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(c) Paul Fodor (CS Stony Brook)

Overview
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1. Introduction to Mathematical Formalizations 

in Logic

2. Propositional Logic or the logic of compound 

statements

3. Logical Arguments

4. Predicative Logic or the logic or quantified 

statements

5. Logic Programming (short basic introduction, 

applications, research at Stony Brook, groups) 



(c) Paul Fodor (CS Stony Brook)

A Puzzle
Knights and Liars/Knaves: Knights 

always tell the truth; Liars/Knaves 

always lie.

Zoe: "Mel is a liar"

Mel: "Neither I nor Zoe are liars“

Who's lying?
3
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A Puzzle
Knights and Liars/Knaves: Knights 

always tell the truth; Liars always lie.

Zoe: "Mel is a liar"

Mel: "Neither I nor Zoe are liars“
(1) z  ~m

(2) m  ~(~m ∨ ~z)
by logical equivalence:

~(~m ∨ ~z) ≡ m ∧ z

(2) becomes m  m ∧ z
4
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Mathematical Formalization 

5

Why formalize language?

 to remove ambiguity

 to represent facts on a computer and use it for 

proving, proof-checking, etc.

All people are mortal. Socrates is mortal.

Socrates is a person.

∀x P(x) → M(x) P(S) → M(S) M(S)

P(S) P(S)

 to detect unsound reasoning in arguments

I am lying.
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Logic
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Mathematical logic is a tool for dealing with 

formal reasoning!

formalization of natural language and reasoning 

methods

Logic does:

Assess if an argument is Valid or invalid

Logic does not directly:

Assess the truth of atomic statements
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Propositional Logic
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 Or the logic of compound statements is the study of:

 the structure (syntax) and

 the meaning (semantics) of (simple and complex) 

propositions

 The key questions are:

How is the truth value of a complex proposition 

obtained from the truth value of its simpler 

components?

Which propositions represent correct reasoning 

arguments?
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 A proposition is a sentence that is either true or false, but 

not both

 Examples of simple propositions:

 John is a student.

 5+1 = 6

 426 > 1721

 It is 82 degrees outside right now.

 Example of a complex/composed proposition:

 Tom is five and Mary is six.

 Sentences which are not propositions:

 Did Steve get an A on the exam?    (this is a query)

 Go away! (this is an order)

Propositional Logic
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 In studying properties of propositions we represent them by expressions 

called proposition forms or formulas built from propositional 

variables (atoms), which represent simple propositions and symbols 

representing logical connectives

 Proposition or propositional variables: p, q,…

each can be true or false in 2-valued logics

Examples: p=“Socrates is mortal.”

q=“Plato is mortal.”

 Connectives: ∧, ∨, →, ⟷, ~

 connect propositions: p ∨ q
 Example: “I passed the exam or I did not pass it.”       p ∨ ~p

 The formula expresses the logical structure of the proposition, where p is an 

abbreviation for the simple proposition “I passed the exam.”

Propositional Logic
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Connectives

10

~ not

∧ and

∨ or  (non-exclusive!)

→ implies (if … then …)

⟷ if and only if

 for all

 exists
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Formulas
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Atomic: p, q, x, y, …

Unit Formula: p, ~p, (formula), …

Conjunctive: p ∧ q, p ∧ ~q, …

Disjunctive: p ∨ q, p ∨ (q ∧ x),…

Conditional: p → q

Biconditional: p⟷ q
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Negation (~ or ¬ or !)
We use the symbol ~ to denote negation

Formalization (syntax): If p is a formula, then ~p

is also a formula. We say that the second formula 

is the negation of the first

Examples: p, ~p, and ~~p are all formulas

Examples:

John went to the store yesterday (p).

John did not go to the store yesterday (~p).

12
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Meaning (semantics): 

If a proposition is true, then its negation is false. 

If it is false, then its negation is true.

We express the connection semantics via a so-

called truth table:

13

Negation (~ or ¬ or !)
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Conjunction (∧ or & or •)
 We use the symbol ∧ to denote conjunction 

 Syntax: If p and q are formulas, then p ∧ q is also a 

formula.

 Semantics: If p is true and q is true, then p ∧ q is true. In 

all other cases, p ∧ q is false.

14
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 Example:

1. Bill went to the store.

2. Mary ate cantaloupe.

3. Bill went to the store and Mary ate cantaloupe.

 If p and q abbreviate the first and second sentence, 

then the third is represented by the conjunction p ∧ q.

15

Conjunction (∧ or & or •)
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Inclusive Disjunction (∨ or | or +)
 We use the symbol ∨ to denote (inclusive) disjunction.

 Syntax: If p and q are formulas, then p ∨ q is also a formula.

 Semantics: If p is true or q is true or both are true, then p ∨ q is 

true. If p and q are both false, then p ∨ q is false.

16
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Example:

John works hard (p).

Mary is happy (q).

John works hard or Mary is happy (p ∨ q).

17

Inclusive Disjunction (∨ or | or +)
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Exclusive Disjunction (⊕, XOR)
 We use the symbol ⊕ to denote exclusive disjunction.

 Syntax: If p and q are formulas, then p ⊕ q is also a formula.

 Semantics: An exclusive disjunction p ⊕ q is true if, and only if, 

one of p or q is true, but not both.

 Example: 

 Either John works hard or Mary is happy (p ⊕ q)

18
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Implication
Example of proposition: 

If I do not pass the exam, then I will fail 

the course.

Corresponding formula: ~p → q

(More later …)

19
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Determining Truth of A Formula

20

 Atomic formulae: given

 Compound formulae: via meaning of the connectives

The semantics of logical connectives determines how 

propositional formulas are evaluated depending on 

the truth values assigned to propositional variables

Each possible truth assignment or valuation for the 

propositional variables of a formula yields a truth 

value

 The different possibilities can be summarized in a truth 

table
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Evaluation of formulas - Truth Tables

A truth table for a formula lists all 

possible “situations” of truth or falsity, 

depending on the values assigned to the 

propositional variables of the formula

21
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Truth Tables
 Example: If p, q and r are the propositions “Peter [Quincy, Richard] will 

lend Sam money,” then Sam can deduce logically correct, that he will be 

able to borrow money whenever one of his three friends is willing to lend 

him some: p ∨ q ∨ r

 Each row in the truth table corresponds to one possible situation of 

assigning truth values to p, q and r
22

p q r p ∨ q ∨ r

T T T T

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F F
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 How many rows are there in a truth table with n

propositional variables?

 for n = 1, there are two rows, e.g.for ~ (negation)

 for n = 2, there are four rows, e.g.:

 for n = 3, there are eight rows, and so on.

 Do you see a pattern?

23

Truth Tables
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Constructing Truth Tables
 There are two choices (true or false) for each of n

variables, so in general there are 2*2*...*2 = 2n

rows for n variables

 A systematic procedure is necessary to make sure you 

construct all rows without duplicates

count in binary: 000, 001, 010, 011,100, . . .

The rightmost column must be computed as a 

function of all the truth values in the row:

24
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 Example 1:             p ∧ ~q (read “p and not q”)

 Note : it is usually necessary to evaluate all subformulas

p q ~q p ∧ ~q

T T F F

T F T T

F T F F

F F T F

Constructing Truth Tables
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 Example 2: p ∧ (q ∨ r ) (read “p and, in addition, q or r”)

 Note : it is usually necessary to evaluate all subformulas

p q r q ∨ r p ∧ (q ∨ r ) 

T T T T T

T T F T T

T F T T T

T F F F F

F T T T F

F T F T F

F F T T F

F F F F F

Constructing Truth Tables
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Because it is clumsy and time-consuming to 

build large explicit truth tables, we will be 

interested in more efficient logical evaluation 

procedures.

Symbolic proofs with logical equivalences 

(See later) ~~p ≡ p

27

Constructing Truth Tables
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Language: Syntax of Formulas

 We backtrack a bit to formally define the syntax of logic

 The formal language of propositional logic can be specified by 

grammar rules

 The syntactic structure of a complex logical expression (i.e., its 

parse tree) must be unambiguous

proposition ::= variable

| (~proposition)

| (proposition ∧ proposition)

| (proposition ∨ proposition)

...

variable ::= p | q | r | ...

28
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Ambiguities in Syntax of Formulas
 For example, the expression p ∧ q ∨ r can be interpreted in two 

different ways:

 Parentheses are needed to avoid ambiguities

 The same problem arises in arithmetic: does 5+2 x 4 means (5+2) x 

4 or 5+(2 x 4)?
 The problem there is solved with priorities

 Priorities in logic: ~ > ∧ > ∨ > →
 ∧, ∨ and → operators are left associative

 ~ is right associative

 With ∧ ahead of ∨ in the precedence, there is no ambiguity 

in p ∧ q ∨ r

29

p q r p ∧ q (p ∧ q) ∨ r q ∨ r p ∧ (q ∨ r)

F F T F T T F
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18

Precedence

~ highest

∧

∨

→, ⟷ lowest

Avoid confusion - use ‘(‘ and ‘)’:

(p ∧ q) ∨ x
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Logical Equivalence
 If two formulas evaluate to the same truth value in all 

situations, so that their truth tables are the same, they are said 

to be logically equivalent

 We write p ≡ q to indicate that two formulas p and q are 

logically equivalent

 If two formulas are logically equivalent, their syntax may be 

different, but their semantics is the same 

 The logical equivalence of two formulas can be established by 

inspecting the associated truth tables.

 Note: Substituting logically inequivalent formulas is the source of 

most real-world reasoning errors

31
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Logical Equivalence
Disjunction is commutative:

32

p q p ∨ q q ∨ p

T T T T

T F T T

F T T T

F F F F
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Logical Equivalence
 Disjunction is associative:

 We will therefore ambiguously write p ∨ q ∨ r to denote either (p 

∨ q) ∨ r or p ∨ (q ∨ r). The ambiguity is usually of no consequence, 

as both formulas have the same meaning.

33

p q r (p ∨ q) ∨ r p ∨ (q ∨ r) 

T T T T T

T T F T T

T F T T T

T F F T T

F T T T T

F T F T T

F F T T T

F F F F F
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 Is ~(p ∧ q) logically equivalent (≡) to ~p ∧ ~q?

 Lines 2 and 3 prove that this is not the case.

34

p q p ∧ q ~(p ∧ q) ~p ~q ~p ∧ ~q

T T T F F F F

T F F T F T F

F T F T T F F

F F F T T T T

Logical Equivalence
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 Is ~(p ∧ q) logically equivalent (≡) to ~p ∨ ~q?

Yes.

35

p q p ∧ q ~(p ∧ q) ~p ~q ~p ∨ ~q

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Logical Equivalence
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De Morgan's Laws
 There are a number of important equivalences, 

including the following De Morgan's Laws:

~(p ∧ q) ≡ ~p ∨ ~q

~(p ∨ q) ≡ ~p ∧ ~q

These equivalences can be used to transform a 

formula into a logically equivalent one of a 

certain syntactic form, called a "normal form“

 Another useful logical equivalence is double 

negation:

~~ p ≡ p 
36
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~(~p ∧ ~q) ≡ ~ ~ (p ∨ q) ≡ p ∨ q

The first equivalence is by De Morgan's Law, the 

second by double negation

We have just derived a new equivalence: p ∨ q ≡

~(~p ∧ ~q) (as equivalence can be used in both 

directions) which shows that disjunction can be 

expressed in terms of conjunction and negation!

37

Using De Morgan's Laws
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Some Logical Equivalences
You should be able to convince yourself of (i.e., 

prove) each of these:

Commutativity of ∧ : p ∧ q ≡ q ∧ p

Commutativity of ∨ : p ∨ q ≡ q ∨ p

Associativity of ∧ : p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

Associativity of ∨ : p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

Idempotence: p ≡ p ∧ p ≡ p ∨ p

Absorption: p ≡ p ∧ (p ∨ q) ≡ p ∨ (p ∧ q) 

38
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Distributivity of ∧ : p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 

Distributivity of ∨ : p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 

Contradictions: p ∧ F ≡ F ≡ p ∧ ~p

 Identities: p ∧T ≡ p ≡ p ∨ F

Tautologies: p ∨T ≡ T ≡ p ∨ ~p

39

Some Logical Equivalences
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Tautologies
 A tautology is a formula that is always true, no 

matter which truth values we assign to its variables.

 Consider the proposition "I passed the exam or I did not 

pass the exam," the logical form of which is 

represented by the formula p ∨ ~p

 This is a tautology, as we get T in every row of its truth 

table.

40

p ~p p ∨ ~p

T F T

F T T
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Contradictions

A contradiction is a formula that is always false.

 The logical form of the proposition "I passed 

the exam and I did not pass the exam" is 

represented by p ∧ ~p

This is a contradiction, as we get F in every row of 

its truth table

41

p ~p p ∧ ~p

T F F

F T F
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Tautologies and contradictions

Tautologies and contradictions are 

related
Theorem: If p is a tautology (contradiction) then 

~p is a contradiction (tautology).

Example: p ∨ ~p a tautology

Is ~(p ∨ ~p) a contradiction?

~(p ∨ ~p) ≡ ~p ∧ ~~p ≡ ~p ∧ p ≡ p ∧ ~p

Yes. because ~(p ∨ ~p) ≡ p ∧ ~p and p ∧ ~p is a 

contradiction.
42
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Implication (→)
 Syntax: If p and q are formulas, then p → q (read “p implies q") 

is also a formula

 We call p the premise and q the conclusion of the implication.

 Semantics: If p is true and q is false, then p → q is false. In all 

other cases, p → q is true.

43
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Example:

p: You get A's on all exams.

q: You get an A in this course.

p → q: If you get A's on all exams, then you 

will get an A in this course.

44

Implication (→)
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 The semantics of implication is trickier than for the other 

connectives

 if p and q are both true, clearly the implication p → q is true

 if p is true but q is false, clearly the implication p → q is false

 If the premise p is false no conclusion can be drawn, but 

both q being true and being false are consistent, so that the 

implication p → q is true in both cases

 Implication can also be expressed by other connectives, for 

example, p → q is logically equivalent to ~(p ∧ ~q), which is 

equivalent with ~p ∨ q

45

Implication (→)
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Example: The Case of the 

Bad Defense Attorney
 Prosecutor: 

"If the defendant is guilty, then he had an accomplice."

 Defense Attorney: 

"That's not true!!"

 What did the defense attorney just claim?

~(p → q) ≡ ~~(p ∧ ~q) ≡ p ∧ ~q

which means that "the defendant is guilty 

and he did not have an accomplice"
46
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Biconditional
 Syntax: If p and q are formulas, then p⟷ q (read “p if 

and only if (iff) q") is also a formula.

 Semantics: If p and q are either both true or both false, 

then p⟷q is true. Otherwise, p⟷ q is false.

47
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Example:

p: Bill will get an A.

q: Bill studies hard.

p ⟷ q : Bill will get an A if and only if Bill 

studies hard.

The biconditional may be viewed as a shorthand 

for a conjunction of two implications, as p ⟷ q

is logically equivalent to (p → q) ∧ (q → p) 

48

Biconditional
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Necessary and Sufficient Conditions
 The phrase "necessary and sufficient conditions" appears 

often in mathematics

 A proposition p is sufficient for q if p → q is a tautology.

Example: It is sufficient for a student to get A's in 

CSE114, CSE215, CSE214 in order to be admitted to 

become a CSE major

 A proposition p is necessary for q if q cannot be true 

without it: ~p → ~q (equivalent to q → p).

Example: It is necessary for a student to have a 3.0 GPA in the 

core courses to be admitted to become a CSE major.

49
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Theorem: If a proposition p is both 

necessary and sufficient for q, then p

and q are logically equivalent (and vice 

versa).

50

Necessary and Sufficient Conditions
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Tautologies and Logical Equivalence

Theorem: A propositional formula p is logically equivalent to q

if and only if p ⟷ q is a tautology

 Proof:

 (a) If p ⟷ q is a tautology, then p is logically equivalent to q

Why? If p ⟷ q is a tautology, then it is true for all truth 

assignments. By the semantics of the biconditional, this means 

that p and q agree on every row of the truth table. Hence the 

two formulas are logically equivalent.

 (b) If p is logically equivalent to q, then p ⟷ q is a tautology

Why? If p and q logically equivalent, then they evaluate to the 

same truth value for each truth assignment. By the semantics of 

the biconditional, the formula p ⟷ q is true in all situations.   

51
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Related Implications
 Implication: p → q

 If you get A's on all exams, you get an A in the course.

 Contrapositive: ~q → ~p

 If you didn't get an A in the course, then you didn't get A's 

on all exams

 Note that implication is logically equivalent to the 

contrapositive

52

p q p → q ~q ~p ~q → ~p

T T T F F T

T F F T F F

F T T F T T

F F T T T T



(c) Paul Fodor (CS Stony Brook)

Related Implications

 Converse: q → p

 If you get an A in the course, then you got A's on all exams.

 Inverse: ~p → ~q

 If you didn't get A's on all exams, then you didn't get an A in the 

course. 

 Note that converse is logically equivalent to the inverse

53

p q q → p ~p ~q ~p → ~q

T T T F F T

T F T F T T

F T F T F F

F F T T T T
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Deriving Logical Equivalences

 We can establish logical equivalence either via truth tables 

OR symbolically

 Example: p ⟷ q is logically equivalent to (p → q) ∧ (q → p)

 Symbolic proofs are much like the simplifications you did in 

high school algebra - trial-and-error leads to experience and 

finally cunning

54

p q q ⟷ p p → q q → p (p → q) ∧ (q → p)

T T T T T T

T F F F T F

F T F T F F

F F T T T T
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) 

≡ (q ∧ p) ∨ (q ∧ ~q) (2)

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

55

Symbolic proofs
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2)

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

56

Symbolic proofs



(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

57

Symbolic proofs
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4)

≡ p ∧ q (5)

58

Symbolic proofs



(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ∧ r ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4) Identity

≡ p ∧ q (5)

59

Symbolic proofs
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4) Identity

≡ p ∧ q (5) Commutativity of ∧

60

Symbolic proofs
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Logical Consequence
 We say that p logically implies q, or that q is a logical consequence

of p, if q is true whenever p is true.

 Example: p logically implies p ∨ q

 Note that logical consequence is a weaker condition than logical 

equivalence

61

p q p ∨ q

T T T

T F T

F T T

F F F
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Logical Arguments
 An argument (or argument form) is a (finite) sequence of 

statements (forms), usually written as follows:

p1

...

pn

∴ q

 We call p1,..., pn the premises (or assumptions or hypotheses) 

and q the conclusion, of the argument.

 We read:

“p1, p2, ..., pn, therefore q” OR

“From premises p1, p2, ..., pn infer conclusion q”

 Argument forms are also called inference rules.
62
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 An inference rule is said to be valid, or (logically) sound, 

if it is the case that, for each truth valuation, if all the 

premises true, then the conclusion is also true!

Theorem: An inference rule is valid if, and only if, the 

conditional p1∧p2∧... ∧pn → q is a tautology.

 An argument form consisting of two premises and a 

conclusion is called a syllogism.

63

Logical Arguments
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Determining Validity or Invalidity
 Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the 

premises and the conclusion.

3. A row of the truth table in which all the premises are 

true is called a critical row. If there is a critical row in 

which the conclusion is false, then the argument form is 

invalid. If the conclusion in every critical row is true, then 

the argument form is valid

64
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p →q ∨ ∼ r

q → p ∧ r 

∴ p →r

Invalid argument
65

Determining Validity or Invalidity
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Modus Ponens
 Modus Ponens: p →q

“method of affirming” p

Latin ∴ q

Valid argument
66
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The following argument is valid:

If Socrates is a man, then Socrates is mortal.

Socrates is a man.

∴ Socrates is mortal.

67

Modus Ponens
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 Modus Tonens: p →q

“method of denying” ~q

Latin ∴ ~p

 Modus Tollens is valid because :

 modus ponens is valid and the fact that a conditional statement 

is logically equivalent to its contrapositive, OR

 it can be established formally by using a truth table.

68

Modus Tollens
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 Example:

(1) If Zeus is human, then Zeus is mortal.

(2) Zeus is not mortal.

∴ Zeus is not human.

 An intuitive proof is proof by contradiction

 if Zeus were human, then by (1) he would be mortal.

But by (2) he is not mortal.

Hence, Zeus cannot be human.

69

Modus Tollens



(c) Paul Fodor (CS Stony Brook)

Recognizing Modus Ponens and Modus Tollens

If there are more pigeons than there are pigeonholes, then at 

least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴ ?
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If there are more pigeons than there are pigeonholes, then at 

least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴At least two pigeons roost in the same hole. 

by modus ponens
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If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

∴ ?
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If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

∴ 870,232 is not divisible by 6. 

by modus tollens
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Other Rules of Inference

 Generalization:

p and q

∴ p ∨ q ∴ p ∨ q

 Example:

Anton is a junior.

∴ (more generally) Anton is a junior or Anton is a senior.
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 Specialization:

p ∧ q and p ∧ q

∴ p ∴ q

 Example:

Ana knows numerical analysis and 

Ana knows graph algorithms.

∴ (in particular) Ana knows graph algorithms.
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 Elimination :

p ∨ q and p ∨ q

~q ~p

∴ p ∴ q

 If we have only two possibilities and we can rule one out, the 

other one must be the case

 Example:

x − 3 =0 or x + 2 = 0

x + 2  0.

∴ x − 3 =0.
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 Transitivity :

p → q

q → r

∴ p → r

 Example:

If 18,486 is divisible by 18, then 18,486 is divisible by 9.

If 18,486 is divisible by 9, then the sum of the digits of 

18,486 is divisible by 9.

∴ If 18,486 is divisible by 18, then the sum of the digits 

of 18,486 is divisible by 9.

77

Other Rules of Inference



(c) Paul Fodor (CS Stony Brook)

Proof Techniques

Proof by Contradiction:
~p → c, where c is a contradiction

∴ p

 The usual way to derive a conditional ~p → c is to assume ~p 

and then derive c (i.e., a contradiction).

 Thus, if one can derive a contradiction from ~p, then one may 

conclude that p is true.
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The Logic of Quantified Statements
All men are mortal.

Socrates is a man.

∴ Socrates is mortal.

 Propositional calculus: analysis of ordinary compound statements 

 Predicate calculus or The Logic of Quantified Statements: 

symbolic analysis of predicates and quantified statements 

(∀x, ∃x)

 Example: P is a predicate symbol

P stands for “is a student at SBU” 

P(x) stands for “x is a student at SBU”

x is a predicate variable
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 A predicate is a sentence that contains a finite number of 

variables and becomes a statement (or ground predicate) 

when specific values are substituted for the variables.

 The domain of a predicate variable is the set of all values that 

may be substituted in place of the variable.

 Example: 

P(x) is the predicate “x2 > x” , x has as a domain the set R of all 

real numbers

P(2): 22 > 2. True.

P(1/2): (1/2)2 > 1/2. False.
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Truth Set of a Predicate
 If P(x) is a predicate and x has domain D, the truth 

set of P(x), the truth set of P, {x ∈ D | P(x)}, is the 

set of all elements of D that make P(x) true when 

they are substituted for x. 

Example:

Q(n) is the predicate for “n is a factor of 8.”

if the domain of n is the set Z of all integers

The truth set is {1, 2, 4, 8,−1,−2,−4,−8}
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The Universal Quantifier: ∀
 Quantifiers are words that refer to quantities (“some” or 

“all”) and tell for how many elements a given predicate 

is true.

 Universal quantifier: ∀ “for all”

Example: 

∀ human beings x, x is mortal.

“All human beings are mortal”

 If H is the set of all human beings:

∀x ∈ H, x is mortal
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Universal statements
 A universal statement is a statement of the form 

“∀x ∈ D, Q(x)” where Q(x) is a predicate and D is the domain of x.

∀x ∈ D, Q(x) is true if, and only if, Q(x) is true for every x in D

∀x ∈ D, Q(x) is false if, and only if, Q(x) is false for at least one 

x in D (the value for x is a counterexample)

 Example:

∀x ∈ D, x2 ≥ x for D = {1, 2, 3, 4, 5}

12 ≥ 1,         22 ≥ 2,         32 ≥ 3,         42 ≥ 4,         52 ≥ 5 

 Hence “∀x ∈ D, x2 ≥ x” is true.

83



(c) Paul Fodor (CS Stony Brook)

The Existential Quantifier: ∃
 Existential quantifier: ∃ “there exists”

 Example:

“There is a student in the course”

∃ a person p such that p is a student in the course

∃p ∈ P such that p is a student in the course

where P is the set of all people
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 An existential statement is a statement of the form 

“∃x ∈ D such that Q(x)” where Q(x) is a predicate and D the domain of x

 ∃x ∈ D s.t. Q(x) is true if, and only if, Q(x) is true for at least one x in D

 ∃x ∈ D s.t. Q(x) is false if, and only if, Q(x) is false for all x in D

 Example:

 ∃m ∈ Z such that m2 = m

It is true. Example: 12 = 1

Notation: such that  = s.t.
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Universal Conditional Statements

Universal conditional statement:

∀x, if P(x) then Q(x)

Example:

If a real number is greater than 2 then its square is 

greater than 4.

∀x ∈ R, if x > 2 then x2 > 4
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Equivalent Forms of Universal and Existential Statements

 ∀x ∈ U, if P(x) then Q(x) can be rewritten in the form    

∀x ∈ D, Q(x) by narrowing U to be the domain D 

consisting of all values of the variable x that make P(x) 

true.

Example: ∀x, if x is a square then x is a rectangle

∀ squares x, x is a rectangle.

 ∃x such that P(x) and Q(x) can be rewritten in the form 

∃x ∈ D such that Q(x) where D consists of all values of the 

variable x that make P(x) true
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Implicit Quantification
 P(x) ⇒ Q (x) means that every element in the 

truth set of P(x) is in the truth set of Q(x), or, 

equivalently, ∀x, P(x) → Q(x)

 P(x)⇔ Q(x) means that P(x) and Q(x) have 

identical truth sets, or, equivalently, ∀x, 

P(x)⟷Q(x).
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 Negation of a Universal Statement:

The negation of a statement of the form ∀x ∈ D, Q(x)

is logically equivalent to a statement of the form 

∃x ∈ D, ∼Q(x):

∼(∀x ∈ D, Q(x)) ≡ ∃x ∈ D,∼Q(x)
 Example:

 “All mathematicians wear glasses”

 Its negation is: “There is at least one mathematician who does not

wear glasses”

 Its negation is NOT “No mathematicians wear glasses”
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 Negation of an Existential Statement

The negation of a statement of the form ∃x ∈ D, Q(x)

is logically equivalent to a statement of the form ∀x ∈ D,∼Q(x):

∼(∃x ∈ D, Q(x)) ≡ ∀x ∈ D,∼Q(x)
 Example:

 “Some snowflakes are the same.”

 Its negation is: “All snowflakes are different.”
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 More Examples:

 ~(∀ primes p, p is odd) ≡ ∃ a prime p such that p is not odd

 ~( ∃ a triangle T such that  the sum of the angles ofT equals 200◦ ) ≡

∀ triangles T, the sum of the angles ofT does not equal 200◦

 ~(∀ politicians x, x is not honest) ≡ ∃ a politician x such that x is 

honest (by double negation)

 ~(∀ computer programs p, p is finite) ≡ ∃ a computer program p that 

is not finite

 ~( ∃ a computer hacker c, c is over 40) ≡ ∀ computer hacker c, c is 40 

or under

 ~( ∃ an integer n between 1 and 37 such that 1,357 is divisible by n )

≡ ∀ integers n between 1 and 37, 1,357 is not divisible by n
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Negations of Universal Conditional Statements

∼(∀x, P(x) → Q(x)) ≡ ∃x such that P(x) ∧ ∼Q(x)
Proof:

∼(∀x, P(x) → Q(x)) ≡ ∃x such that ∼(P(x) → Q(x))

and

∼(P(x) → Q(x)) ≡ ∼(~P(x) ∨ Q(x)) ≡ ∼~P(x) ∧ ~Q(x))

≡ P(x) ∧ ∼Q(x)
 Examples:

 ~(∀ people p, if p is blond then p has blue eyes) ≡

∃ a person p such that p is blond and p does not have blue eyes

 ~(If a computer program has more than 100,000 lines, then it contains a bug) 

≡ There is at least one computer program that has more than 100,000 lines 

and does not contain a bug
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The Relation among ∀, ∃, ∧, and ∨
D = {x1, x2, . . . , xn} and ∀x ∈ D, Q(x)      

≡ Q(x1) ∧ Q (x2) ∧ · · · ∧ Q (xn)

D = {x1, x2, . . . , xn} and ∃x ∈ D such that Q(x)   

≡ Q(x1) ∨ Q(x2) ∨ · · · ∨ Q(xn)
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Vacuous Truth of Universal Statements

94

∀x in D, if P(x) then Q(x) is vacuously true or true by default if, 

and only if, P(x) is false for every x in D
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Variants of Universal Conditional Statements

 Universal conditional statement: ∀x ∈ D, if P(x) then Q(x)

 Contrapositive: ∀x ∈ D, if ∼Q(x) then ∼P(x)

∀x ∈ D, if P(x) then Q(x) ≡ ∀x ∈ D, if ∼Q(x) then ∼P(x)

Proof: for any x in D by the logical equivalence between statement and its 

contrapositive

 Converse: ∀x ∈ D, if Q(x) then P(x).

 Inverse: ∀x ∈ D, if ∼P(x) then ∼Q(x).

 Example:

∀x ∈ R, if x > 2 then x2 > 4

Contrapositive: ∀x ∈ R, if x2 ≤ 4 then x ≤ 2

Converse: ∀x ∈ R, if x2 > 4 then x > 2

Inverse:∀x ∈ R, if x ≤ 2 then x2 ≤ 4
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Necessary and Sufficient Conditions

 Necessary condition:  

“∀x, r (x) is a necessary condition for s(x)” means 

“∀x, if ∼r (x) then ∼s(x)” ≡ “∀x, if s(x) then r(x)” (*)

(*)(by contrapositive and double negation)

 Sufficient condition:

“∀x, r (x) is a sufficient condition for s(x)” means 

“∀x, if r (x) then s(x)”
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Necessary and Sufficient Conditions

 Examples:

Squareness is a sufficient condition for 

rectangularity;

Formal statement: 

∀x, if x is a square, then x is a rectangle

Being at least 35 years old is a necessary condition 

for being President of the United States

∀ people x, if x is younger than 35, then x cannot be 

President of the United States ≡

∀ people x, if x is President of the United States then x 

is at least 35 years old (by contrapositive)
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Statements with Multiple Quantifiers
 Example:

“There is a person supervising every detail of the production 

process”

 What is the meaning?

“There is one single person who supervises all the details of 

the production process”?

OR 

“For any particular production detail, there is a person who 

supervises that detail, but there might be different 

supervisors for different details”?

NATURAL LANGUAGE IS AMBIGUOUS

LOGIC IS CLEAR 
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 In Logic: Quantifiers are performed in the order in 

which the quantifiers occur:

Examples:

∀x in set D, ∃y in set E such that x and y satisfy 

property P(x, y)

is different from:

∃y in set E such that ∀x in set D, x and y satisfy 

property P(x, y)
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Interpreting Statements with Two Different Quantifiers

 Explanations:

 ∀x in D, ∃y in E such that P(x, y)

 for whatever element x in D you must find an 

element y in E that “works” for that particular x

 ∃y in E such that ∀x in D, P(x, y)

 find one particular y in E that will “work” no matter 

what x in D anyone might choose
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 ∃ an item I such that ∀ students S, S chose I .

 ∃ a student S such that ∀ stations Z, ∃ an item I in Z such 

that S chose I 

 ∀ students S and ∀ stations Z, ∃ an item I in Z such that S 

chose I .
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 ∃ an item I such that ∀ students S, S chose I . TRUE

 ∃ a student S such that ∀ stations Z, ∃ an item I in Z such 

that S chose I TRUE

 ∀ students S and ∀ stations Z, ∃ an item I in Z such that S 

chose I . FALSE
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Tarski’s World is a good world to Formalizing Logic Statements

 Blocks of various sizes, shapes, and colors located on a grid

 Triangle(x) means “x is a triangle”

 Circle(x) means “x is a circle”

 Square(x) means “x is a square”

 Blue(x) means “x is blue”

 Gray(x) means “x is gray”

 Black(x) means “x is black”

 RightOf(x, y) means “x is to the right of y”

 Above(x, y) means “x is above y” 

 SameColorAs(x, y) means “x has the same color as y”

 x = y denotes the predicate “x is equal/same to y”
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Tarski’s World

∀t, Triangle(t) →Blue(t). TRUE

∀x, Blue(x) →Triangle(x). FALSE

∃y such that Square(y)∧ RightOf(d, y). TRUE

∃z such that Square(z)∧ Gray(z). FALSE
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Tarski’s World

∀t, Triangle(t) →Blue(t).

∀x, Blue(x) →Triangle(x).

∃y such that Square(y)∧ RightOf(d, y).

∃z such that Square(z)∧ Gray(z).
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Statements with Multiple Quantifiers in Tarski’s World

 For all triangles x, there is a square y such that x and y have the same color

TRUE
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Statements with Multiple Quantifiers in Tarski’s World

 There is a square y such that, for all triangles x, x and y have the same color

FALSE

there is no such square
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Quantifier Order in Tarski’s World

 For every square x there is a triangle y such that x and y have different colors

TRUE

 There exists a triangle y such that for every square x, x and y have different 

colors

FALSE
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Statements with Multiple Quantifiers in Tarski’s World

 There is a triangle x such that for all circles y, x is to the right of y

TRUE
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Negations of Multiply-Quantified Statements

 Apply negation to quantified statements from left to 

right:

∼(∀x in D, ∃y in E such that P(x, y))

≡ ∃x in D such that ∼(∃y in E such that P(x, y))

≡ ∃x in D such that ∀y in E,∼P(x, y).

∼(∃x in D such that ∀y in E, P(x, y)) 

≡ ∀x in D,∼(∀y in E, P(x, y))

≡ ∀x in D, ∃y in E such that ∼P(x, y).

110



(c) Paul Fodor (CS Stony Brook)

Negating Statements in Tarski’s World

 For all squares x, there is a circle y such that x and y have the same color

Negation:

∃ a square x such that ∼(∃ a circle y such that x and y have the same color)

≡ ∃ a square x such that ∀ circles y, x and y do not have the same color

TRUE: Square e is black and no circle is black.
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Negating Statements in Tarski’s World

 There is a triangle x such that for all squares y, x is to the right of y 

Negation:

∀ triangles x,∼ (∀ squares y, x is to the right of y)

≡ ∀ triangles x, ∃ a square y such that x is not to the right of y

TRUE
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Formalizing Statements in Tarski’s World

 For all circles x, x is above f

∀x(Circle(x) →Above(x, f ))

 Negation: 

∼(∀x(Circle(x) → Above(x, f )))

≡ ∃x ∼ (Circle(x) → Above(x, f ))

≡ ∃x(Circle(x) ∧ ∼Above(x, f ))
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Formalizing Statements in Tarski’s World

 There is a square x such that x is black

∃x(Square(x) ∧ Black(x))

 Negation: 

∼(∃x(Square(x) ∧ Black(x)))

≡ ∀x ∼ (Square(x) ∧ Black(x))

≡ ∀x(∼Square(x)∨ ∼Black(x))
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Formalizing Statements in Tarski’s World

 For all circles x, there is a square y 

such that x and y have the same color

∀x(Circle(x) → ∃y(Square(y) ∧

SameColor(x, y)))

 Negation: 

∼(∀x(Circle(x)→ ∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x ∼ (Circle(x) → ∃y(Square(y) ∧ SameColor(x, y)))

≡ ∃x(Circle(x) ∧ ∼(∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼Square(y) ∨ ∼SameColor(x, y)))
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Formalizing Statements in Tarski’s World

 There is a square x such that for all 

triangles y, x is to right of y

∃x(Square(x) ∧ ∀y(Triangle(y) →

RightOf(x, y)))

 Negation: 

∼(∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x ∼ (Square(x) ∧ ∀y(Triangle(x) → RightOf(x, y)))

≡ ∀x(∼Square(x) ∨ ∼(∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(∼(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(Triangle(y)∧ ∼RightOf(x, y)))
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Validity of Arguments with Quantified Statements

An argument form is valid, if and only if, for 

any particular predicates substituted for the 

predicate symbols in the premises if the 

resulting premise statements are all true, 

then the conclusion is also true

Logical arguments transfer from the 

propositional logic to the predicative logic: 

modus ponens, modus tollens, generalization, 

specialization
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Universal Transitivity
Formal Version Informal Version

∀x P(x) → Q(x). Any x that makes P(x) true makes Q(x) true.

∀xQ(x) → R(x). Any x that makes Q(x) true makes R(x) true.

∴ ∀x P(x) → R(x). ∴Any x that makes P(x) true makes R(x) true.

 Example from Tarski’s World:

∀x, if x is a triangle, then x is blue.

∀x, if x is blue, then x is to the right of all the squares.

∴ ∀x, if x is a triangle, then x is to the right of all the squares
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Logic and Programming
 Logic forms a formal foundation for describing 

relationships between entities

 In many cases, we can infer interesting consequences from 

these relationships

 When the inference procedure is simple enough, the 

descriptions of the relationships can be seen as programs

 The same set of relationships can be described in many 

ways: each resulting in a different "program"

 Logic Programming: a framework for describing 

relationships such that inferences can be done efficiently
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Programming Languages
 Languages:

 Imperative = Turing machines

 Functional Programming = lambda calculus

 Logical Programming = first-order predicate calculus

 Prolog (Programming in logic) and its variants make up the 

most commonly used Logical programming languages.

 One variant is XSB → developed at Stony Brook

 Other Prolog systems: SWI Prolog, Sicstus, Yap, Ciao, GNU 

Prolog, etc.
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Association for Logic Programming
 http://www.cs.nmsu.edu/ALP/

 the current state of logic programming technology

 Many other groups (start from news://comp.lang.prolog)

 XSB: http://xsb.sourceforge.net

 system with SLG-resolution, HiLog syntax, and

unification factoring

 SWI Prolog: http://www.swi-prolog.org

 Complete, ISO and Edinburgh standard, common

optimizations, GC including atoms. Portable graphics, 

threads, constraints, comprehensive libraries for (semantic)

web programming, Unicode, source-level debugger

 Yap Prolog: http://www.ncc.up.pt/~vsc/Yap/
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Extensions of Prolog
Flexibility of reasoning is one of the key property 

of intelligence.

Commonsense inference is defeasible in its nature: 

we are all capable of drawing conclusions, acting on 

them to derive more conclusions, and then retracting 

them if necessary in the face of new evidence or 

resulting inconsistency.

 If computer programs are to act intelligently, they will need 

to be similarly flexible.
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Flexible Reasoning Examples
Reiter, 1987: Consider a statement Birds fly. Tweety, 

we are told, is a bird. From this, and the fact that 

birds fly, we conclude that: Tweety can fly.

This is defeasible:Tweety may be an ostrich, a 

penguin, a bird with a broken wing, or a bird whose 

feet have been set in concrete.

Non-monotonic Inference: on learning a new fact 

(that Tweety has a broken wing), we are forced to 

retract our conclusion (that he could fly).
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Non-monotonic Logics
Non-monotonic Logic is a logic in which the 

introduction of a new information (axioms) can 

invalidate old theorems.
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Default reasoning
Default reasoning (logics) means drawing of 

plausible inferences from less-then-conclusive 

evidence in the absence of information to the 

contrary.

Non-monotonic reasoning is an example of the 

default reasoning.
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Auto-epistemic reasoning
Moore, 1983: Consider my reason for believing that I 

do not have an older brother. It is surely not that one of 

my parents once casually remarked, You know, you don't 

have any older brothers, nor have I pieced it together by 

carefully sifting other evidence.

 I simply believe that if I did have an older brother I would 

know about it; therefore, since I don't know of any older 

brothers of mine, I must not have any.

Closed-world vs. open-world assumption
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 "The brother" reasoning is not a form of default 

reasoning nor non-monotonic. It is reasoning about 

one's own knowledge or belief. 

Hence it is called an auto-epistemic reasoning.

Auto-epistemic reasoning models the reasoning of 

an ideally rational agent reflecting upon his beliefs or 

knowledge.

Auto-epistemic Logics are logics which describe 

the reasoning of an ideally rational agent reflecting 

upon his beliefs.
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Missionaries and Cannibals
McCarthy, 1985 revisits the problem: Three 

missionaries and three cannibals come to a river. A 

rowboat that seats two is available. If the cannibals 

ever outnumber the missionaries on either bank of 

the river, the missionaries will be eaten. How shall 

they cross the river?

Traditionally the puzzler is expected to devise a 

strategy of rowing the boat back and forth that gets 

them all across and avoids the disaster.
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Traditional Solution: A state is a triple comprising 

the number of missionaries, cannibals and boats on 

the starting bank of the river:

The initial state is 331, the desired state is 000.

A solution is given by the sequence: 331, 220,321, 

300,311, 110, 221, 020, 031, 010, 021, 000.
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Imagine now giving someone a problem, and 

after he puzzles for a while, he suggests 

going upstream half a mile and crossing on a 

bridge.

What a bridge? you say. No bridge is 

mentioned in the statement of the problem.

He replies: Well, they don't say the isn't a 

bridge. 

Open world assumption!
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So you modify the problem to exclude the 

bridges and pose it again.

He proposes a helicopter, and after you exclude 

that, he proposes a winged horse or that the 

others hang onto the outside of the boat while 

two row.

He also attacks your solution on the grounds that 

the boat might have a leak or lack oars.
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Finally, you must look for a mode of 

reasoning that will settle his hash once and 

for all (Closed world assumption!)
McCarthy proposed circumscription 

 He argued that it is a part of common knowledge that a boat can be used 

to cross the river unless there is something with it or something else 

prevents using it.

 If our facts do not require that there be something that prevents crossing 

the river, circumscription will generate the conjecture that there isn't.

 Lifschits has shown in 1987 that in some special cases the 

circumscription is equivalent to a first order sentence that can 

be added to the predicate logic program to obtain closed world 
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Logic Programming encompasses many 

types of logic: 

Horn clauses

Non-monotonic

Constraint solving

Satisfiability checking

Knowledge Representation-Object-oriented 

Inductive logic programming

Transaction Logic, Probabilistic, etc.
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 Deductive databases, Model checking, Declarative 

networking, Configuration systems, etc.

 Where? International Space Station, IBM Watson, US 

Border Control, Windows user access, etc.

 Conferences: International Conference on Logic 

Programming (ICLP), International Conference on 

Logic Programming and Non-monotonic Reasoning 

(LPNMR), International Web Rule Symposium 

(RuleML) (in 2016 it was in Stony 

Brook), International Conference on Web Reasoning 

and Rule Systems (RR), etc.
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Knowledge Systems Lab, Stony Brook Univ.
Paul Fodor, Michael Kifer, IV Ramakrishnan, CR Ramakrishnan, 

David S. Warren, Annie Liu

 Logic Programming and Deductive databases 

 XSB Prolog (30+ years of research at Stony Brook)

 http://xsb.sourceforge.net and Flora-2, LMC, ETALIS, Ergo, …

 Knowledge Representation & Processing (decision support)

 Research Interests and Projects:
 Logic programming: Transaction Logic, F-logic, HiLog, Defeasible 

Argumentation, Paraconsistency, etc.

 Knowledge representation

 NLP, NLU : IBM Watson Question Analysis with Prolog, Project Halo 
(Vulcan Inc.) SILK

 Rule systems benchmarking: OpenRuleBench

 Stream processing: ETALIS/EP-SPARQL

 Access control policies and trust management languages

 Semantic Web

 Virtual expert systems , …
Paul Fodor, Stony Brook University

http://xsb.sourceforge.net/
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What is Tabling? 

What is Datalog?

Socrates is a man.

All men are mortal.

Is Socrates mortal?

man(socrates).

mortal(X) :- man(X).

?- mortal(X).

Yes: X=socrates

Prolog
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 Prolog has goal directed top-down resolution 

 The not (\+) operator is a closed-world negation as failure:  if 
no proof can be found for the fact, then the negative goal succeeds. 

 Example:     illegal(X) :- \+ legal(X).

 Adding a fact that something is legal destroys an argument that it is illegal.

 Prolog's "Yes" means "I can prove it“, while Prolog's "No" means "I can't prove it"

FOL:

∀x, man(x)→ mortal(x).
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 Prolog pitfalls: 
 redundant computations
 non-termination of otherwise correct programs

path (A , B): - path (A , C), edge (C , B).

path (A , B): - edge (A , B).

 not OO, not defeasible, closed world assumption, …

 Goal: Realize the vision of logic-based knowledge representation with 
frames, defeasibility, meta, and side-effects, event streams, ... 
 Tabling (efficiency, termination, Datalog and well-founded 

semantics),
 F-logic (frames, path expressions and reification),
 Logic programming with defaults and argumentation theories,
 HiLog,
 Transaction Logic (and tabling for WFS),
 Event Condition Action rules and Complex Event Processing 

(ETALIS) (complex events, aggregates, consumption policies, time 
and count windows)

Logic Programming Extensions at Stony Brook
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Suspend computation when same goal is called again and Consume 

answers of producers. XSB is sound and complete for LP well-

founded semantics.

Logic Programming Extensions at Stony Brook
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Logic Programming Extensions at Stony Brook: 

F-Logic (Flora2)

Object description:

John[name -> ‘John Doe’,   phones  -> {6313214567, 6313214566},
children -> {Bob, Mary}]

Mary[name -> ’Mary Doe’,  phones -> {2121234567, 2121237645},

children -> {Anne, Alice}]

Structure can be nested:

Sally[spouse -> John[address -> ‘123 Main St.’] ]

Methods:?P[ageAsOf(?Year) -> ?Age]  :-

?P:Person, ?P[born -> ?B],  ?Age is ?Year–?B.

Type signatures: Person[| born => \integer,

ageAsOf(\integer) => \integer |].

Attribute

Attribute

Object Id
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stack(0,?X).

stack(?N,?X) :- ?N>0  move(?Y,?X)  stack(?N-1,?Y).

move(?X,?Y) :- pickup(?X)  putdown(?X,?Y).

pickup(?X)   :- clear(?X)  on(?X,?Y)  t_delete{on(?X,?Y)}  t_insert{clear(?Y)}.

putdown(?X,?Y) :- wider(?Y,?X)  clear(?Y)  t_insert{on(?X,?Y)}  t_delete{clear(?Y)}.

 Can express not only execution, but all kinds of sophisticated constraints:

?– stack(10, block43)

/\ ?X,?Y (move(?X,?Y)  color(?X,red))  =>  ( ?Z color(?Z,blue)  move(?Z,?X))

Whenever a red block is stacked, the next block to be stacked must be blue

 Planning with Heuristics: Specifying STRIPS in Transaction Logic

achieve_unstack(?X,?Y) :-

(achieve_clear(?X) * achieve_on(?X,?Y) * achieve_handempty)

 unstack(?X,?Y).

 Tabling to stop infinite computation paths and defeasibility (ICLP2009)

Logic Programming Extensions at Stony Brook: 

Transaction Logic
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 Common sense reasoning: rules can be true by default but may be defeated (policies, 
regulations, law, inductive/scientific learning, natural language understanding): Logic 
Programming with Defaults and Argumentation theories LPDA (ICLP2009) and 
Transaction Logic LPDA (ICLP2011)

Argumentation theory: 

Logic Programming Extensions at Stony Brook: 

Defeasibility
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Natural Language Processing with 

Prolog in the IBM Watson System

 Pattern Matching: question to candidate passages
 Coding Pattern Matching Rules Directly in a Procedural Language Like Java is 

Not Convenient
 Prolog: well-established standard; straightforward syntax; very expressive; 

development, debugging, and profiling tools exist; efficient, well-understood 
implementations, proven to be effective for pattern-matching tasks; natural fit 
for integration with UIMA (IBM R&D Journal 2012)

 We implemented Prolog rule sets for:
 Focus Detection
 Lexical Answer Type Detection
 Shallow and Deep Relation Extraction
 Question Classification

 Execution is Efficient to Compete At Jeopardy!
 A Question is analyzed in a fraction of a second

 Open NLP tooling at Stony Brook University
http://ewl.cewit.stonybrook.edu/sbnlp
 + Education: Stony Brook University  courses: 
Computers playing Jeopardy! (2011 - 2016)
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Watson Question Analysis

Question Answer

CAS CAS

Parse,

PAS, Focus,

Answer Type,

Relations,

…

CAS

CAS
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 The focus is the “node“ that refers to the unspecified answer.
 Pattern: WHAT IS X ...? 

“What is the democratic party symbol?”
“What is the longest river in the world?”

focus(QuestionRoot, [Pred]):-

getDescendantNodes(QuestionRoot,Verb),

lemmaForm(Verb,"be"),

subj(Verb,Subj),

lemmaForm(Subj,SubjString),

whatWord(SubjString), % "what","which“ ("this","these“)

pred(Verb,Pred),!.

 Pattern: “How much/many”:
“How many hexagons are on a soccer ball?”
“How much does the capitol dome weigh?”
“How much folic acid should an expectant mother get daily?”

focus(QuestionRoot, [Determiner]):-

getDescendantNodes(QuestionRoot,Determiner),

lemmaForm(Determiner,DeterminerString),

howMuchMany(DeterminerString),!. % "how much/many", "this much"

Focus Detection Rules

144



(c) Paul Fodor (CS Stony Brook)

Answer-type Computation Rules
 Time rule (e.g. when): Pattern: When VERB OBJ; OBJ VERB then

Example: When was the US capitol built? answerType => [“com.ibm.hutt.Year“]

answerType(_QuestionRoot,FocusList,timeAnswerType,ATList):-

member(Mod,FocusList),

lemmaForm(Mod,ModString),

wh_time(ModString), % "when", "then“

whadv(Verb,Mod),

lemmaForm(Verb,VerbString),

timeTableLookup(VerbString,ATList),!.

 “How … VERB” rule: Pattern: How … VERB?

Example: “How did Virginia Woolf die?” answerType => ["com.ibm.hutt.Disease", 

"com.ibm.hutt.MannerOfKilling", "com.ibm.hutt.TypeOfInjury"]

answerType(_QuestionRoot,FocusList,howVerb1,ATList):-

member(Mod,FocusList),

lemmaForm(Mod,"how"),

whadv(Verb,Mod),

lemmaForm(Verb,VerbString),

howVerbTableLookup(VerbString,ATList), !.145
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Focus lexicalization (lexical chains using Prolog WordNet followed by a mapping 

to our taxonomy)

Table lookup for the verb:

Table lookup for the focus:

Table lookup for the focus (noun) + the verb:

Answer-type Computation Rules

Question QParse 2 AnswerType

What American revolutionary general turned over 
West Point to the British?

[com.ibm.hutt.MilitaryLeader]

Question QParse 2 AnswerType

How did Jimi Hendrix die? [com.ibm.hutt.Disease com.ibm.hutt.MannerOfKilling 
com.ibm.hutt.TypeOfInjury]

Question QParse 2 AnswerType

How far is it from the pitcher's mound to home 
plate?

[com.ibm.hutt.Length]

When was Lyndon B Johnson president? [com.ibm.hutt.Year]

Question QParse 2 AnswerType

What instrument measures radioactivity? [com.ibm.hutt.Tool]

What instrument did Louis Armstrong play? [com.ibm.hutt.MusicalInstrument]
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 Cascading rules in order of generality

 first rule that fires returns the most specific answer-type for the question

Look at the focus + verb:

Look at the focus + noun:

Look only at the focus:

Question QParse 2 AnswerType

How much did Marilyn Monroe weigh? [com.ibm.hutt.Weight ]

How much did the first Barbie cost? [com.ibm.hutt.Money]

Question QParse 2 AnswerType

How many Earth days does it take for Mars to orbit the sun? [com.ibm.hutt.Duration]

How many people visited Disneyland in 1999? [com.ibm.hutt.Population]

Question QParse 2 AnswerType

How many moons does Venus have? [com.ibm.hutt.WholeNumber]

How much calcium is in broccoli? [com.ibm.hutt.Number]

Answer-type Computation Rules

Priority decreases 

down the chain
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Relation Detection Rules
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authorOf(Author,Composition) :-

authorVerb(Verb),

subj(Verb,Author),

validAuthor(Author),

obj(Verb,Composition),

validComposition(Composition).

authorVerb(Verb) :-

partOfSpeech(Verb,verb),

lemma(Verb,VerbLemma),

member(VerbLemma, ["write","publish",...].

authorOf(Author,Composition) :-

validComposition(Composition),

argument(Composition,Preposition),

lemma(Preposition, "by"),

objprep(Preposition,Author),

validAuthor(Author).

sameAs(X,Z) :-

authorOf(X,Y),

authorOf(Z,Y).

authorOf

authorOf

sameAs
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ETALIS/ EP-SPARQL Complex 

Event and Stream Processing

 Data-driven continuous complex event processing:

 Event filtering, enrichment, projection, translation, and multiplication

 Declarative semantics

 Combines detection of complex events and reasoning over states

 Sliding windows (time and count-based)

 Aggregation over events (count, avg, sum, min, max, user-defined 
aggregates)

 Processing of out-of-order events

 Visual development for sequential and aggregative patterns

 Open source: http://code.google.com/p/etalis

 Uses: stock market, health applications, transit applications,  NLP 
streaming applications (Twitter posts analysis)

 The Ford OpenXC Challenge: map as weighted graph and update road 
weights from traffic events
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“The Fast Flower Delivery Use Case”, accompanying the book 

“Event Processing In Action”, by Opher Etzion and Peter Niblett, 

Manning Publications
% Phase 1: Bid Phase

% Multiplier: multiply the event "delivery_request_enriched" for each driver

delivery_request_enriched_multiplied(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime, 

MinRank)<-

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates,

DeliveryTime,MinRank) event_multiply driver_record(DriverId,_Ranking).

% gps_location_translated/3

gps_location_translated(DriverId,Rank,Region)<-

gps_location(DriverId,coordinates(SNHemisphere,Latitude,EWHemisphere,Longitude)) where

( driver_record(DriverId,Rank), 

gps_to_region(coordinates(SNHemisphere,Latitude, EWHemisphere,Longitude),Region) ).

% bid_request/5

bid_request(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime)<-

delivery_request_enriched_multiplied(DeliveryRequestId,DriverId, StoreId,ToCoordinates, 

DeliveryTime, MinRank) and

gps_location_translated(DriverId,Rank,Region)

where MinRank <= Rank, gps_to_region(ToCoordinates,Region).

% Phase 2: Assignment Phase

startAssignment(DeliveryRequestId,StoreId,ToCoordinates, DeliveryTime) <-

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates, DeliveryTime,_MinRank) 

where trigger(start_assignment_time(Time)).

assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,DriverId,ScheduledPickupTime)<-

startAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) and 

min(ScheduledPickupTime, 

delivery_bid(DeliveryRequestId,DriverId,CurrentCoordinates, ScheduledPickupTime) ).
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OpenRuleBench: Analysis of the 

Performance of Rule Engines
 Performance tests: database tests (joins, indexing, inference), updates vs. querying, database 

recursion, default negation in the body, real-data tests (Mondial, DBLP, Wordnet, 

ontologies), AI puzzles.

 E.g., recursive stratified negation tests:

 Systems tested: highly optimized Prolog-based systems (XSB, Yap, SWI), deductive databases 

(DLV, Iris, Ontobroker), rule engines for triples (Jena, BigOWLIM), production and 

reactive rule systems (Drools, Jess, Prova), knowledge base systems (CYC).

http://rulebench.semwebcentral.org
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