Introduction to Logic, Logic

Programming and Languages

CSE 505 — Computing with Logic
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse505

http://www.cs.stonybrook.edu/~cse505

4 .
Overview

1.

Introduction to Mathematical Formalizations
in Logic

Propositional Logic or the logic of compound
statements

Logical Arguments

Predicative Logic or the logic or quantified
statements

Logic Programming (short basic introduction,

applications, research at Stony Brook, groups)

(c) Paul Fodor (CS Stony Brook)

" A Puzzle

*Knights and Liars/Knaves: Knights
always tell the truth; Liars/Knaves

always lie.

Zo0e: "Mel is a liar"

Mel: "Neither I nor Zoe are liars"

*Who's lying?

-,

" A Puzzle

'Knights and Liars/Knaves: Knights

always tell the truth; Liars always lie.
Zoe: "Mel is a liar"

Mel: "Neither I nor Zoe are liars"
(1)z & ~m m | (1) [(2) | (1) A(2)
(2) m = ~(~m V ~7z)

by 10gical equivalence:

-

~(~mV ~z) =mAz

(2) becomes m < m A z
o

(c) Paul Fodor (CS Stony Brook)

a I
Mathematical Formalization

o Why tformalize language?
® tO0 remove ambiguity

® to represent facts on a computer and use it for

proving, proof-checking, etc.

All people are mortal e Socrates 1s mortal.
Socrates is a person. }

Vx P(x) - M(x) P(S) - M(S) M(S)
P(S) P(S)

® to detect unsound reasoning in arguments

I am])/in(q.

@ (c) Paul Fodor (CS Stony Brook) /

: .
Logic
® Mathematical logic is a tool for dealing with

formal reasoning!

e formalization of natural language and reasoning
methods

® Logic does:
® Assess if an argument is Valid or invalid

® Logic does not directly:

® Assess the truth of atomic statements

@ (c) Paul Fodor (CS Stony Brook)

! Propositional Logic

® Or the logic of compound statements is the study of:
® the structure (syntax) and
® the meaning (semantics) of (simple and complex)
propositions
® The key questions are:

® How is the truth value of a complex proposition
obtained from the truth value of its simpler

componen ts?

e Which propositions represent correct reasonin g

argumen ts?

@ (c) Paul Fodor (CS Stony Brook)

i Propositional Logic

* A proposition is a sentence that is either true or false, but
not both
* Examples of simple propositions:
® John is a student.
® 5+1 =6
® 4726 > 1721
® It is 82 degrees outside right now.

© Example of a complex/composed proposition:
e Tom isﬁve and Mary is six.
® Sentences which are not propositions:

® Did Steve get an A on the exam? (this 1S a query)

* Go away! (this 1S an order)

@ (c) Paul Fodor (CS Stony Brook)

i Propositional Logic

® |n studying properties of propositions we represent them by expressions
called proposition forms or formulas built from propositional
variables (atoms), which represent simple propositions and symbols

representing logical connectives
® Proposition or propositional variables: p, q,...
each can be true or false in 2-valued logics

Examples: p:“S ocrates is mortal.”

q:“Plato is mortal.”

e Connectives: AN, V, -, &, ~
connect propositions: p V q
Example: “I passed the exam or I did not pass it.” p V ~p

* The formula expresses the logical structure of the proposition, where p is an

abbreviation for the simple proposition “1 passed the exam.”

(c) Paul Fodor (CS Stony Brook)

e
Connectives

¢~ not

o/ and

o\/ or (non-exclusive!)
°—> implies (it ... then ...)
* > if and only if

oY/ for all

® exists

(c) Paul Fodor (CS Stony Brook)

Formulas
® Atomic: D, X%, Yy .

® Unit Formula: p, ~p, (formula), ...

® Conjunctive: pNgp/N\~gq,...

* Disjunctive: pVagpV(gANAx),...
® Conditional: p—g
® Biconditional: p g

@ (c) Paul Fodor (CS Stony Brook)

a .
Negation (~ or - or!)
® We use the symbol ~ to denote negation

® Formalization (syntax): If p is a formula, then ~p
is also a formula. We say that the second formula

is the negation of the first
®Examples: p, ~p, and ~~p are all formulas
® Examples:
® John went to the store yesterday (p).
® John did not go to the store yesterday (~p).

@ (c) Paul Fodor (CS Stony Brook)

4 : '
Negation (~ or - or!)
® Meaning (semantics):
If a proposition is true, then its negation is false.

If it is false, then its negation is true.

® We EXpress the connection semantics via a so-
called truth table:
Truth Table for ~p

(c) Paul Fodor (CS Stony Brook)

e
Conjunction (A or & or)

® We use the symbol A to denote conjunction

* Syntax: If p and g are formulas, then p A gisalso a

formula.

® Semantics: If p is true and q is true, then p A g is true. In

all other cases, p A g is false.
Truth Table for p A ¢

p q‘p»‘\q
T 7 T
T F F
F T F
F F F

(c) Paul Fodor (CS Stony Brook) /

e
Conjunction (A or & or)

® Example:

1. Bill went to the store.

2. Mary ate cantaloupe.

3. Bill went to the store and Mary ate cantaloupe.
® It p and g abbreviate the first and second sentence,

then the third is represented by the conjunction p 7A\ q.

(c) Paul Fodor (CS Stony Brook) /

4 . . . A
Inclusive Disjunction (V or | or +)

® We use the symbol V to denote (inclusive) disjunction.
* Syntax: If p and g are formulas, then p V ¢ is also a formula.

® Semantics: If p is true or ¢ is true or both are true, then p V ¢ is

true. I p and q are both false, then p V g is false.

Truth Table for p v ¢

(c) Paul Fodor (CS Stony Brook) /

4 . . . h
Inclusive Disjunction (V or | or +)

® Example:
® John works hard (p).

®* Mary 1s happy (q).
® John works hard or Mary is happy (p V q).

(c) Paul Fodor (CS Stony Brook) /

4 . . .
Exclusive Disjunction (6, XOR)

* We use the symbol @ to denote exclusive disjunction.
* Syntax: If p and q are formulas, then p @ q s also a formula.

® Semantics: An exclusive disjunction p @ q is true if, and only if,

one of p or q is true, but not both.

4 q pP®q
T T F
T F T
F T T
F F F

* Example:

e Either John works hard or Mary is happy (p © q)

@ (c) Paul Fodor (CS Stony Brook)

a . .
Implication
* Example of proposition:

If I do not pass the exam, then I will fail

the course.

Corresponding formula: ~p — ¢

(More later ...)

(c) Paul Fodor (CS Stony Brook)

4 N
Determining Truth of A Formula

® Atomic formulae: given

o Compound formulae: via meaning of the connectives

® The semantics of logical connectives determines how
propositional formulas are evaluated depending on

the truth values assigned to propositional variables

e Each possible truth assignment or valuation for the
propositional variables of a formula yields a truth
value

The different possibilities can be summarized in a truth
table

@ (c) Paul Fodor (CS Stony Brook) /

4 ™
Evaluation of formulas - Truth Tables

® A truth table for a formula lists all
possible “situations” of truth or falsity,
depending on the values assigned to the

propositional variables of the formula

(c) Paul Fodor (CS Stony Brook) /

him some: pV gVr

" Truth Tables

® Example: If p, g and r are the propositions “Peter [Quincy, Richard] will

lend Sam money,” then Sam can deduce logically correct, that he will be

able to borrow money whenever one of his three friends is Willing to lend

P q r pVqVr
T T T T
T T F

T F T T
T F F T

F T T T
F T F T
F F T T
F F F F

(c) Paul Fodor (CS Stony Brook)

® Each row in the truth table corresponds to one possible situation of

@assigning truth values to p, gand r

™~

" Truth Tables :
® How many rows are there in a truth table with n
propositional variables?
eforn = 1, there are two rows, e.g.for ~ (negation)
eforn = 2, there are four rows, e.g.: 7, [,eq
T T F
T F T
F T T
F F F
eforn = 3, there are eight rows, and so on.

® Do you see a pattern?

@ (c) Paul Fodor (CS Stony Brook) /

4 N
Constructing Truth Tables

® There are two choices (Erue or false) for each of n
variables, so in general there are 2*%2%* ., . . *2 = 2¢

rows for n variables

® A systematic procedure is necessary to make sure you

construct all rows without duplicates

® count in binary: 000, 001,010,011,100, ...

® The rightmost column must be computed as a

function of all the truth values in the row:

p

r®q
F
T
T

T
T

SRS R AR I

F
F F
\ (c) Paul Fodor (CS Stony Brook) /

e
Constructing Truth Tables

* Example 1: p N\ ~q (read “p and not q”)
P q ~q pA~q
T T F F
T F T T
F T I3 F
F F T F

® Note :itis usually necessary to evaluate all subformulas

@ (c) Paul Fodor (CS Stony Brook)

e

Constructing Truth Tables

® Example 2: p A (¢ V r) (read “p and, in addition, ¢ or r”)

P q d gVr pA(gVr)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

® Note : it is usually necessary to evaluate all subformulas

@ (c) Paul Fodor (CS Stony Brook)

e
Constructing Truth Tables

® Because it is clumsy and time—consuming to
build large explicit truth tables, we will be
interested in more efficient logical evaluation

procedures.

o Symbolic proofs with logical equivalences

(See later) ~~p = p

p | ~p | ~(~p)
T F T
F T F
1)

p and ~(~p) always have
the same truth values, so they
are logically equivalent

(c) Paul Fodor (CS Stony Brook)

e
Language: Syntax of Formulas

® We backtrack a bit to formally define the syntax of logic

® The formal language of propositional 1ogic can be specitied by
grammar rules

® The syntactic structure of a complex logical expression (i.e., its

parse tree) must be unambiguous
(proposition) ::= (variable)
(~(proposition))
((proposition) A (proposition))

((proposition) V (proposition))

(variable) ::=p | g | r |

(c) Paul Fodor (CS Stony Brook)

™~

4 N
Ambiguities in Syntax of Formulas

® For example, the expression p A g V r can be interpreted in two
different ways:

p q r pNg (pPAQQVr| qVr pA(qVr)
F F T F T T F

® Parentheses are needed to avoid ambiguities

® The same problem arises in arithmetic: does 5+2 x 4 means (5+2) x
4 or 5+(2 x 4)?
® The problem there is solved with priorities

® Priorities in logic: ~>A>V > —
® A,V and — operators are left associative

® ~ js right associative

* With A ahead of V. in the precedence, there is no ambiguity

inp/\qu

@ (c) Paul Fodor (CS Stony Brook) /

" Precedence

®~ highest
A
oV
e — lowest

® Avoid confusion - use ‘(‘ and °)’:

°*pANqg)Vx

(c) Paul Fodor (CS Stony Brook)

: Logical Equivalence

® [f two formulas evaluate to the same truth value in all
situations, so that their truth tables are the same, they are said

to be logically equivalent

® We write p = ¢ to indicate that two formulas p and g are
logically equivalent
If two formulas are logically equivalent, their syntax may be
different, but their semantics is the same

The logical equivalence of two formulas can be established by

inspecting the associated truth tables.

Note: Substituting logically inequivalent formulas is the source of

most real-world reasoning errors

(c) Paul Fodor (CS Stony Brook)

: Logical Equivalence

® Disjunction 1s commutative:

P q pVaq | qVp
T T T T
T F T T
F T T T
F F F F

(c) Paul Fodor (CS Stony Brook)

: Logical Equivalence

® Disjunction 1S associlative:

p q d pVoVr|pVigVr
T T T T T
T T F T T
T F T T T
T F F T T
F T T T T
F T F T T
F F T T T
F F F F F

® We will therefore ambiguously write p V ¢ V r to denote either (p
V q) VrorpV (qVr). The ambiguity is usually of no consequence,

as both formulas have the same meaning,

@ (c) Paul Fodor (CS Stony Brook)

(-

: Logical Equivalence

*Is ~(p A q) logically equivalent (=) to ~p A ~¢?

p q pAq ~(p N9 ~p ~q ~pN~q
T T T F F F F
T F F T F T F
F T F T T F F
F F F T T T T

® Lines 2 and 3 prove that this is not the case.

(c) Paul Fodor (CS Stony Brook) /

: Logical Equivalence

°Is ~(p A q) logically equivalent (=) to ~p V ~¢?

p q pAq ~(p N9 ~p ~q ~pV~q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T
® Yes.

(c) Paul Fodor (CS Stony Brook)

' De Morgan's Laws

® There are a number of important equivalences,

including the following De Morgan's Laws:
~(pNq) =~pV ~q
~(pVq =~pN\~q
® These equivalences can be used to transtorm a
formula into a logically equivalent one of a

certain syntactic form, called a "normal form"®

® Another useful logical equivalence is double

ne gation:

@ (c) Paul Fodor (CS Stony Brook)

: Using De Morgan's Laws

~(pAmg=~~(pVq9=pVyq
® The first equivalence is by De Morgan's Law, the

second by double negation

® We have just derived a new equivalence: p V ¢ =
~(~p /\ ~q) (as equivalence can be used in both
directions) which shows that disjunction can be

expressed in terms of conjunction and negation!

(c) Paul Fodor (CS Stony Brook)

4 . . N
Some Logical Equivalences

® You should be able to convince yourself of (i.e.,

prove) each of these:

* Commutativityof A : p Ag=qAp

® Commutativity ofV:pVg=qgVp

® Associativity of A: p A (A1) =(pAg) Ar
® Associativity of V: pV (¢gVr) = (pV q) Vr
®[dempotence: p =p Ap=pVp

® Absorption: p=p A (pV q) =pV (p A)

(c) Paul Fodor (CS Stony Brook) /

4 . .
Some Logical Equivalences

* Distributivity of A : p A (qVr)=(pAq)V (pAr)
o Distributivity of V:pV(gAr)=(pVqgA@pVr)
® Contradictions: p AF =F=p A ~p

® Identities: p AT =p =pVF

* Tautologies: p VT =T =pV ~p

(c) Paul Fodor (CS Stony Brook)

" Ta utologies

* A tautology is a formula that is always true, no

matter which truth values we assign to its variables.

® Consider the proposition "I passed the exam or I did not
pass the exam," the logical form of which is

represented by the formula p V ~p

p ~p pV~p
T
T T

This is a tautology, as we getT in every row of its truth

table.

@ (c) Paul Fodor (CS Stony Brook)

: Contradictions :

e A contradiction is a formula that is always false.

e The logical form of the proposition "I passed
the exam and I did not pass the exam" is

represented by p N\ ~p

p ~p pA\~p
F F
T F

This is a contradiction, as we get F in every row of
its truth table

(c) Paul Fodor (CS Stony Brook) /

4 N
Tautologies and contradictions

'Tautologies and contradictions are

related

Theorem:If pisa tautology (Contradiction) then
~p 1s a contradiction (tautology).

Example: p V ~p a tautology

Is ~(p V ~p) a contradiction?
~pVrp)=TpATp=pAp=p ATy

Yes. because ~(pV ~p) = pA ~pandp A ~pisa

contradiction.

@ (c) Paul Fodor (CS Stony Brook) /

" Implication (—)

* Syntax: If p and g are formulas, then p — ¢ (read “p implies ¢")

is also a formula
e We call p the premise and q the conclusion of the implication.

® Semantics: It p is true and ¢ is false, then p — g is false. In all

other cases, p — q is true.

Truth Table for p — ¢

| P> 4q
T

sy B B -

q
T
F F
T T
F T

(c) Paul Fodor (CS Stony Brook)

: Implication (—)

o Example:
p:You get A's on all exams.

g: You get an A in this course.

p — q: It you get A's on all exams, then you
will get an A in this course.

(c) Paul Fodor (CS Stony Brook)

" Implication (—)

® The semantics of implication is trickier than for the other
P

connectives
® if p and g are both true, clearly the implication p — ¢ is true
* if p is true but q is false, clearly the implication p — ¢ is false

® It the premise p is false no conclusion can be drawn, but

both g being true and being false are consistent, so that the

implication p — ¢ is true in both cases
® Implication can also be expressed by other connectives, for
example, p — g is logically equivalent to ~(p A ~q), which is
equivalent with ~p V ¢

@ (c) Paul Fodor (CS Stony Brook) /

" Example: The Case of the

Bad Defense Attorney

® Prosecutor:
® "If the defendant is guilty, then he had an accomplice."
® Defense Attorney:
® "That's not true!!"
® What did the defense attorney just claim?
==~ AT9 =pATq
which means that " the defendant is guilty

and he did not have an accomplice "

(c) Paul Fodor (CS Stony Brook) /

" Biconditional

* Syntax: If p and g are formulas, then p <= g (read “p it
and only if (itf) ¢") is also a formula.

® Semantics: It p and g are either both true or both false,

then p¢—q is true. Otherwise, p <= ¢ is false.

Truth Table for p < ¢

007 Thomson Higher Education

(c) Paul Fodor (CS Stony Brook)

e

(-

Biconditional

o Example:
®p: Bill will get an A.
°g: Bill studies hard.

°p <= ¢ : Bill will get an A if and Only if Bill
studies hard.

® The biconditional may be viewed as a shorthand
for a conjunction of two implications, as p <= ¢

is logically equivalent to (p — q) A (¢ — p)

(c) Paul Fodor (CS Stony Brook)

4 ™
Necessary and Sufficient Conditions

® The phrase "necessary and sufficient conditions" appears
often in mathematics
* A proposition p is sufficient for q it p — g is a tautology.
® Example: It is sufficient for a student to get A's in
CSE114, CSE215, CSE214 in order to be admitted to
become a CSE major
* A proposition p is necessary for q it ¢ cannot be true
without it: ~p — ~¢ (equivalent to ¢ — p).
® Example: It is necessary for a student to have a 3.0 GPA in the

core courses to be admitted to become a CSE major.

(c) Paul Fodor (CS Stony Brook) /

4 ™
Necessary and Sufficient Conditions

Theorem: If a proposition p is both
necessary and sufficient for g, then p
and q are logically equivalent (and vice

Versa).

(c) Paul Fodor (CS Stony Brook) /

4 R
Tautologies and Logical Equivalence

Theorem: A propositional formula p is logically equivalent to g

if and only it pe>gisa tautology

® Proof:

® (a) If p > qis a tautology, then p is logically equivalent to g

Why? If p <= ¢ is a tautology, then it is true for all truth
assignments. By the semantics of the biconditional, this means
that p and g agree on every row of the truth table. Hence the
two formulas are logically equivalent.

® (b) If pis logically equivalent to ¢, then p <= ¢ is a tautology

Why? If p and g logically equivalent, then they evaluate to the

same truth value for each truth assignment. By the semantics of

the biconditional, the formula p <= g is true in all situations. ®

(c) Paul Fodor (CS Stony Brook) /

" Related Implications

* Implication: p — ¢
® If you get A's on all exams, you get an A in the course.
* Contrapositive: ~qg — ~p
® It you didn't get an A in the course, then you didn't get A's

on all exams

® Note that implication is logically equivalent to the

contrapositive
p q P9 ~q ~p ~q—~p
T T T F F T
T F F T F F
F T T F T T
F F T T T T

@ (c) Paul Fodor (CS Stony Brook)

" Related Implications

* Converse: g — p

® If you get an A in the course, then you got A's on all exams.

® Inverse: ~p — ~q

® If you didn't get A's on all exams, then you didn't get an A in the

coursc.

e Note that converse is logically equivalent to the inverse

P q q—p P ~q P74
T T T F F T
T F T F T T
F T F T F F
F F T T T T

(c) Paul Fodor (CS Stony Brook)

: Deriving Logical Equivalence§

® We can establish 1ogical equivalence either via truth tables

OR symbolicaﬂy
* Example: p <= qis logically equivalent to (p — q) A (¢ — p)
p q qp P—q q—p P9 AN(G—p)
T T T T T T
T F F F T F
F T F T F F
F F T T T T

° Symbolic proofs are much like the simplifications you did in
high school algebra - trial-and-error leads to experience and

finally cunning

@ (c) Paul Fodor (CS Stony Brook) /

: Symbolic proofs

® Example:pAg=(pV ~q) Ag
® Proof: which laws are used at each step?
PV~ Nqg=qA PV ~q)
=(@ApV(qA~q
=(qAp)VFE
=(qAp)
=phgq

(c) Paul Fodor (CS Stony Brook)

(D)
(2)
3)
(4)
()

: Symbolic proofs

® Example:pAg=(pV ~q) Ag
® Proof: which laws are used at each step?
PV~ Nqg=qA PV ~q)
=(@ApV(qA~q
=(qAp)VFE
=(qAp)
=phgq

(c) Paul Fodor (CS Stony Brook)

(1) Commutativity of A
(2)
3)
(4)
()

: Symbolic proofs

® Example:pAg=(pV ~q) Ag
® Proof: which laws are used at each step?
PV~ Nqg=qA PV ~q)
=(@ApV(qA~q
=(qAp)VFE
=(qAp)
=phgq

(c) Paul Fodor (CS Stony Brook)

(1) Commutativity of A
(2) Distributivity of A
3)

(4)

()

: Symbolic proofs

® Example:pAg=(pV ~q) Ag
® Proof: which laws are used at each step?
PV~ Nqg=qA PV ~q)
=(@ApV(qA~q
=(qAp)VFE
=(qAp)
=phgq

(c) Paul Fodor (CS Stony Brook)

(1) Commutativity of A
(2) Distributivity of A
(3) Contradiction

(4)

()

: Symbolic proofs

® Example:p AgAr=(pV ~q) Ag
® Proof: which laws are used at each step?
PV~ Nqg=qA PV ~q)
=(@ApV(qA~q
=(qAp)VFE
=(qAp)
=phgq

(c) Paul Fodor (CS Stony Brook)

(1) Commutativity of A
(2) Distributivity of A
(3) Contradiction

(4) Identity

(5)

: Symbolic proofs

® Example:pAg=(pV ~q) Ag
® Proof: which laws are used at each step?
PV~ Nqg=qA PV ~q)
=(@ApV(qA~q
=(qAp)VFE
=(qAp)
=phgq

(c) Paul Fodor (CS Stony Brook)

(1) Commutativity of A
(2) Distributivity of A
(3) Contradiction

(4) Identity

(5) Commutativity of A

4 _ N
Logical Consequence

® We say that p logically implies g, or that ¢ is a logical consequence

of p, i g is true whenever p is true.

* Example: p logically implies p V ¢

o= e - <

T e] [T

q
T
F
T
F

e Note that logical consequence is a weaker condition than logical

equivalence

@ (c) Paul Fodor (CS Stony Brook) /

"Logical Arguments

® An argument (or argument form) is a (finite) sequence of

statements (forms), usually written as follows:

Pi

Pn
oo q
®* Wecall p,,..., p, the premises (or assumptions or hypotheses)

and q the conclusion, of the argument.
® We read:
“Pis Py -5 P, therefore ¢° OR

“From premises p,, p,, ..., p, infer conclusion ¢”

® Argument forms are also called inference rules.
(-

(c) Paul Fodor (CS Stony Brook)

"Logical Arguments

® An inference rule is said to be valid, or (logically) sound
if it is the case that, for each truth valuation, if all the

premises true, then the conclusion is also true!

Theorem: An inference rule is valid if, and only if, the

conditional p,Ap,A... Ap. — q isa tautology.

® An argument form consisting of two premises and a

conclusion is called a syllogism.

@ (c) Paul Fodor (CS Stony Brook)

™~

b/

e
Determining Validity or Invalidity

o Testing an Argument Form for Validity
1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the

premises and the conclusion.

3. Arow of the truth table in which all the premises are
true is called a critical row. If there is a critical row in
which the conclusion is false, then the argument form is
invalid. It the conclusion in every critical row is true, then

the argument form is valid

(c) Paul Fodor (CS Stony Brook)

4 N
Determining Validity or Invalidity
p—>qV ~r
g—>pr

o.o P HI’
premises conclusion
P q r ~r q Vv rr pPAT pP—=>qVer g— pATr p—=r
T T & F T T T it T
T T F i T F i F F , - ,
This row shows it is possible
T F T F F T F 1 K for an argument of this form
T F F T T F T T F / to have true premises and a
false conclusion. Hence this
F L I B T F T F H form of argument is invalid.
F T F T T F T F F
F F T F F F T il T
F F F T T F T a1 T

© 2007 Thomson Higher Education

Invalid argument

@ (c) Paul Fodor (CS Stony Brook) /

"Modus Ponens

® Modus Ponens:

Latin

P9
“method of affirming” p

ooq

premises conclusion

Valid argument

(c) Paul Fodor (CS Stony Brook)

<«— critical row

"Modus Ponens

® The following argument is valid:
If Socrates is a man, then Socrates is mortal.
Socrates is a man.

~. Socrates is mortal.

(c) Paul Fodor (CS Stony Brook)

"Modus Tollens

® Modus Tonens: p —)CZ
“method of denying” ~q
[atin ~p

® Modus Tollens is valid because :

® modus ponens is valid and the fact that a conditional statement

is logically equivalent to its contrapositive, OR

® it can be established formally by using a truth table.

(c) Paul Fodor (CS Stony Brook)

"Modus Tollens

® Example:
(1) If Zeus is human, then Zeus is mortal.
(2) Zeus is not mortal.
*. Zeus is not human.

® An intuitive proot is proot by contradiction
®if Zeus were human, then by (1) he would be mortal.
® But by (2) he is not mortal.

® Hence, Zeus cannot be human.

@ (c) Paul Fodor (CS Stony Brook)

e

™~
Recognizing Modus Ponens and Modus Tollens

If there are more pigeons than there are pigeonholes, then at

least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

... ?

(c) Paul Fodor (CS Stony Brook) /

4 N
Recognizing Modus Ponens and Modus Tollens

If there are more pigeons than there are pigeonholes, then at

least two pigeons roost in the same hole.
There are more pigeons than there are pigeonholes.

s At least two pigeons roost in the same hole.

by modus ponens

(c) Paul Fodor (CS Stony Brook) /

e

™~
Recognizing Modus Ponens and Modus Tollens

It 870,232 is divisible by 6, then it is divisible by 3.
870,232 is not divisible by 3.

... ?

(c) Paul Fodor (CS Stony Brook) /

e

™~
Recognizing Modus Ponens and Modus Tollens

It 870,232 is divisible by 6, then it is divisible by 3.
870,232 is not divisible by 3.
. 870,232 is not divisible by 6.

by modus tollens

(c) Paul Fodor (CS Stony Brook) /

/Other Rules of Inference

e Generalization:
p and q
* Example:

Anton is a junior.

*. (more generally) Anton is a junior or Anton is a senior.

(c) Paul Fodor (CS Stony Brook)

/Other Rules of Inference

* Specialization:
p/N\g and p/N\g
e P o q
* Example:
Ana knows numerical analysis and
Ana knows graph algorithms.

S (in particular) Ana knows graph algorithms.

(c) Paul Fodor (CS Stony Brook)

/Other Rules of Inference

e Elimination :

p V q and p V q
~q ~P
o P oo q

* If we have only two possibilities and we can rule one out, the

other one must be the case
* Example:
Xx—3=0orx+2=0
x + 2 #0.
sx — 3 =0.

@ (c) Paul Fodor (CS Stony Brook)

/Other Rules of Inference

* Transitivity :
P—4
q
oo P —>7r
* Example:
It 18,486 is divisible by 18, then 18,486 is divisible by 9.
It 18,486 is divisible by 9, then the sum of the digits of
18,486 is divisible by 9.

= If 18,486 is divisible by 18, then the sum of the digits
of 18,486 is divisible by 9.

(c) Paul Fodor (CS Stony Brook)

" Proof Techniques

* Proof by Contradiction:

~p — ¢, where c is a contradiction

oo P
® The usual way to derive a conditional ~p — cis to assume ~p

and then derive ¢ (i.e., a contradiction).

® Thus, if one can derive a contradiction from ~p, then one may

conclude that p is true.

(c) Paul Fodor (CS Stony Brook)

e
The Logic of Quantified Statements

All men are mortal.
Socrates is a man.
~. Socrates is mortal.

® Propositional calculus: analysis of ordinary compound statements

™~

® Predicate calculus or The Logic of Quantified Statements:

symbolic analysis of predicates and quantified statements
(Vx, dx)
® Example: P is a predicate symbol

P stands for “is a student at SBU”

P(x) stands for “x is a student at SBU”

®xiSa predicate variable

@ (c) Paul Fodor (CS Stony Brook)

e
The Logic of Quantified Statements

* A predicate is a sentence that contains a finite number of
variables and becomes a statement (or ground predicate)

when specific values are substituted for the variables.

® The domain of a predicate variable is the set of all values that
may be substituted in place of the variable.
® Example:

P(x) is the predicate “x* > x”, x has as a domain the set R of all

real numbers
P(2): 2% > 2. ITrue.
P(1/2):(1/2)?>1/2. False.

@ (c) Paul Fodor (CS Stony Brook)

™~

/Truth Set of a Predicate

® If P(x) is a predicate and x has domain D, the truth

set of P(x), the truth set of P, {x € D | P(x)}, is the
set of all elements of D that make P(x) true when
they are substituted for x.

o Example:

Q(n) is the predicate for “n is a factor of 8.
if the domain of n is the set Z of all integers

The truth setis {I,2,4,8,—1,—2,—4, —8}

(c) Paul Fodor (CS Stony Brook) /

" The Universal Quantifier: V)

® Quantifiers are words that refer to quantities (“some” or
“all’) and tell for how many elements a given predicate

1S true.

e Universal quantifier: Y “tor all”

® Example:

V human beings x, x is mortal.

“All human beings are mortal”

If H is the set of all human beings:

Vx € H, x is mortal

@ (c) Paul Fodor (CS Stony Brook) /

a .
Universal statements

e A universal statement is a statement of the form

“Vx € D, Q(x)” where Q(x) is a predicate and D is the domain of x.
® Vx € D, Q(x) is true if, and only if, Q(x) is true for every xin D

® Vx € D, Q(x) is false if, and only if, Q(x) is false for at least one
xin D (the value for x is a counterexample)

* Example:
VxED,x¥*2x forD = {1,2,3,4,5}
1°21, 2222, 3223, 42> 4, 5225

® Hence “Vx € D, x* 2 x”is true.

@ (c) Paul Fodor (CS Stony Brook) /

e
The

Existential Quantifier: 3

e Existential quantiﬁer: 3 “there exists”

® Example:

P ((T‘

here is a student in the course”

J a;

Herson p such that pisa student in the course

dp € P such that p is a student in the course
where P is the set of all people

(c) Paul Fodor (CS Stony Brook)

e
The Existential Quantifier: 3

e An existential statement is a statement of the form

“dx € D such that Q(x)” where Q(x) is a predicate and D the domain of x
® dx € Ds.t. Q(x) is true if, and only if, Q(x) is true for at least one x in D
® dx € D s.t. Q(x) is false if, and only if, Q(x) is false for all xin D

* Example:
e dm € Z such that m?’ = m

It is true. Example: I 2 =]

Notation: such that = s.t.

@ (c) Paul Fodor (CS Stony Brook)

4 ™
Universal Conditional Statements

e Universal conditional statement:
Vx, if P(x) then Q(x)
o Example:

If a real number is greater than 2 then its square is

greater than 4.
VxER, ifx> 2 then x* > 4

(c) Paul Fodor (CS Stony Brook) /

4 N

Equivalent Forms of Universal and Existential Statements

® Vx € U, if P(x) then Q(x) can be rewritten in the form
Vx € D, Q(x) by narrowing U to be the domain D
consisting of all values of the variable x that make P(x)

true.
® Example: Vx, if x is a square then x is a rectangle
V' squares x, x is a rectangle.

® dx such that P(x) and Q(x) can be rewritten in the form
dx € D such that Q(x) where D consists of all values of the
variable x that make P(x) true

@ (c) Paul Fodor (CS Stony Brook) /

" Implicit Quantification

® P(x) = Q (x) means that every element in the
truth set of P(x) is in the truth set ot Q(x), or,

equivalently, Vx, P(x) — Q(x)

® P(x) < Q(x) means that P(x) and Q(x) have
identical truth sets, or, equivalently, Vx,

P(x)<—=Q(x).

88
\ (c) Paul Fodor (CS Stony Brook)

e

o

Negations of Quantified Statements

™~

* Negation of a Universal Statement:

The negation of a statement of the form Vx € D, Q(x)
is logically equivalent to a statement of the form
dx € D, ~Q(x):
~(Vx € D, Q(x)) = dx € D, ~Q(x)
* Example:
e “All mathematicians wear glasses”
® [ts negation is: “There is at least one mathematician who does not

wear glasses”

® [ts negation is NOT “No mathematicians wear glasses”

(c) Paul Fodor (CS Stony Brook) /

4 R
Negations of Quantified Statements

® Negation of an Existential Statement

The negation of a statement of the form dx € D, Q(x)
is logically equivalent to a statement of the form Vx € D, ~Q(x):

~(dx € D, Q(x)) = Vx € D,~Q(x)

* Example:
® “Some snowflakes are the same.”

® Its negation is: “All snowflakes are different.”

(c) Paul Fodor (CS Stony Brook) /

4 R
Negations of Quantified Statements

® More Examples:
® ~(V primes p, p is odd) = J a prime p such that p is not odd
® ~(d atriangle T such that the sum of the angles of T equals 200°) =
V triangles T, the sum of the angles of T does not equal 200°

® ~(V politicians x, x is not honest) = 3 a politician x such that x is
honest (by double negation)

® ~(V computer programs p, p is finite) = 3 a computer program p that
is not finite

® ~(d a computer hacker c, cis over 40) = V computer hacker c, c is 40

or under

® ~(daninteger n between 1 and 37 such that 1,357 is divisible by n)
=V integers n between 1 and 37, 1,357 is not divisible by n

@ (c) Paul Fodor (CS Stony Brook) /

4 N
Negations of Universal Conditional Statements

® ~(Vx, P(x) — Q(x)) = dxsuch that P(x) A ~Q(x)
Proof:
~(Vx, P(x) — Q(x)) = dx such that ~(P(x) — Q(x))

and

~(P(x) = Q%)) = ~(~P(x) V Qx)) = ~~P(x) A ~Qx))
= P(x) A ~Q(x)
* Examples:
® ~(V people p, it p is blond then p has blue eyes) =
d a person p such that p is blond and p does not have blue eyes

® ~(If a computer program has more than 100,000 lines, then it contains a bug)

= There is at least one computer program that has more than 100,000 lines

and does not contain a bug
K (c) Paul Fodor (CS Stony Brook) /

/- | B
The Relation among VvV, 4, A, and V
*D = {x,%,...,x }and Vx € D, Q(x)

= Qx) AN Q(x) N+ - ANQ(x,)

°*D = {x, %, ...,x } and dx € D such that Q(x)
= Qx) VQx,)) V- VQx,)

(c) Paul Fodor (CS Stony Brook) /

e

Vacuous Truth of Universal Statements

-
4
-y

All the balls in the bowl are blue?
True

vx in D, if P(x) then Q(x) Is vacuously true or true by default If,
and only if, P(x) is false for every x in D

@ (c) Paul Fodor (CS Stony Brook)

™~

e ™
Variants of Universal Conditional Statements

® Universal conditional statement: Vx € D, if P(x) then Q(x)
* Contrapositive: Vx € D, if ~Q(x) then ~P(x)
Vx € D, it P(x) then Q(x) = Vx € D, it ~Q(x) then ~P(x)

Proof: for any x in D by the logical equivalence between statement and its

contrapositive
* Converse: Vx € D, if Q(x) then P(x).
* Inverse: Vx € D, it ~P(x) then ~Q(x).
* Example:
Vx ER,if x > 2 thenx’ > 4
Contrapositive: Vx € R, if x* <4 then x < 2

Converse: Vx € R, if x> > 4 then x > 2
Inverse:Vx € R, if x <2 then x*> <4

(c) Paul Fodor (CS Stony Brook) /

e
Necessary and Sufficient Conditions

® Necessary condition:
“Vx, r (x) is a necessary condition for s(x)” means
“Vx, it ~r (x) then ~s(x)” = “Vx, it s(x) then r(x)” (¥)
(*)(by contrapositive and double negation)

e Sufficient condition:

“Vx, r (x) is a sufficient condition for s(x)” means

“Vx, if r (x) then s(x)”

(c) Paul Fodor (CS Stony Brook)

e

o

Necessary and Sufficient Conditions

o Examplesz

® Squareness is a sufficient condition for

rectangularity;

Formal

statement:

Vx, it x is a square, then x is a rectangle

® Being at least 35 years old is a necessary condition

for being President of the United States

V peop.

President of the United States =

V peop.

(c) Paul Fodor (CS Stony Brook)

e x, if x is younger than 35, then x cannot be

e x, if x is President of the United States then x
is at least 35 years old (by contrapositive)

™~

/

4 ™
Statements with Multiple Quantifiers

* Example:
“There is a person supervising every detail of the production
process”
® What is the meaning?
“There is one single person who supervises all the details of
the production process’?
OR
“For any particular production detail, there is a person who
supervises that detail, but there might be different
supervisors for different details”?
NATURAL LANGUAGE IS AMBIGUOUS
LOGIC IS CLEAR

(c) Paul Fodor (CS Stony Brook) /

4 ™
Statements with Multiple Quantifiers

® In Logic: Quantifiers are performed in the order in

which the quantifiers occur:
® Examples:
Vx in set D, dy in set E such that x and y satisty
property P(x, y)
is different from:

dy in set E such that Vx in set D, x and y satisty
property P(x, y)

(c) Paul Fodor (CS Stony Brook) /

Interpreting Statements with Two Different Quantifiers

o Explanations:

® Vxin D, dy in E such that P(x, y)
® for whatever element x in D you must find an

element yin E that “works” for that particular X

o Ely in E such that Vx in D, P(x, y)

® {ind one particular y in E that will “work” no matter

what x in D anyone might choose

@ (c) Paul Fodor (CS Stony Brook) /

/
Interpreting Statements with Two Different Quantifiers

Salads

— green salad
fruit salad

Main courses

A spaghetti
— fish
Desserts
) pie
T cake

Beverages
I milk
soda
coffee

® J anitem I such that V students S, S chose I .

® 3 a student S such that V stations Z, 3 an item [in Z such
that S chose 1

® V students S and V stations Z, 3 an item I in Z such that S

chose I .

@ (c) Paul Fodor (CS Stony Brook) /

Interpreting Statements with Two Different Quantifiers

Salads

— green salad
fruit salad

Main courses

A spaghetti
— fish
Desserts
) pie
T cake

Beverages
I milk
soda
coffee

® J anitem I such that V students S, S chose I . TRUE

® 3 a student S such that V stations Z, 3 an item [in Z such
that S chose 1 TRUE

® V students S and V stations Z, 3 an item I in Z such that S
chose I . FALSE

@ (c) Paul Fodor (CS Stony Brook) /

KI_

arski’'s World is a good world to Formalizing Logic Statements\

® Blocks of various sizes, shapes, and colors located on a grid

® Triangle(x) means “x is a triangle” o
® Circle(x) means “x is a circle” | @ A
® Square(x) means “X is a square” o
ir 8

® Blue(x) means “x is blue”

® Gray(x) means “x is gray”
® Black(x) means “x is black” :
® RightOf(x, y) means “x is to the right of y”

® Above(x, y) means “x is above y”
 SameColorAs(x, y) means “x has the same color as y”

® x = y denotes the predicate “x is equal/same to y”

(c) Paul Fodor (CS Stony Brook) /

"Tarski’s World

A O

A | (¢
B
A D

k
*Vt, Triangle(t) —Blue(t). TRUE
*Vx, Blue(x) —Triangle(x). FALSE

®dy such that Square(y)A RightOf(d, y). TRUE

®dz such that Square(z)A Gray(z). FALSE

(c) Paul Fodor (CS Stony Brook)

/

"Tarski’s World

A O

A | (¢
B
A D

k
*Vt, Triangle(t) —Blue(t).

*Vx, Blue(x) —Triangle(x).
® Jdy such that Square(y)A RightOf(d, y).
®dz such that Square(z)A Gray(z).

(c) Paul Fodor (CS Stony Brook)

/Statements with Multiple Quantifiers in Tarski’s World\

°
o A

V3

® For all triangles x, there is a square y such that x and y have the same color

TRUE
Given x = choose y = and check that y is the same color as x.
d e yes v
fori horg yes v

@ (c) Paul Fodor (CS Stony Brook) /

/Statements with Multiple Quantifiers in Tarski’s World\

.,p_

m (A B

v 4

® There is a square y such that, for all triangles x, x and y have the same color
FALSE

there is no such square

@ (c) Paul Fodor (CS Stony Brook) /

/Quantifier Order in Tarski’s World h

» A
- y g

i

® For every square x there is a triangle y such that x and y have different colors
TRUE

® There exists a triangle y such that for every square x, x and y have different

colors

FALSE

@ (c) Paul Fodor (CS Stony Brook) /

®

3V

/Statements with Mu

How to
evaluate
them?

tiple Quantifiers in Tarski’s World\

A

® There is a triangle x such that for all circles y, x is to the right of y

TRUE
Choose x = Then, given y = check that x is to the right of y.
dori a yes v
b yes v’
c yes v’

(c) Paul Fodor (CS Stony Brook)

4 N
Negations of Multiply-Quantified Statements

* Apply negation to quantified statements from left to
right:
~(Vx in D, dy in E such that P(x, y))
= dx in D such that ~(3y in E such that P(x, y))
= dx in D such that Vy in E,~P(x, y).
~(dxin D such that Vy in E, P(x, y))
= Vxin D,~(VyinE, P(x, y))
=VxinD, dyinE such that ~P(x, y).

@ (c) Paul Fodor (CS Stony Brook) /

/Negating Statements in Tarski’s World

)@ A
B . |k

i

® For all squares x, there is a circle y such that x and y have the same color

Negation:
J a square x such that ~(3 a circle y such that x and y have the same color)
= 1 a square x such that V circles y, x and y do not have the same color

TRUE: Square e is black and no circle is black.

@ (c) Paul Fodor (CS Stony Brook)

/Negating Statements in Tarski’s World

* A
- y g

i

® There is a triangle x such that for all squares y, x is to the right of y

Negation:
V triangles x,~ (V squares y, x is to the right of y)
=V triangles x, 3 a square y such that x is not to the right of y

TRUE

@ (c) Paul Fodor (CS Stony Brook)

/Formalizing Statements in Tarski's World

® For all circles x, x is above

Vx(Circle(x) —Above(x, t))

® Negation:

~(Vx(Circle(x) — Above(x, 1)))
= Jdx ~ (Circle(x) — Above(x, t))
= Jdx(Circle(x) A ~Above(x, t))

@ (c) Paul Fodor (CS Stony Brook)

/Formalizing Statements in Tarski's World

® There is a square X such that x is black

Jdx(Square(x) A Black(x))

® Negation:

~(3x(Square(x) A Black(x)))
= Vx ~ (Square(x) A Black(x))
= Vx(~Square(x)V ~Black(x))

@ (c) Paul Fodor (CS Stony Brook)

/Formalizing Statements in Tarski's World

® For all circles x, there is a square y o

such that x and y have the same color : o

Vx(Circle(x) — dy(Square(y) A - i

SameColor(x, y)))

° Negation:

~(Vx(Circle(x)— dy(Square(y) A SameColor(x, y))))
= dx ~ (Circle(x) — dy(Square(y) A SameColor(x, y)))
= dx(Circle(x) A ~(dy(Square(y) A SameColor(x, y))))
= dx(Circle(x) A Vy(~(Square(y) A SameColor(x, y))))
= dx(Circle(x) A Vy(~Square(y) V ~SameColor(x, y)))

@ (c) Paul Fodor (CS Stony Brook)

/Formalizing Statements in Tarski's World

® There is a square X such that for all o

triangles y, x is to right of y : o

Jdx(Square(x) A Vy(Triangle(y) — - i

RightOf(x, y)))

° Negation:

~(E|X(Square(x) N Vy(Triangle(y) — RightOf(X, ¥))))
= Vx ~ (Square(x) A Vy(Triangle(x) — RightOf(x, y)))
= Vx(~Square(x) V ~(Vy(Triangle(y) — RightOf(x, y))))
= Vx(~Square(x) V Jy(~(Triangle(y) — RightOf(x, y))))
= Vx(~Square(x) V Jy(Triangle(y)A ~RightOf(x, y)))

@ (c) Paul Fodor (CS Stony Brook)

e

™~

Validity of Arguments with Quantified Statements

®

o |

An argument form is valid, it and only if, for
any particular predicates substituted for the
predicate symbols in the premises if the
resulting premise statements are all true,
then the conclusion is also true

;ogical arguments transfer from the

propositional logic to the predicative logic:
modus ponens, modus tollens, generalization,

specialization

(c) Paul Fodor (CS Stony Brook) /

" Universal Transitivity

Formal Version Informal Version
Vx P(x) — Q(x). Any x that makes P(x) true makes Q(x) true.
VxQ(x) — R(x). Any x that makes Q(x) true makes R(x) true.

S Vx P(x) > R(x). % Any x that makes P(x) true makes R(x) true.
* Example from Tarski’s World:

Vx, if x is a triangle, then x is blue.

Vx, if x is blue, then x is to the right of all the squares.

* Vx, if x is a triangle, then x is to the right of all the squares

@ (c) Paul Fodor (CS Stony Brook)

" Logic and Programming

* Logic forms a formal foundation for describing

relationships between entities

® In many cases, we can infer interesting consequences from

these relationships

® When the inference procedure is simple enough, the

descriptions of the relationships can be seen as programs

® The same set of relationships can be described in many

ways: each resulting in a different "program"

® Logic Programming: a framework for describing

relationships such that inferences can be done efficiently

@ (c) Paul Fodor (CS Stony Brook)

a .
Programming Languages
® [anguages:
o Inglpegfative = Turing machines

® Functional Programming = lambda calculus

° Logical Programming = first-order predicate calculus

® Prolog (Programming in logic) and its variants make up the

most commonly used Logical programming languages.

e One variant is XSB =2 developed at Stony Brook ”

® Other Prolog systems: SWI Prolog, Sicstus, Yap, Ciao, GNU
Prolog, etc.

@ (c) Paul Fodor (CS Stony Brook) /

4 A
Association for Logic Programming

® http://www.cs.nmsu.edu/ALP/

® the current state of logic programming technology

® Many other groups (start from news://comp.lang. prolog)

® XSB: http:// Xsb.sourceforge.net

® system with SLG-resolution, HiLog syntax, and

unification factoring

e SWI Prolog: http: / / WWW, swi—prolog. org

® Complete, ISO and Edinburgh standard, common
optimizations, GC including atoms. Portable graphics,
threads, constraints, comprehensive libraries for (semantic)

web programming, Unicode, source-level debugger

® Yap Prolog: http://www.ncc.up.pt/~vsc/Yap/
@ p g: bty p.] I

(c) Paul Fodor (CS Stony Brook)

http://www.cs.nmsu.edu/ALP/
news://comp.lang.prolog/
http://xsb.sourceforge.net/
http://www.swi-prolog.org/
http://www.ncc.up.pt/~vsc/Yap/

4 .
Extensions of Prolog
® Flexibility of reasoning is one of the key property

of intelligence.

e Commonsense inference is defeasible in its nature:

we are all capable of drawing conclusions, acting on

™

them to derive more conclusions, and then retracting

them if necessary in the face of new evidence or

resulting inconsistency.

If computer programs are to act intelligently, they will need

to be sirnilarly flexible.

(c) Paul Fodor (CS Stony Brook)

‘Flexible Reasoning Examples :

* Reiter, 1987: Consider a statement Birds fly. Tweety,
we are told, is a bird. From this, and the fact that
birds fly, we conclude that: Tweety can fly.

® This is defeasible: Tweety may be an ostrich, a
penguin, a bird with a broken wing, or a bird whose

feet have been set in concrete.

e Non-monotonic Inference: on learning a new fact

(that Tweety has a broken wing), we are forced to

retract our conclusion (that he could ly).

@ (c) Paul Fodor (CS Stony Brook)

4 . .
Non-monotonic Logics

® Non-monotonic Logic is a logic in which the

introduction of a new information (axioms) can

invalidate old theorems.

(c) Paul Fodor (CS Stony Brook)

'Default reasoning

® Default reasoning (logics) means drawing of

plausible Iinferences from less-then-conclusive

evidence in the absence of information to the

contrary.

¢ Non-monotonic reasoning is an example of the

default reasoning.

(c) Paul Fodor (CS Stony Brook)

' Auto-epistemic reasoning

®* Moore, 1983: Consider my reason for believing that I

do not have an older brother. It is surely not that one of
my parents once casually remarked,You know, you don't

have any older brothers, nor have I pieced it together by
carefully sifting other evidence.

® | simply believe that if I did have an older brother I would
know about it; therefore, since I don't know of any older

brothers of mine, I must not have any.

® Closed-world vs. open-world assumption

@ (c) Paul Fodor (CS Stony Brook)

' Auto-epistemic reasoning

® "The brother" reasoning is not a form of default
reasoning nor non-monotonic. It is reasoning about

one's own knowledge or belief.

® Hence it is called an auto-epistemic redsonin g

® Auto-epistemic reasoning models the reasoning of

an ideally rational agent reﬂecting upon his beliefs or

knowledge.

® Auto-epistemic Logics are logics which describe

the reasoning of an ideally rational agent reﬂecting

upon his beliefs.
@ (c) Paul Fodor (CS Stony Brook) /

'Missionaries and Cannibals

* McCarthy, 1985 revisits the problem: Three
missionaries and three cannibals come to a river. A
rowboat that seats two is available. If the cannibals
ever outnumber the missionaries on either bank of
the river, the missionaries will be eaten. How shall

they cross the river?

o Traditionally the puzzler is expected to devise a

strategy of rowing the boat back and forth that gets

them all across and avoids the disaster.

@ (c) Paul Fodor (CS Stony Brook)

'Missionaries and Cannibals

® Traditional Solution: A state is a triple comprising

the number of missionaries, cannibals and boats on

the starting bank of the river:
® The initial state is 331, the desired state is 000.

® A solution is given by the sequence: 331, 220,321,
300,311,110, 221,020, 031,010, 021, 000.

(c) Paul Fodor (CS Stony Brook)

'Missionaries and Cannibals

® Imagine now giving someone a problem, and

@

atter he puzzles
going upstream

bridge.

for a while, he suggests

half a mile and crossing on a

e What a bridge? you say. No bridge is

mentioned in t

he statement of the problem.

*He replies: We.
bridge.

1, they don't say the isn't a

Open world assumption!

(c) Paul Fodor (CS Stony Brook)

'Missionaries and Cannibals

*So you modify the problem to exclude the

bridges and pose it again.

® He proposes a helicopter, and after you exclude
that, he proposes a winged horse or that the
others hang onto the outside of the boat while

two row.

® He also attacks your solution on the grounds that

the boat might have a leak or lack oars.

@ (c) Paul Fodor (CS Stony Brook)

'Missionaries and Cannibals

® Finally, you must look -

'or a mode of

reasoning that will sett!

e his hash once and

for all (Closed world assumption!)

. McCarthy proposed circumscription

e He argued that it is a part of common knowledge that a boat can be used

to cross the river unless there is something with it or something else

prevents using it.

® If our facts do not require that there be something that prevents crossing

the river, circumscription will generate the conjecture that there isn't.

e Lifschits has shown in 1987 that i

n some special cases the

circumscription is equivalent to a first order sentence that can

be added to the predicate logic program to obtain closed world

(c) Paul Fodor (CS Stony Brook) /

Logic Programming

o Logic Programming encompasses many

' logic: TP TRGNT
types ol fogic https://en.wikipedia.org/

wiki/Logic_programming

eHorn clauses

® Non-monotonic

* Constraint solving

*Satistiability checking

*Knowledge Representation-Object-oriented

eInductive logic programming

@ ® Transaction Loglc Probablhstlc etc.

| d r (CS Stony Brook)

.

https://en.wikipedia.org/wiki/Logic_programming

Applications

® Deductive databases, Model checking, Declarative

networking, Configuration systems, etc.

® Where? International Space Station, IBM Watson, US

Border Control, Windows user access, etc.

® Conferences: International Conference on Logic
Programming (ICLP), International Conference on
Logic Programming and Non-monotonic Reasoning
(LPNMR), International Web Rule Symposium
(RuleML) (in 2016 it was in Stony

Brook), International Conference on Web Reasoning

and Rule Systems (RR), etc.
@ y (RR)

(c) Paul Fodor (CS Stony Brook)

‘Knowledge Systems Lab, Stony Brook Univ.
Paul Fodor, Michael Kifer, [V Ramakrishnan, CR Ramakrishnan, Q\\\\
David S. Warren, Annie Liu

® Logic Programming and Deductive databases Stor}y BI'QOk
University

® XSB Prolog (30t years of research at Stony Brook)
® http://xsb.sourceforge.net and Flora-2, LMC, ETALIS, Ergo, ...

® Knowledge Representation & Processing (decision support)

® Research Interests and Projects:

* Logic programming:Transaction Logic, F-logic, HiLog, Defeasible
Argumentation, Paraconsistency, etc.

® Knowledge representation

° NLP, NLU : IBM Watson Question Analysis with Prolog, Project Halo
(Vulcan Inc.) SILK

e Rule systems benchmarking: OpenRuleBench
® Stream processing: ETALIS/EP-SPARQL
® Access control policies and trust management languages

® Semantic Web

& ° Vlrtual expert SYStemS > * * {c) Paul Fodor (CS Stony Brook) /

Paul Fodor, Stony Brook University

http://xsb.sourceforge.net/

"~ What is Tabling?

What is Datalog?

Prolog

Socrates 1S a man. man(socrates).
FOL.:

All men are mortal. vx, man(x)> mortal(x). mortaI(X) L= man(X).

Is Socrates mortal? ?- mortal(X).

Yes: X=socrates

© Prolog has goal directed top-down resolution

® The not (\+) operator is a closed-world negation as failure: if

no proof can be found for the fact, then the negative goal succeeds.
® Example: illegal(X) :- \+ legal(X).

° Adding a fact that something is legal destroys an argument that it is illegal.

@ Prolog's "Yes" means "I can prove it“, while Prolog's "No" means "I can't prove it"

(c) Paul Fodor (CS Stony Brook)

/

4 N
Logic Programming Extensions at Stony Brook

* Prolog pitfalls:
® redundant computations
® non-termination of otherwise correct programs
path (A , B): - path (A , C), edge (C , B).
path (A , B): - edge (A , B).
® not OO, not defeasible, closed world assumption, ...

® (Goal: Realize the vision of logic—based knowledge representation with
frames, defeasibility, meta, and side-effects, event streams, ...

® Tabling (efficiency, termination, Datalog and well-founded
semantics),

® F-logic (frames, path expressions and reification),

® Logic programming with defaults and argumentation theories,
® Hilog,

® Transaction Logic (and tabling for WES),

* Event Condition Action rules and Complex Event Processing
(ETALIS) (complex events, aggregates, consumption policies, time

and count windows)
\ (c) Paul Fodor (CS Stony Brook) /

™~

founded semantics.

Example

:- table p/1.
q.
p(A) :-
q,
p(B),
A = 2,
p(4) :-
A = 1.
Subgoal Answers
4. A=1
1. p(A) 8. A=2
13. Complete

®

e
Logic Programming Extensions at Stony Brook

Suspend computation when same goal Is called again and Consume
answers of producers. XSB Is sound and complete for LP well-

1. p(A).
/\ S

l.q.p(B),A=2. 3.A=1.
92—
2.p(B), A=2. = p(A).
5. A": 1. 14. no.
[Suspensicn)
/'& 9.A=2
6.p(1), A=2. 10. p(2), A =2.
7. A=2. 11.A=2.
12. fail

(c) Paul Fodor (CS Stony Brook)

/" Logic Programming Extensions at Stony Brook:
F-Logic (Flora2)

Object Id Attribute
Object description:

John[name — ‘John Doe’, phones -> {6313214567, 6313214566},
children -> {Bob, Mary}]

_———— o -
,’ —_— . ————

Mary[name —> "Mary Doe’, phones -> {2121234567, 2121237645},

children -> {Anne,AIice}]

Structure can be nested: _
Attribute

Sally[spouse -> John[address —> 123 Main St.”]]

Methods:?P[ageAsOf(?Year) — ?Age] : -
?P:Person, ?P[born — ?B], ?Age is ?Year—?B.
Type signatures: Person[| born => \integer,
ageAsOf(\integer) => \integer |].
@

(c) Paul Fodor (CS Stony Brook) /

/" Logic Programming Extensions at Stony Brook:
Transaction Logic
stack(0,?X).
stack(?N,?X) : = ?N>0 ® move(?Y,?X) ® stack(?N-1,?Y).
move(?X,?Y) : - pickup(?X) ® putdown(?X,?Y).
pickup(?X) : - clear(?X) ® on(?X,?Y) ® t delete{on(?X,?Y)} ® t_insert{clear(?Y)}.
putdown(?X,?Y) : — wider(?Y,?X) ® clear(?Y) ® t_insert{on(?X,?Y)} ® t delete{clear(?Y)}.
* Can express not only execution, but all kinds of sophisticated constraints:

?— stack(10, block43)
/N V2X,2Y (move(?X,?Y) & color(?X,red)) => (3 ?Z color(?Z,blue) @ move(?Z,7X))

Whenever a red block is stacked, the next block to be stacked must be blue

* Planning with Heuristics: Specitying STRIPS in Transaction Logic
achieve_unstack(?X,?Y) : —
(achieve_clear(?X) * achieve_on(?X,?Y) * achieve_handempty)
® unstack(?X,?Y).

@ Tabling to stop infinite computation P(aths and defeasibility (ICLP2009)

(c) Paul Fodor" (CS Stony Brook) /

/" Logic Programming Extensions at Stony Brook:
Defeasibility

O Common sense reasoning: rules can be true by default but may be defeated (policies,
regulations, law, inductive/scientific learning, natural language understanding): Logic
Programming with Defaults and Argumentation theories LPDA (ICLP2009) and

Transaction Logic LPDA (ICLP2011)
buy : —pay & delivery.
@bidelivery : —gold_member ¢ express_mail.
@b2delivery : —ground_mail.
@b3pay : —pay_credit_card.
@bdpay : —pay_cheque.
!opposes(b1, b2).! overrides(bl, b2).! opposes(b4, b3).! overrides(b4, b3).
express_mail : —insert(delivered_express_mail).
ground_mail : —insert(delivered_ground_mail).
pay_credit_card : —credit_card_credentials <) insert(credit_card_payment).
pay_cheque : —bank_account ¢ insert(bank_payment).
credit_card_credentials.bank_account.gold_member .

Argumentation theory Sdefeated(R) :— Srefutes(S,R) A not Scompromised(S).

Sdefeated(R) :— Srebuts(S,R) A not Scompromised(S).

Sdefeated(R) i — Sdisqualified(R).

Srefutes(R. S) :— Sconflict(R.S) A !overrides(R.S).

$rebuts(R, S) - $candidate(ﬁ’) A $candidate(8)/\
lopposes(R.S) A not $Scompromised(R)A
not $refutes(_, R) A not $refutes(_, S).

Scompromised(R) :— S$refuted(R)A $defeated(R).

Sdisqualified(X) :— Sdefeatsy (X, X).

Sdefeatsy (X, Y) :— Sdefeats(X.,Y).

Sdefeatsy (X, Y) : — Sdefeatsy (X, Z) A Sdefeats(Z,Y).
k lopposes(handle(_,H), handle(_, neg H)). /

<Li! ~Natural Language Processing with ¢ I88
5% Prolog in the IBM Watson System - [

Stony Brook

University
° Coding Pattern Matching Rules Directly in a Procedural Language Like Java is

Not Convenient

® Pattern Matching: question to candidate passages

® Prolog: well-established standard; straightforward syntax; very expressive;
development, debugging, and profiling tools exist; efficient, well-understood

implementations, proven to be effective for pattern-matching tasks; natural fit
for integration with UIMA (IBM R&D Journal 2012)

® We implemented Prolog rule sets for:
® Focus Detection
® Lexical Answer Type Detection
® Shallow and Deep Relation Extraction
® Question Classification
® Execution is Efficient to Compete At Jeopardy!

* A Question is analyzed in a fraction of a second

* Open NLP tooling at Stony Brook University

http: // ewl.Cewit.stonybrook.edu/ sbnlp

e + Education: Stony Brook University courses:

@ Computers playing Jeopardy! (2011 - 2016)

(c) Paul Fodor (CS Stony Brook) /

http://ewl.cewit.stonybrook.edu/sbnlp

e

Watson Question Analysis

Aggregate Analysis Engine:
Question/To

Focus and LAT Decomposition

))) - Deep SRD
Detection and Classification

CAS
Parse,

PAS, Focus,

- Answer Type,

Relations,

Question/ 1 ! J
 Tobic Question Hypothesis Hypothesis and Evidence
;\nai:\-sin Decomposition Generation

] Synthesis
Scoring .

Question

Final Merging

& Ranking

o - 521,600
K (c) Paul Fodor (CS Stq S . : :

won

B SToER?

a .
Focus Detection Rules

® The focus is the “node® that refers to the unspecified answer.
e Pattern: WHAT IS X ...?7
“What is the democratic party symbol?”

“What is the longest river in the world?”

focus(QuestionRoot, [Pred]):-

getDescendantNodes(QuestionRoot, Verb),

lemmaForm(Verb,"be"),

subj(Verb,Subj),

lemmaForm(Subj,SubjString),

whatWord(SubjString), % "what","which® ("this","these)

pred(Verb,Pred),!.

® Pattern: “How much/many”:
“How many hexagons are on a soccer ball?”
“How much does the capitol dome weigh?”
“How much folic acid should an expectant mother get daily?”

focus(QuestionRoot, [Determiner]):-
getDescendantNodes(QuestionRoot,Determiner),

lemmaForm(Determiner, DeterminerString),

@ howMuchMany(DeterminerString),!. % "how much/many", "this much"

(c) Paul Fodor (CS Stony Brook)

~ Answer-type Computation Rules
® Time rule (e.g. when): Pattern: When VERB OB]; OBJ VERB then

Example: When was the US capitol built? answerType => [“com.ibm.hutt. Year]
answer Type(_QuestionRoot,FocusList,timeAnswer Type, ATList):-

member(Mod,FocusList),

lemmaForm(Mod,ModString),

wh_time(ModString), % "when", "then®

whadv(Verb,Mod),

lemmaForm(Verb, VerbString),

timeTableLookup(VerbString,ATList), !

e “How ... VERB” rule: Pattern: How ... VERB?

Example: “How did Virginia Woolf die?” answerType => ["com.ibm.hutt.Disease"
"com.ibm.hutt. MannerOfKilling", "com.ibm.hutt. Type Oflnjury"]
answer Type(_QuestionRoot,FocusList,howVerb1, ATList):-
member(Mod,FocusList),
lemmaForm(Mod,"how"),
whadv(Verb,Mod),
lemmaForm(Verb, VerbString),

@ howVerbTableLookup (VerbStrlnjg ,ATList)
P

aul Fodor (CS Stony Brook)

»

4 N
Answer-type Computation Rules

Focus lexicalization (lexical chains using Prolog WordNet followed by a mapping
to our taxonomy)

Question QParse 2 AnswerType

What American revolutionary general turned over | [com.ibm.hutt.MilitaryLeader]
West Point to the British?

Table lookup for the verb:

Question QParse 2 AnswerType

How did Jimi Hendrix die? [com.ibm.hutt.Disease com.ibm.hutt.MannerOfKilling
com.ibm.hutt. TypeOfinjury]

Table lookup for the focus:

Question QParse 2 AnswerType
How far is it from the pitcher's mound to home [com.ibm.hutt.Length]
plate?

When was Lyndon B Johnson president? [com.ibm.hutt.Year]

Table lookup for the focus (noun) + the verb:

Question QParse 2 AnswerType
What instrument measures radioactivity? [com.ibm.hutt.Tool]
What instrument did Louis Armstrong play? [com.ibm.hutt.Musicallnstrument]

(c) Paul Fodor (CS Stony Brook) /

e
Answer-type Computation Rules

° Cascading rules in order of generality

first rule that fires returns the most specific answer-type for the question

Look at the focus + verb:

Question QParse 2 AnswerType
How much did Marilyn Monroe weigh? [com.ibm.hutt.Weight]
How much did the first Barbie cost? [com.ibm.hutt.Money]

Look at the focus + noun:

Question QParse 2 AnswerType

How many Earth days does it take for Mars to orbit the sun? [com.ibm.hutt.Duration]

How many people visited Disneyland in 1999? [com.ibm.hutt.Population]

Look only at the focus:

Question QParse 2 AnswerType
How many moons does Venus have? [com.ibm.hutt. WholeNumber]
How much calcium is in broccoli? [com.ibm.hutt.Number]

v
Priority decreases

down the chain
K (c) Paul Fodor (CS Stony Brook)

4 . .
Relation Detection Rules A

authorOf (Author,Composition) :-

authorVerb (Verb), ' _
subj (Verb, Author), o R "~ . obj

. l‘ h‘
validAuthor (Author), Czj"“"_
Songs_of a_Sourdough q 14

obj (Verb, Composition),
RuthorOf

validComposition (Composition) .
authorVerb (Verb) :-

partOfSpeech (Verb, verb),

lemma (Verb, VerbLemma) ,

member (VerbLemma, ["write","publish",...].

authorOf (Author, Composition) :- ._

validComposition (Composition),
argument (Composition, Preposition),
lemma (Preposition, "by"),

objprep (Preposition,Author),
validAuthor (Author) .

samelAs (X,Z) :-
authorOf (X,Y),

sameAs

- mod_nnoun ".mod_nsubj

authorOf (Z,Y) .
@ (c) Paul Fodor (CS Stony Brook) /

g = ETALIS/ EPSPARQL Complex @@ £ A
¢ Event and Stream Processing Sty ook gy

University

® Data-driven continuous complex event processing:
® Event filtering, enrichment, projection, translation, and multiplication
® Declarative semantics
® Combines detection of complex events and reasoning over states
® Sliding windows (time and count-based)

® Aggregation over events (count, avg, sum, min, max, user-defined

aggregates)

® Processing of out-of-order events

® Visual development for sequential and aggregative patterns

® Open source: http://code.google.com/p/etalis
® Uses: stock market, health applications, transit applications, NLP
streaming applications (Twitter posts analysis)

® The Ford OpenXC Challenge: map as weighted graph and update road
@ weights from traftic events
N

(c) Paul Fodor (CS Stony Brook)

http://code.google.com/p/etalis

/" “The Fast Flower Delivery Use Case”, accompanying the book N
“Event Processing In Action”, by Opher Etzion and Peter Niblett,

Mannin% Publications
% Phase 1: Bid Phase

% Multiplier: multiply the event "delivery_request_enriched" for each driver
delivery_request_enriched_multiplied(DeliveryRequestld,Driverld,Storeld, ToCoordinates,DeliveryTime,
MinRank)<-
delivery_request_enriched(DeliveryRequestld,Storeld, ToCoordinates,
DeliveryTime,MinRank) event_multiply driver_record(Driverld,_Ranking).
% gps_location_translated/3
gps_location_translated(Driverld,Rank,Region)<-
gps_location(Driverld,coordinates(SNHemisphere,Latitude, EWHemisphere,Longitude)) where
(driver_record(Driverld,Rank),
gps_to_region(coordinates(SNHemisphere,Latitude, EWHemisphere,Longitude),Region)).
% bid_request/5
bid_request(DeliveryRequestld,Driverld,Storeld, ToCoordinates,DeliveryTime)<-
delivery _request_enriched_multiplied(DeliveryRequestld,Driverld, Storeld, ToCoordinates,
DeliveryTime, MinRank) and
gps_location_translated(Driverld,Rank,Region)
where MinRank <= Rank, gps_to_region(ToCoordinates,Region).
% Phase 2: Assignment Phase
startAssignment(DeliveryRequestld,Storeld, ToCoordinates, DeliveryTime) <-
delivery _request_enriched(DeliveryRequestld,Storeld, ToCoordinates, DeliveryTime, MinRank)
where trigger(start_assignment_time(Time)).
assignment(DeliveryRequestld,Storeld, ToCoordinates,DeliveryTime,Driverld,ScheduledPickupTime)<-
startAssignment(DeliveryRequestld,Storeld, ToCoordinates,DeliveryTime) and
min(ScheduledPickupTime,
delivery_bid(DeliveryRequestld,Driverld,CurrentCoordinates, ScheduledPickupTime)).

@ (c) Paul Fodor (CS Stony Brook) /

e

ontologies), Al puzzles.

* E.g,recursive stratified negation tests:

OpenRuleBench: Analysis of the
Performance of Rule Engines

® Performance tests: database tests (joins, indexing, inference), updates vs. querying, database
recursion, default negation in the body, real-data tests (Mondial, DBLP, Wordnet,

Stony Brook
University

size 6000 6000 24000 24000
cyclic data no yes no yes
xsb 2.359 3.408 42.824 44.487
yap 1.875 3.148 43.510 43.452
dlv 20.274 | 31.346 365.136 | 438.008
drools 104.884 error error error
jess 64.000 error 1517.000 error
jena 21.007 | 37.692 387.268 | 415.376
owlim 8.666 | 13.314 174.968 | 195.825

@

http -/ /rulebench.semwebcentral. org

. OpenRuleBench

(c) Paul Fodor (CS Stony Brook)

® Systems tested: highly optimized Prolog-based systems (XSB, Yap, SWI), deductive databases
(DLV, Iris, Ontobroker), rule engines for triples (Jena, BigOWLIM), production and
reactive rule systems (Drools, Jess, Prova), knowledge base systems (CYC).

™~

http://rulebench.semwebcentral.org/

