ann

B = tom

?- retract(slow(tom)).

?- faster(A, B).

no

128

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming style
 To reduce the danger of programming errors and to produce

programs that are readable and easy to understand, easy to debug

and to modify
 Clauses should be short: their body should typically contain no

more than a few goals

 Mnemonic names for predicates and variables should be used:

names should indicate the meaning of relations and the role of data

objects

 The layout of programs is important:
 Spacing, blank lines and indentation should be consistently used for

the sake of readability

 Clauses about the same procedure should be clustered together

129

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming style
 Each goal can be placed on a separate line

 The cut operator should be used with care and should be

placed on a different line

 if Condition then Goal else Goal2 with -> ; translates into

Prolog using cut:

Condition, !, Goal1 ; Goal2

 There should be blank lines between clauses for different

relations

130

(c) Paul Fodor (CS Stony Brook) and Elsevier

Debugging
 When a program does not do what it is expected to do the

main problem is to locate the error

 The basis of Prolog debugging is tracing activated by the built-

in predicate trace

?- trace.

?- SomeGoal.

 Steps:
 Call: Call a predicate (invocation)

 Exit: Return an answer to the caller

 Fail: Return to caller with no answer

 Redo: Try next path to find an answer

 You can skip calls with s, abort with a and leap with l

 Exit tracing with ?- notrace.
131

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog Example: Non-deterministic finite automata
 A unary relation final which defines the final states of the automaton

 A three-argument relation trans which defines the state transitions so that

trans(S1, X, S2) means that a transition from a state S1 to S2 is

possible when the current input symbol X is read.

 A binary relation silent(S1, S2) meaning that a silent move is

possible from S1 to S2

132

(c) Paul Fodor (CS Stony Brook) and Elsevier

Non-deterministic finite automata
 A unary relation final which defines the final states of the automaton

 A three-argument relation trans which defines the state transitions so that

trans(S1, X, S2) means that a transition from a state S1 to S2 is

possible when the current input symbol X is read.

 A binary relation silent(S1, S2) meaning that a silent move is

possible from S1 to S2

133

final(s3).

trans(s1, a, s1).

trans(s1, a, s2).

trans(s1, b, s1).

trans(s2, b, s3).

trans(s3, b, s4).

silent(s2, s4).

silent(s3, s1).

(c) Paul Fodor (CS Stony Brook) and Elsevier

Non-deterministic finite automata
 A binary relation accepts defines the acceptance of a string from a given

state:

accepts(S, []) :-

final(S).

accepts(S, [X|Rest]) :-

trans(S, X, S1),

accepts(S1, Rest).

accepts(S, String) :-

silent(S, S1),

accepts(S1, String).

?- accepts(s1, [a,a,a,b]).

yes

In which state our automaton can be in initially so that it will accept the string

ab: ?- accepts(S, [a,b]).

S=s1;

S=s3
134

(c) Paul Fodor (CS Stony Brook) and Elsevier

Simple Planning Example: monkey and banana
 There is a monkey at the door into a room.

 In the middle of the room a banana is hanging from the ceiling.

 The monkey is hungry and wants to get the banana, but he

cannot stretch high enough from the floor.

 At the window of the room there is a box the monkey may use.

 The monkey can perform the following actions:

 walk on the floor

 push the box around (if it is already at the box)

 climb the box

 grasp the banana if standing on the box directly under the

banana

 Can the monkey get the banana?

135

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: monkey and banana
 The initial state of the world is determined by:

 (1) Monkey is at door

 (2) Monkey is on floor

 (3) Box is at window

 (4) Monkey does not have banana

state(atdoor, onfloor, atwindow, hasnot)

136

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: monkey and banana
 The goal of the game is a situation in which the monkey has the

banana; that is, any state in which the last component is has:

state(_, _, _, has)

 There are four types of moves:

 (1) grasp banana

 (2) climb box

 (3) push box

 (4) walk around

 Not all moves are possible in every possible state of the world

 the move 'grasp' is only possible if the monkey is standing on

the box directly under the banana (which is in the middle of

the room) and does not have the banana yet

137

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: monkey and banana
 The goal of the game is a situation in which the monkey has the banana; that

is, any state in which the last component is has:

state(_, _, _, has)

 There are four types of moves:

 (1) grasp banana

 (2) climb box

 (3) push box

 (4) walk around

 Moves are formalized as a three-place relation

move(State1, M, State2)

State1 is the state before the move, M is the move executed and State2

is the state after the move.

 Not all moves are possible in every possible state of the world
 the move 'grasp' is only possible if the monkey is standing on the box directly under

the banana (which is in the middle of the room) and does not have the banana yet
138

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: monkey and banana
 Grasp banana:

move(state(middle, onbox, middle, hasnot),

grasp,

state(middle, onbox, middle, has)).

 Climb box:
move(state(P, onfloor, P, H),

climb, state(P, onbox, P, H)).

 Push box:
move(state(Pl, onfloor, Pl, H),

push(Pl, P2), state(P2, onfloor, P2, H)).

 Walk:
move(state(P1, onfloor, B, H),

walk(Pl, P2),

state(P2, onfloor, B, H)).

139

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: monkey and banana
 The question that our program will have to answer is:

Can the monkey in some initial state S get the banana?

This can be formulated as a predicate canget(S)

 For any state S in which the monkey already has the banana, the predicate

canget must certainly be true; no move is needed in this case

canget(state(_, _, _, has)).

 In other cases one or more moves are necessary: the monkey can get the

banana in any state S1 if there is some move M from state S1 to some

state S2, such that the monkey can then get the banana in state S2 (in zero

or more moves):

canget(Sl) :-

move(S1, M, S2),

canget(S2).

140

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: monkey and banana
?- canget(state(atdoor, onfloor, atwindow, hasnot)).

141

(c) Paul Fodor (CS Stony Brook) and Elsevier

Order of clauses and goals
 Danger of indefinite looping
p:-p.

says that p is true if p is true.

 This is declaratively correct, but procedurally is quite useless and

causes problems to Prolog: the question ?- p. will loop infinitely:

the goal p is replaced by the same goal p; this will be in turn replaced

by p, etc.

 In the monkey and banana program, the clauses about the move

relation must be ordered: grasp, climb, push, walk

 According to the procedural semantics of prolog, the order of clauses

indicates that the monkey prefers grasping to climbing, climbing to

pushing, etc. This order of preferences in fact helps the monkey to solve

the problem. If walk is first, then infinite loop.
142

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Travel planning
 What days of the week is there a direct flight from NY to London?

 How can I get from NY to Edinburgh on Thursday?

 I have to visit Milan, Paris and Zurich, starting from London on Tuesday and returning to

London on Friday. In what sequence should I visit these cities so that I have no more than

one flight each day of the tour?

 timetable(Place1, Place2, ListOfFlights):

timetable(london, edinburgh,

[9:40 / 10:50 / ua4733 / alldays,

19:40 / 2O:50 / ua4833 / [mo,tu,we,th,fr,su]]).

flight(Place1, Place2, Day, Fnum, Deptime, Arrtime) :-

timetable(Placel, Place2, FlightList),

member(Deptime / Arrtime / Fnum / Daylist ,

Flightlist),

flyday(Day, Daylist).

143

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Travel planning
 route(Place1, Place2, Day, Route):

route(Place1, Place2, Day, [Placel-Place2:Fnum:Dep]):-

flight(Place1, Place2, Day, Fnum, Dep, Arr).

route(Pl, P2, Day, [P1-P3:Fnuml:Depl | Route]):-

flight(P1, P3, Day, Fnum1, Dep1, Arr1),

route(P3, P2, Day, Route),

deptime(Route, Dep2),

transfer(Arr1, Dep2).

flyday(Day, Daylist) :-

member(Day, Daylist).

flyday(_Day, alldays).

deptime([_P1-_P2 : _Fnum : Dep | _], Dep).

?- route(ny, bucharest, th, R).

R = [ny-zurich:ua322:1:30,

zurich-bucharest:sr806:16:10]

144

(c) Paul Fodor (CS Stony Brook) and Elsevier

XSB Tabling
 XSB also supports Datalog with TABLING

(memoization):
:- auto_table.

at the top of the program file, OR
:- table p/1.

for the predicates that you want to table.
 Tabling has many advantages – the most important one is that it

solves the problem of infinite recursion
 Another negation in XSB called tnot is used for TABLING (memoization)

 Use: … :- …, tnot(foobar(X)).

 All variables under the scope of tnot must also occur to the left of that scope in the
body of the rule in other positive relations:

 Ok: …:-p(X,Y),tnot(foobar(X,Y)),…
 Not ok: …:-p(X,Z),tnot(foobar(X,Y)), …

145

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Nqueens
queens([]). % when place queen in empty list, solution found
queens([Row/Col | Rest]) :-

queens(Rest),

member(Col, [1,2,3,4,5,6,7,8]),

safe(Row/Col, Rest).

safe(Anything, []). % the empty board is always safe

safe(Row/Col, [Row1/Col1 | Rest]) :-

Col =\= Col1, % same column?

Col1 - Col =\= Row1 - Row, % check diagonal

Col1 - Col =\= Row - Row1,

safe(Row/Col, Rest).

member(X, [X | Tail]).

member(X, [Head | Tail]) :-

member(X, Tail).

?- queens([1/C1,2/C2,3/C3,4/C4,5/C5,6/C6,7/C7,8/C8]).

146

