
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Introduction to Logic, Logic

Programming and Languages

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook)

Overview

2

1. Introduction to Mathematical Formalizations

in Logic

2. Propositional Logic or the logic of compound

statements

3. Logical Arguments

4. Predicative Logic or the logic or quantified

statements

5. Logic Programming (short basic introduction,

applications, research at Stony Brook, groups)

(c) Paul Fodor (CS Stony Brook)

A Puzzle
Knights and Liars/Knaves: Knights

always tell the truth; Liars/Knaves

always lie.

Zoe: "Mel is a liar"

Mel: "Neither I nor Zoe are liars“

Who's lying?
3

(c) Paul Fodor (CS Stony Brook)

A Puzzle
Knights and Liars/Knaves: Knights

always tell the truth; Liars always lie.

Zoe: "Mel is a liar"

Mel: "Neither I nor Zoe are liars“
(1) z  ~m

(2) m  ~(~m ∨ ~z)
by logical equivalence:

~(~m ∨ ~z) ≡ m ∧ z

(2) becomes m  m ∧ z
4

(c) Paul Fodor (CS Stony Brook)

Mathematical Formalization

5

Why formalize language?

 to remove ambiguity

 to represent facts on a computer and use it for

proving, proof-checking, etc.

All people are mortal. Socrates is mortal.

Socrates is a person.

∀x P(x) → M(x) P(S) → M(S) M(S)

P(S) P(S)

 to detect unsound reasoning in arguments

I am lying.

(c) Paul Fodor (CS Stony Brook)

Logic

6

Mathematical logic is a tool for dealing with

formal reasoning!

formalization of natural language and reasoning

methods

Logic does:

Assess if an argument is Valid or invalid

Logic does not directly:

Assess the truth of atomic statements

(c) Paul Fodor (CS Stony Brook)

Propositional Logic

7

 Or the logic of compound statements is the study of:

 the structure (syntax) and

 the meaning (semantics) of (simple and complex)

propositions

 The key questions are:

How is the truth value of a complex proposition

obtained from the truth value of its simpler

components?

Which propositions represent correct reasoning

arguments?

(c) Paul Fodor (CS Stony Brook)
8

 A proposition is a sentence that is either true or false, but

not both

 Examples of simple propositions:

 John is a student.

 5+1 = 6

 426 > 1721

 It is 82 degrees outside right now.

 Example of a complex/composed proposition:

 Tom is five and Mary is six.

 Sentences which are not propositions:

 Did Steve get an A on the exam? (this is a query)

 Go away! (this is an order)

Propositional Logic

(c) Paul Fodor (CS Stony Brook)
9

 In studying properties of propositions we represent them by expressions

called proposition forms or formulas built from propositional

variables (atoms), which represent simple propositions and symbols

representing logical connectives

 Proposition or propositional variables: p, q,…

each can be true or false in 2-valued logics

Examples: p=“Socrates is mortal.”

q=“Plato is mortal.”

 Connectives: ∧, ∨, →, ⟷, ~

 connect propositions: p ∨ q
 Example: “I passed the exam or I did not pass it.” p ∨ ~p

 The formula expresses the logical structure of the proposition, where p is an

abbreviation for the simple proposition “I passed the exam.”

Propositional Logic

(c) Paul Fodor (CS Stony Brook)

Connectives

10

~ not

∧ and

∨ or (non-exclusive!)

→ implies (if … then …)

⟷ if and only if

 for all

 exists

(c) Paul Fodor (CS Stony Brook)

Formulas

11

Atomic: p, q, x, y, …

Unit Formula: p, ~p, (formula), …

Conjunctive: p ∧ q, p ∧ ~q, …

Disjunctive: p ∨ q, p ∨ (q ∧ x),…

Conditional: p → q

Biconditional: p⟷ q

(c) Paul Fodor (CS Stony Brook)

Negation (~ or ¬ or !)
We use the symbol ~ to denote negation

Formalization (syntax): If p is a formula, then ~p

is also a formula. We say that the second formula

is the negation of the first

Examples: p, ~p, and ~~p are all formulas

Examples:

John went to the store yesterday (p).

John did not go to the store yesterday (~p).

12

(c) Paul Fodor (CS Stony Brook)

Meaning (semantics):

If a proposition is true, then its negation is false.

If it is false, then its negation is true.

We express the connection semantics via a so-

called truth table:

13

Negation (~ or ¬ or !)

(c) Paul Fodor (CS Stony Brook)

Conjunction (∧ or & or •)
 We use the symbol ∧ to denote conjunction

 Syntax: If p and q are formulas, then p ∧ q is also a

formula.

 Semantics: If p is true and q is true, then p ∧ q is true. In

all other cases, p ∧ q is false.

14

(c) Paul Fodor (CS Stony Brook)

 Example:

1. Bill went to the store.

2. Mary ate cantaloupe.

3. Bill went to the store and Mary ate cantaloupe.

 If p and q abbreviate the first and second sentence,

then the third is represented by the conjunction p ∧ q.

15

Conjunction (∧ or & or •)

(c) Paul Fodor (CS Stony Brook)

Inclusive Disjunction (∨ or | or +)
 We use the symbol ∨ to denote (inclusive) disjunction.

 Syntax: If p and q are formulas, then p ∨ q is also a formula.

 Semantics: If p is true or q is true or both are true, then p ∨ q is

true. If p and q are both false, then p ∨ q is false.

16

(c) Paul Fodor (CS Stony Brook)

Example:

John works hard (p).

Mary is happy (q).

John works hard or Mary is happy (p ∨ q).

17

Inclusive Disjunction (∨ or | or +)

(c) Paul Fodor (CS Stony Brook)

Exclusive Disjunction (⊕, XOR)
 We use the symbol ⊕ to denote exclusive disjunction.

 Syntax: If p and q are formulas, then p ⊕ q is also a formula.

 Semantics: An exclusive disjunction p ⊕ q is true if, and only if,

one of p or q is true, but not both.

 Example:

 Either John works hard or Mary is happy (p ⊕ q)

18

(c) Paul Fodor (CS Stony Brook)

Implication
Example of proposition:

If I do not pass the exam, then I will fail

the course.

Corresponding formula: ~p → q

(More later …)

19

(c) Paul Fodor (CS Stony Brook)

Determining Truth of A Formula

20

 Atomic formulae: given

 Compound formulae: via meaning of the connectives

The semantics of logical connectives determines how

propositional formulas are evaluated depending on

the truth values assigned to propositional variables

Each possible truth assignment or valuation for the

propositional variables of a formula yields a truth

value

 The different possibilities can be summarized in a truth

table

(c) Paul Fodor (CS Stony Brook)

Evaluation of formulas - Truth Tables

A truth table for a formula lists all

possible “situations” of truth or falsity,

depending on the values assigned to the

propositional variables of the formula

21

(c) Paul Fodor (CS Stony Brook)

Truth Tables
 Example: If p, q and r are the propositions “Peter [Quincy, Richard] will

lend Sam money,” then Sam can deduce logically correct, that he will be

able to borrow money whenever one of his three friends is willing to lend

him some: p ∨ q ∨ r

 Each row in the truth table corresponds to one possible situation of

assigning truth values to p, q and r
22

p q r p ∨ q ∨ r

T T T T

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F F

(c) Paul Fodor (CS Stony Brook)

 How many rows are there in a truth table with n

propositional variables?

 for n = 1, there are two rows, e.g.for ~ (negation)

 for n = 2, there are four rows, e.g.:

 for n = 3, there are eight rows, and so on.

 Do you see a pattern?

23

Truth Tables

(c) Paul Fodor (CS Stony Brook)

Constructing Truth Tables
 There are two choices (true or false) for each of n

variables, so in general there are 2*2*...*2 = 2n

rows for n variables

 A systematic procedure is necessary to make sure you

construct all rows without duplicates

count in binary: 000, 001, 010, 011,100, . . .

The rightmost column must be computed as a

function of all the truth values in the row:

24

(c) Paul Fodor (CS Stony Brook)
25

 Example 1: p ∧ ~q (read “p and not q”)

 Note : it is usually necessary to evaluate all subformulas

p q ~q p ∧ ~q

T T F F

T F T T

F T F F

F F T F

Constructing Truth Tables

(c) Paul Fodor (CS Stony Brook)
26

 Example 2: p ∧ (q ∨ r) (read “p and, in addition, q or r”)

 Note : it is usually necessary to evaluate all subformulas

p q r q ∨ r p ∧ (q ∨ r)

T T T T T

T T F T T

T F T T T

T F F F F

F T T T F

F T F T F

F F T T F

F F F F F

Constructing Truth Tables

(c) Paul Fodor (CS Stony Brook)

Because it is clumsy and time-consuming to

build large explicit truth tables, we will be

interested in more efficient logical evaluation

procedures.

Symbolic proofs with logical equivalences

(See later) ~~p ≡ p

27

Constructing Truth Tables

(c) Paul Fodor (CS Stony Brook)

Language: Syntax of Formulas

 We backtrack a bit to formally define the syntax of logic

 The formal language of propositional logic can be specified by

grammar rules

 The syntactic structure of a complex logical expression (i.e., its

parse tree) must be unambiguous

proposition ::= variable

| (~proposition)

| (proposition ∧ proposition)

| (proposition ∨ proposition)

...

variable ::= p | q | r | ...

28

(c) Paul Fodor (CS Stony Brook)

Ambiguities in Syntax of Formulas
 For example, the expression p ∧ q ∨ r can be interpreted in two

different ways:

 Parentheses are needed to avoid ambiguities

 The same problem arises in arithmetic: does 5+2 x 4 means (5+2) x

4 or 5+(2 x 4)?
 The problem there is solved with priorities

 Priorities in logic: ~ > ∧ > ∨ > →
 ∧, ∨ and → operators are left associative

 ~ is right associative

 With ∧ ahead of ∨ in the precedence, there is no ambiguity

in p ∧ q ∨ r

29

p q r p ∧ q (p ∧ q) ∨ r q ∨ r p ∧ (q ∨ r)

F F T F T T F

(c) Paul Fodor (CS Stony Brook)
18

Precedence

~ highest

∧

∨

→, ⟷ lowest

Avoid confusion - use ‘(‘ and ‘)’:

(p ∧ q) ∨ x

(c) Paul Fodor (CS Stony Brook)

Logical Equivalence
 If two formulas evaluate to the same truth value in all

situations, so that their truth tables are the same, they are said

to be logically equivalent

 We write p ≡ q to indicate that two formulas p and q are

logically equivalent

 If two formulas are logically equivalent, their syntax may be

different, but their semantics is the same

 The logical equivalence of two formulas can be established by

inspecting the associated truth tables.

 Note: Substituting logically inequivalent formulas is the source of

most real-world reasoning errors

31

(c) Paul Fodor (CS Stony Brook)

Logical Equivalence
Disjunction is commutative:

32

p q p ∨ q q ∨ p

T T T T

T F T T

F T T T

F F F F

(c) Paul Fodor (CS Stony Brook)

Logical Equivalence
 Disjunction is associative:

 We will therefore ambiguously write p ∨ q ∨ r to denote either (p

∨ q) ∨ r or p ∨ (q ∨ r). The ambiguity is usually of no consequence,

as both formulas have the same meaning.

33

p q r (p ∨ q) ∨ r p ∨ (q ∨ r)

T T T T T

T T F T T

T F T T T

T F F T T

F T T T T

F T F T T

F F T T T

F F F F F

(c) Paul Fodor (CS Stony Brook)

 Is ~(p ∧ q) logically equivalent (≡) to ~p ∧ ~q?

 Lines 2 and 3 prove that this is not the case.

34

p q p ∧ q ~(p ∧ q) ~p ~q ~p ∧ ~q

T T T F F F F

T F F T F T F

F T F T T F F

F F F T T T T

Logical Equivalence

(c) Paul Fodor (CS Stony Brook)

 Is ~(p ∧ q) logically equivalent (≡) to ~p ∨ ~q?

Yes.

35

p q p ∧ q ~(p ∧ q) ~p ~q ~p ∨ ~q

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Logical Equivalence

(c) Paul Fodor (CS Stony Brook)

De Morgan's Laws
 There are a number of important equivalences,

including the following De Morgan's Laws:

~(p ∧ q) ≡ ~p ∨ ~q

~(p ∨ q) ≡ ~p ∧ ~q

These equivalences can be used to transform a

formula into a logically equivalent one of a

certain syntactic form, called a "normal form“

 Another useful logical equivalence is double

negation:

~~ p ≡ p
36

(c) Paul Fodor (CS Stony Brook)

~(~p ∧ ~q) ≡ ~ ~ (p ∨ q) ≡ p ∨ q

The first equivalence is by De Morgan's Law, the

second by double negation

We have just derived a new equivalence: p ∨ q ≡

~(~p ∧ ~q) (as equivalence can be used in both

directions) which shows that disjunction can be

expressed in terms of conjunction and negation!

37

Using De Morgan's Laws

(c) Paul Fodor (CS Stony Brook)

Some Logical Equivalences
You should be able to convince yourself of (i.e.,

prove) each of these:

Commutativity of ∧ : p ∧ q ≡ q ∧ p

Commutativity of ∨ : p ∨ q ≡ q ∨ p

Associativity of ∧ : p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

Associativity of ∨ : p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

Idempotence: p ≡ p ∧ p ≡ p ∨ p

Absorption: p ≡ p ∧ (p ∨ q) ≡ p ∨ (p ∧ q)

38

(c) Paul Fodor (CS Stony Brook)

Distributivity of ∧ : p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Distributivity of ∨ : p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Contradictions: p ∧ F ≡ F ≡ p ∧ ~p

 Identities: p ∧T ≡ p ≡ p ∨ F

Tautologies: p ∨T ≡ T ≡ p ∨ ~p

39

Some Logical Equivalences

(c) Paul Fodor (CS Stony Brook)

Tautologies
 A tautology is a formula that is always true, no

matter which truth values we assign to its variables.

 Consider the proposition "I passed the exam or I did not

pass the exam," the logical form of which is

represented by the formula p ∨ ~p

 This is a tautology, as we get T in every row of its truth

table.

40

p ~p p ∨ ~p

T F T

F T T

(c) Paul Fodor (CS Stony Brook)

Contradictions

A contradiction is a formula that is always false.

 The logical form of the proposition "I passed

the exam and I did not pass the exam" is

represented by p ∧ ~p

This is a contradiction, as we get F in every row of

its truth table

41

p ~p p ∧ ~p

T F F

F T F

(c) Paul Fodor (CS Stony Brook)

Tautologies and contradictions

Tautologies and contradictions are

related
Theorem: If p is a tautology (contradiction) then

~p is a contradiction (tautology).

Example: p ∨ ~p a tautology

Is ~(p ∨ ~p) a contradiction?

~(p ∨ ~p) ≡ ~p ∧ ~~p ≡ ~p ∧ p ≡ p ∧ ~p

Yes. because ~(p ∨ ~p) ≡ p ∧ ~p and p ∧ ~p is a

contradiction.
42

(c) Paul Fodor (CS Stony Brook)

Implication (→)
 Syntax: If p and q are formulas, then p → q (read “p implies q")

is also a formula

 We call p the premise and q the conclusion of the implication.

 Semantics: If p is true and q is false, then p → q is false. In all

other cases, p → q is true.

43

(c) Paul Fodor (CS Stony Brook)

Example:

p: You get A's on all exams.

q: You get an A in this course.

p → q: If you get A's on all exams, then you

will get an A in this course.

44

Implication (→)

(c) Paul Fodor (CS Stony Brook)

 The semantics of implication is trickier than for the other

connectives

 if p and q are both true, clearly the implication p → q is true

 if p is true but q is false, clearly the implication p → q is false

 If the premise p is false no conclusion can be drawn, but

both q being true and being false are consistent, so that the

implication p → q is true in both cases

 Implication can also be expressed by other connectives, for

example, p → q is logically equivalent to ~(p ∧ ~q), which is

equivalent with ~p ∨ q

45

Implication (→)

(c) Paul Fodor (CS Stony Brook)

Example: The Case of the

Bad Defense Attorney
 Prosecutor:

"If the defendant is guilty, then he had an accomplice."

 Defense Attorney:

"That's not true!!"

 What did the defense attorney just claim?

~(p → q) ≡ ~~(p ∧ ~q) ≡ p ∧ ~q

which means that "the defendant is guilty

and he did not have an accomplice"
46

(c) Paul Fodor (CS Stony Brook)

Biconditional
 Syntax: If p and q are formulas, then p⟷ q (read “p if

and only if (iff) q") is also a formula.

 Semantics: If p and q are either both true or both false,

then p⟷q is true. Otherwise, p⟷ q is false.

47

(c) Paul Fodor (CS Stony Brook)

Example:

p: Bill will get an A.

q: Bill studies hard.

p ⟷ q : Bill will get an A if and only if Bill

studies hard.

The biconditional may be viewed as a shorthand

for a conjunction of two implications, as p ⟷ q

is logically equivalent to (p → q) ∧ (q → p)

48

Biconditional

(c) Paul Fodor (CS Stony Brook)

Necessary and Sufficient Conditions
 The phrase "necessary and sufficient conditions" appears

often in mathematics

 A proposition p is sufficient for q if p → q is a tautology.

Example: It is sufficient for a student to get A's in

CSE114, CSE215, CSE214 in order to be admitted to

become a CSE major

 A proposition p is necessary for q if q cannot be true

without it: ~p → ~q (equivalent to q → p).

Example: It is necessary for a student to have a 3.0 GPA in the

core courses to be admitted to become a CSE major.

49

(c) Paul Fodor (CS Stony Brook)

Theorem: If a proposition p is both

necessary and sufficient for q, then p

and q are logically equivalent (and vice

versa).

50

Necessary and Sufficient Conditions

(c) Paul Fodor (CS Stony Brook)

Tautologies and Logical Equivalence

Theorem: A propositional formula p is logically equivalent to q

if and only if p ⟷ q is a tautology

 Proof:

 (a) If p ⟷ q is a tautology, then p is logically equivalent to q

Why? If p ⟷ q is a tautology, then it is true for all truth

assignments. By the semantics of the biconditional, this means

that p and q agree on every row of the truth table. Hence the

two formulas are logically equivalent.

 (b) If p is logically equivalent to q, then p ⟷ q is a tautology

Why? If p and q logically equivalent, then they evaluate to the

same truth value for each truth assignment. By the semantics of

the biconditional, the formula p ⟷ q is true in all situations.

51

(c) Paul Fodor (CS Stony Brook)

Related Implications
 Implication: p → q

 If you get A's on all exams, you get an A in the course.

 Contrapositive: ~q → ~p

 If you didn't get an A in the course, then you didn't get A's

on all exams

 Note that implication is logically equivalent to the

contrapositive

52

p q p → q ~q ~p ~q → ~p

T T T F F T

T F F T F F

F T T F T T

F F T T T T

(c) Paul Fodor (CS Stony Brook)

Related Implications

 Converse: q → p

 If you get an A in the course, then you got A's on all exams.

 Inverse: ~p → ~q

 If you didn't get A's on all exams, then you didn't get an A in the

course.

 Note that converse is logically equivalent to the inverse

53

p q q → p ~p ~q ~p → ~q

T T T F F T

T F T F T T

F T F T F F

F F T T T T

(c) Paul Fodor (CS Stony Brook)

Deriving Logical Equivalences

 We can establish logical equivalence either via truth tables

OR symbolically

 Example: p ⟷ q is logically equivalent to (p → q) ∧ (q → p)

 Symbolic proofs are much like the simplifications you did in

high school algebra - trial-and-error leads to experience and

finally cunning

54

p q q ⟷ p p → q q → p (p → q) ∧ (q → p)

T T T T T T

T F F F T F

F T F T F F

F F T T T T

(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1)

≡ (q ∧ p) ∨ (q ∧ ~q) (2)

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

55

Symbolic proofs

(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2)

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

56

Symbolic proofs

(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

57

Symbolic proofs

(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4)

≡ p ∧ q (5)

58

Symbolic proofs

(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ∧ r ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4) Identity

≡ p ∧ q (5)

59

Symbolic proofs

(c) Paul Fodor (CS Stony Brook)

 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4) Identity

≡ p ∧ q (5) Commutativity of ∧

60

Symbolic proofs

(c) Paul Fodor (CS Stony Brook)

Logical Consequence
 We say that p logically implies q, or that q is a logical consequence

of p, if q is true whenever p is true.

 Example: p logically implies p ∨ q

 Note that logical consequence is a weaker condition than logical

equivalence

61

p q p ∨ q

T T T

T F T

F T T

F F F

(c) Paul Fodor (CS Stony Brook)

Logical Arguments
 An argument (or argument form) is a (finite) sequence of

statements (forms), usually written as follows:

p1

...

pn

∴ q

 We call p1,..., pn the premises (or assumptions or hypotheses)

and q the conclusion, of the argument.

 We read:

“p1, p2, ..., pn, therefore q” OR

“From premises p1, p2, ..., pn infer conclusion q”

 Argument forms are also called inference rules.
62

(c) Paul Fodor (CS Stony Brook)

 An inference rule is said to be valid, or (logically) sound,

if it is the case that, for each truth valuation, if all the

premises true, then the conclusion is also true!

Theorem: An inference rule is valid if, and only if, the

conditional p1∧p2∧... ∧pn → q is a tautology.

 An argument form consisting of two premises and a

conclusion is called a syllogism.

63

Logical Arguments

(c) Paul Fodor (CS Stony Brook)

Determining Validity or Invalidity
 Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the

premises and the conclusion.

3. A row of the truth table in which all the premises are

true is called a critical row. If there is a critical row in

which the conclusion is false, then the argument form is

invalid. If the conclusion in every critical row is true, then

the argument form is valid

64

(c) Paul Fodor (CS Stony Brook)

p →q ∨ ∼ r

q → p ∧ r

∴ p →r

Invalid argument
65

Determining Validity or Invalidity

(c) Paul Fodor (CS Stony Brook)

Modus Ponens
 Modus Ponens: p →q

“method of affirming” p

Latin ∴ q

Valid argument
66

(c) Paul Fodor (CS Stony Brook)

The following argument is valid:

If Socrates is a man, then Socrates is mortal.

Socrates is a man.

∴ Socrates is mortal.

67

Modus Ponens

(c) Paul Fodor (CS Stony Brook)

 Modus Tonens: p →q

“method of denying” ~q

Latin ∴ ~p

 Modus Tollens is valid because :

 modus ponens is valid and the fact that a conditional statement

is logically equivalent to its contrapositive, OR

 it can be established formally by using a truth table.

68

Modus Tollens

(c) Paul Fodor (CS Stony Brook)

 Example:

(1) If Zeus is human, then Zeus is mortal.

(2) Zeus is not mortal.

∴ Zeus is not human.

 An intuitive proof is proof by contradiction

 if Zeus were human, then by (1) he would be mortal.

But by (2) he is not mortal.

Hence, Zeus cannot be human.

69

Modus Tollens

(c) Paul Fodor (CS Stony Brook)

Recognizing Modus Ponens and Modus Tollens

If there are more pigeons than there are pigeonholes, then at

least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴ ?

70

(c) Paul Fodor (CS Stony Brook)

If there are more pigeons than there are pigeonholes, then at

least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴At least two pigeons roost in the same hole.

by modus ponens

71

Recognizing Modus Ponens and Modus Tollens

(c) Paul Fodor (CS Stony Brook)

If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

∴ ?

72

Recognizing Modus Ponens and Modus Tollens

(c) Paul Fodor (CS Stony Brook)

If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

∴ 870,232 is not divisible by 6.

by modus tollens

73

Recognizing Modus Ponens and Modus Tollens

(c) Paul Fodor (CS Stony Brook)

Other Rules of Inference

 Generalization:

p and q

∴ p ∨ q ∴ p ∨ q

 Example:

Anton is a junior.

∴ (more generally) Anton is a junior or Anton is a senior.

74

(c) Paul Fodor (CS Stony Brook)

 Specialization:

p ∧ q and p ∧ q

∴ p ∴ q

 Example:

Ana knows numerical analysis and

Ana knows graph algorithms.

∴ (in particular) Ana knows graph algorithms.

75

Other Rules of Inference

(c) Paul Fodor (CS Stony Brook)

 Elimination :

p ∨ q and p ∨ q

~q ~p

∴ p ∴ q

 If we have only two possibilities and we can rule one out, the

other one must be the case

 Example:

x − 3 =0 or x + 2 = 0

x + 2  0.

∴ x − 3 =0.

76

Other Rules of Inference

(c) Paul Fodor (CS Stony Brook)

 Transitivity :

p → q

q → r

∴ p → r

 Example:

If 18,486 is divisible by 18, then 18,486 is divisible by 9.

If 18,486 is divisible by 9, then the sum of the digits of

18,486 is divisible by 9.

∴ If 18,486 is divisible by 18, then the sum of the digits

of 18,486 is divisible by 9.

77

Other Rules of Inference

(c) Paul Fodor (CS Stony Brook)

Proof Techniques

Proof by Contradiction:
~p → c, where c is a contradiction

∴ p

 The usual way to derive a conditional ~p → c is to assume ~p

and then derive c (i.e., a contradiction).

 Thus, if one can derive a contradiction from ~p, then one may

conclude that p is true.

78

(c) Paul Fodor (CS Stony Brook)

The Logic of Quantified Statements
All men are mortal.

Socrates is a man.

∴ Socrates is mortal.

 Propositional calculus: analysis of ordinary compound statements

 Predicate calculus or The Logic of Quantified Statements:

symbolic analysis of predicates and quantified statements

(∀x, ∃x)

 Example: P is a predicate symbol

P stands for “is a student at SBU”

P(x) stands for “x is a student at SBU”

x is a predicate variable
79

(c) Paul Fodor (CS Stony Brook)

 A predicate is a sentence that contains a finite number of

variables and becomes a statement (or ground predicate)

when specific values are substituted for the variables.

 The domain of a predicate variable is the set of all values that

may be substituted in place of the variable.

 Example:

P(x) is the predicate “x2 > x” , x has as a domain the set R of all

real numbers

P(2): 22 > 2. True.

P(1/2): (1/2)2 > 1/2. False.

80

The Logic of Quantified Statements

(c) Paul Fodor (CS Stony Brook)

Truth Set of a Predicate
 If P(x) is a predicate and x has domain D, the truth

set of P(x), the truth set of P, {x ∈ D | P(x)}, is the

set of all elements of D that make P(x) true when

they are substituted for x.

Example:

Q(n) is the predicate for “n is a factor of 8.”

if the domain of n is the set Z of all integers

The truth set is {1, 2, 4, 8,−1,−2,−4,−8}

81

(c) Paul Fodor (CS Stony Brook)

The Universal Quantifier: ∀
 Quantifiers are words that refer to quantities (“some” or

“all”) and tell for how many elements a given predicate

is true.

 Universal quantifier: ∀ “for all”

Example:

∀ human beings x, x is mortal.

“All human beings are mortal”

 If H is the set of all human beings:

∀x ∈ H, x is mortal

82

(c) Paul Fodor (CS Stony Brook)

Universal statements
 A universal statement is a statement of the form

“∀x ∈ D, Q(x)” where Q(x) is a predicate and D is the domain of x.

∀x ∈ D, Q(x) is true if, and only if, Q(x) is true for every x in D

∀x ∈ D, Q(x) is false if, and only if, Q(x) is false for at least one

x in D (the value for x is a counterexample)

 Example:

∀x ∈ D, x2 ≥ x for D = {1, 2, 3, 4, 5}

12 ≥ 1, 22 ≥ 2, 32 ≥ 3, 42 ≥ 4, 52 ≥ 5

 Hence “∀x ∈ D, x2 ≥ x” is true.

83

(c) Paul Fodor (CS Stony Brook)

The Existential Quantifier: ∃
 Existential quantifier: ∃ “there exists”

 Example:

“There is a student in the course”

∃ a person p such that p is a student in the course

∃p ∈ P such that p is a student in the course

where P is the set of all people

84

(c) Paul Fodor (CS Stony Brook)

 An existential statement is a statement of the form

“∃x ∈ D such that Q(x)” where Q(x) is a predicate and D the domain of x

 ∃x ∈ D s.t. Q(x) is true if, and only if, Q(x) is true for at least one x in D

 ∃x ∈ D s.t. Q(x) is false if, and only if, Q(x) is false for all x in D

 Example:

 ∃m ∈ Z such that m2 = m

It is true. Example: 12 = 1

Notation: such that = s.t.

85

The Existential Quantifier: ∃

(c) Paul Fodor (CS Stony Brook)

Universal Conditional Statements

Universal conditional statement:

∀x, if P(x) then Q(x)

Example:

If a real number is greater than 2 then its square is

greater than 4.

∀x ∈ R, if x > 2 then x2 > 4

86

(c) Paul Fodor (CS Stony Brook)

Equivalent Forms of Universal and Existential Statements

 ∀x ∈ U, if P(x) then Q(x) can be rewritten in the form

∀x ∈ D, Q(x) by narrowing U to be the domain D

consisting of all values of the variable x that make P(x)

true.

Example: ∀x, if x is a square then x is a rectangle

∀ squares x, x is a rectangle.

 ∃x such that P(x) and Q(x) can be rewritten in the form

∃x ∈ D such that Q(x) where D consists of all values of the

variable x that make P(x) true

87

(c) Paul Fodor (CS Stony Brook)

Implicit Quantification
 P(x) ⇒ Q (x) means that every element in the

truth set of P(x) is in the truth set of Q(x), or,

equivalently, ∀x, P(x) → Q(x)

 P(x)⇔ Q(x) means that P(x) and Q(x) have

identical truth sets, or, equivalently, ∀x,

P(x)⟷Q(x).

88

(c) Paul Fodor (CS Stony Brook)

 Negation of a Universal Statement:

The negation of a statement of the form ∀x ∈ D, Q(x)

is logically equivalent to a statement of the form

∃x ∈ D, ∼Q(x):

∼(∀x ∈ D, Q(x)) ≡ ∃x ∈ D,∼Q(x)
 Example:

 “All mathematicians wear glasses”

 Its negation is: “There is at least one mathematician who does not

wear glasses”

 Its negation is NOT “No mathematicians wear glasses”

89

Negations of Quantified Statements

(c) Paul Fodor (CS Stony Brook)

 Negation of an Existential Statement

The negation of a statement of the form ∃x ∈ D, Q(x)

is logically equivalent to a statement of the form ∀x ∈ D,∼Q(x):

∼(∃x ∈ D, Q(x)) ≡ ∀x ∈ D,∼Q(x)
 Example:

 “Some snowflakes are the same.”

 Its negation is: “All snowflakes are different.”

90

Negations of Quantified Statements

(c) Paul Fodor (CS Stony Brook)

 More Examples:

 ~(∀ primes p, p is odd) ≡ ∃ a prime p such that p is not odd

 ~(∃ a triangle T such that the sum of the angles ofT equals 200◦) ≡

∀ triangles T, the sum of the angles ofT does not equal 200◦

 ~(∀ politicians x, x is not honest) ≡ ∃ a politician x such that x is

honest (by double negation)

 ~(∀ computer programs p, p is finite) ≡ ∃ a computer program p that

is not finite

 ~(∃ a computer hacker c, c is over 40) ≡ ∀ computer hacker c, c is 40

or under

 ~(∃ an integer n between 1 and 37 such that 1,357 is divisible by n)

≡ ∀ integers n between 1 and 37, 1,357 is not divisible by n

91

Negations of Quantified Statements

(c) Paul Fodor (CS Stony Brook)

Negations of Universal Conditional Statements

∼(∀x, P(x) → Q(x)) ≡ ∃x such that P(x) ∧ ∼Q(x)
Proof:

∼(∀x, P(x) → Q(x)) ≡ ∃x such that ∼(P(x) → Q(x))

and

∼(P(x) → Q(x)) ≡ ∼(~P(x) ∨ Q(x)) ≡ ∼~P(x) ∧ ~Q(x))

≡ P(x) ∧ ∼Q(x)
 Examples:

 ~(∀ people p, if p is blond then p has blue eyes) ≡

∃ a person p such that p is blond and p does not have blue eyes

 ~(If a computer program has more than 100,000 lines, then it contains a bug)

≡ There is at least one computer program that has more than 100,000 lines

and does not contain a bug
92

(c) Paul Fodor (CS Stony Brook)

The Relation among ∀, ∃, ∧, and ∨
D = {x1, x2, . . . , xn} and ∀x ∈ D, Q(x)

≡ Q(x1) ∧ Q (x2) ∧ · · · ∧ Q (xn)

D = {x1, x2, . . . , xn} and ∃x ∈ D such that Q(x)

≡ Q(x1) ∨ Q(x2) ∨ · · · ∨ Q(xn)

93

(c) Paul Fodor (CS Stony Brook)

Vacuous Truth of Universal Statements

94

∀x in D, if P(x) then Q(x) is vacuously true or true by default if,

and only if, P(x) is false for every x in D

All the balls in the bowl are blue?

True

(c) Paul Fodor (CS Stony Brook)

Variants of Universal Conditional Statements

 Universal conditional statement: ∀x ∈ D, if P(x) then Q(x)

 Contrapositive: ∀x ∈ D, if ∼Q(x) then ∼P(x)

∀x ∈ D, if P(x) then Q(x) ≡ ∀x ∈ D, if ∼Q(x) then ∼P(x)

Proof: for any x in D by the logical equivalence between statement and its

contrapositive

 Converse: ∀x ∈ D, if Q(x) then P(x).

 Inverse: ∀x ∈ D, if ∼P(x) then ∼Q(x).

 Example:

∀x ∈ R, if x > 2 then x2 > 4

Contrapositive: ∀x ∈ R, if x2 ≤ 4 then x ≤ 2

Converse: ∀x ∈ R, if x2 > 4 then x > 2

Inverse:∀x ∈ R, if x ≤ 2 then x2 ≤ 4

95

(c) Paul Fodor (CS Stony Brook)

Necessary and Sufficient Conditions

 Necessary condition:

“∀x, r (x) is a necessary condition for s(x)” means

“∀x, if ∼r (x) then ∼s(x)” ≡ “∀x, if s(x) then r(x)” (*)

(*)(by contrapositive and double negation)

 Sufficient condition:

“∀x, r (x) is a sufficient condition for s(x)” means

“∀x, if r (x) then s(x)”

96

(c) Paul Fodor (CS Stony Brook)

Necessary and Sufficient Conditions

 Examples:

Squareness is a sufficient condition for

rectangularity;

Formal statement:

∀x, if x is a square, then x is a rectangle

Being at least 35 years old is a necessary condition

for being President of the United States

∀ people x, if x is younger than 35, then x cannot be

President of the United States ≡

∀ people x, if x is President of the United States then x

is at least 35 years old (by contrapositive)
97

(c) Paul Fodor (CS Stony Brook)

Statements with Multiple Quantifiers
 Example:

“There is a person supervising every detail of the production

process”

 What is the meaning?

“There is one single person who supervises all the details of

the production process”?

OR

“For any particular production detail, there is a person who

supervises that detail, but there might be different

supervisors for different details”?

NATURAL LANGUAGE IS AMBIGUOUS

LOGIC IS CLEAR

98

(c) Paul Fodor (CS Stony Brook)

 In Logic: Quantifiers are performed in the order in

which the quantifiers occur:

Examples:

∀x in set D, ∃y in set E such that x and y satisfy

property P(x, y)

is different from:

∃y in set E such that ∀x in set D, x and y satisfy

property P(x, y)

99

Statements with Multiple Quantifiers

(c) Paul Fodor (CS Stony Brook)

Interpreting Statements with Two Different Quantifiers

 Explanations:

 ∀x in D, ∃y in E such that P(x, y)

 for whatever element x in D you must find an

element y in E that “works” for that particular x

 ∃y in E such that ∀x in D, P(x, y)

 find one particular y in E that will “work” no matter

what x in D anyone might choose

100

(c) Paul Fodor (CS Stony Brook)

 ∃ an item I such that ∀ students S, S chose I .

 ∃ a student S such that ∀ stations Z, ∃ an item I in Z such

that S chose I

 ∀ students S and ∀ stations Z, ∃ an item I in Z such that S

chose I .
101

Interpreting Statements with Two Different Quantifiers

(c) Paul Fodor (CS Stony Brook)

 ∃ an item I such that ∀ students S, S chose I . TRUE

 ∃ a student S such that ∀ stations Z, ∃ an item I in Z such

that S chose I TRUE

 ∀ students S and ∀ stations Z, ∃ an item I in Z such that S

chose I . FALSE
102

Interpreting Statements with Two Different Quantifiers

(c) Paul Fodor (CS Stony Brook)

Tarski’s World is a good world to Formalizing Logic Statements

 Blocks of various sizes, shapes, and colors located on a grid

 Triangle(x) means “x is a triangle”

 Circle(x) means “x is a circle”

 Square(x) means “x is a square”

 Blue(x) means “x is blue”

 Gray(x) means “x is gray”

 Black(x) means “x is black”

 RightOf(x, y) means “x is to the right of y”

 Above(x, y) means “x is above y”

 SameColorAs(x, y) means “x has the same color as y”

 x = y denotes the predicate “x is equal/same to y”

103

(c) Paul Fodor (CS Stony Brook)

Tarski’s World

∀t, Triangle(t) →Blue(t). TRUE

∀x, Blue(x) →Triangle(x). FALSE

∃y such that Square(y)∧ RightOf(d, y). TRUE

∃z such that Square(z)∧ Gray(z). FALSE
104

(c) Paul Fodor (CS Stony Brook)

Tarski’s World

∀t, Triangle(t) →Blue(t).

∀x, Blue(x) →Triangle(x).

∃y such that Square(y)∧ RightOf(d, y).

∃z such that Square(z)∧ Gray(z).
105

(c) Paul Fodor (CS Stony Brook)

Statements with Multiple Quantifiers in Tarski’s World

 For all triangles x, there is a square y such that x and y have the same color

TRUE

106

∀∃

(c) Paul Fodor (CS Stony Brook)

Statements with Multiple Quantifiers in Tarski’s World

 There is a square y such that, for all triangles x, x and y have the same color

FALSE

there is no such square

107

∃∀

(c) Paul Fodor (CS Stony Brook)

Quantifier Order in Tarski’s World

 For every square x there is a triangle y such that x and y have different colors

TRUE

 There exists a triangle y such that for every square x, x and y have different

colors

FALSE

108

(c) Paul Fodor (CS Stony Brook)

Statements with Multiple Quantifiers in Tarski’s World

 There is a triangle x such that for all circles y, x is to the right of y

TRUE

109

∃∀

How to

evaluate

them?

(c) Paul Fodor (CS Stony Brook)

Negations of Multiply-Quantified Statements

 Apply negation to quantified statements from left to

right:

∼(∀x in D, ∃y in E such that P(x, y))

≡ ∃x in D such that ∼(∃y in E such that P(x, y))

≡ ∃x in D such that ∀y in E,∼P(x, y).

∼(∃x in D such that ∀y in E, P(x, y))

≡ ∀x in D,∼(∀y in E, P(x, y))

≡ ∀x in D, ∃y in E such that ∼P(x, y).

110

(c) Paul Fodor (CS Stony Brook)

Negating Statements in Tarski’s World

 For all squares x, there is a circle y such that x and y have the same color

Negation:

∃ a square x such that ∼(∃ a circle y such that x and y have the same color)

≡ ∃ a square x such that ∀ circles y, x and y do not have the same color

TRUE: Square e is black and no circle is black.

111

(c) Paul Fodor (CS Stony Brook)

Negating Statements in Tarski’s World

 There is a triangle x such that for all squares y, x is to the right of y

Negation:

∀ triangles x,∼ (∀ squares y, x is to the right of y)

≡ ∀ triangles x, ∃ a square y such that x is not to the right of y

TRUE

112

(c) Paul Fodor (CS Stony Brook)

Formalizing Statements in Tarski’s World

 For all circles x, x is above f

∀x(Circle(x) →Above(x, f))

 Negation:

∼(∀x(Circle(x) → Above(x, f)))

≡ ∃x ∼ (Circle(x) → Above(x, f))

≡ ∃x(Circle(x) ∧ ∼Above(x, f))

113

(c) Paul Fodor (CS Stony Brook)

Formalizing Statements in Tarski’s World

 There is a square x such that x is black

∃x(Square(x) ∧ Black(x))

 Negation:

∼(∃x(Square(x) ∧ Black(x)))

≡ ∀x ∼ (Square(x) ∧ Black(x))

≡ ∀x(∼Square(x)∨ ∼Black(x))

114

(c) Paul Fodor (CS Stony Brook)

Formalizing Statements in Tarski’s World

 For all circles x, there is a square y

such that x and y have the same color

∀x(Circle(x) → ∃y(Square(y) ∧

SameColor(x, y)))

 Negation:

∼(∀x(Circle(x)→ ∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x ∼ (Circle(x) → ∃y(Square(y) ∧ SameColor(x, y)))

≡ ∃x(Circle(x) ∧ ∼(∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼Square(y) ∨ ∼SameColor(x, y)))

115

(c) Paul Fodor (CS Stony Brook)

Formalizing Statements in Tarski’s World

 There is a square x such that for all

triangles y, x is to right of y

∃x(Square(x) ∧ ∀y(Triangle(y) →

RightOf(x, y)))

 Negation:

∼(∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x ∼ (Square(x) ∧ ∀y(Triangle(x) → RightOf(x, y)))

≡ ∀x(∼Square(x) ∨ ∼(∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(∼(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(Triangle(y)∧ ∼RightOf(x, y)))

116

(c) Paul Fodor (CS Stony Brook)

Validity of Arguments with Quantified Statements

An argument form is valid, if and only if, for

any particular predicates substituted for the

predicate symbols in the premises if the

resulting premise statements are all true,

then the conclusion is also true

Logical arguments transfer from the

propositional logic to the predicative logic:

modus ponens, modus tollens, generalization,

specialization
117

(c) Paul Fodor (CS Stony Brook)

Universal Transitivity
Formal Version Informal Version

∀x P(x) → Q(x). Any x that makes P(x) true makes Q(x) true.

∀xQ(x) → R(x). Any x that makes Q(x) true makes R(x) true.

∴ ∀x P(x) → R(x). ∴Any x that makes P(x) true makes R(x) true.

 Example from Tarski’s World:

∀x, if x is a triangle, then x is blue.

∀x, if x is blue, then x is to the right of all the squares.

∴ ∀x, if x is a triangle, then x is to the right of all the squares

118

(c) Paul Fodor (CS Stony Brook)

Logic and Programming
 Logic forms a formal foundation for describing

relationships between entities

 In many cases, we can infer interesting consequences from

these relationships

 When the inference procedure is simple enough, the

descriptions of the relationships can be seen as programs

 The same set of relationships can be described in many

ways: each resulting in a different "program"

 Logic Programming: a framework for describing

relationships such that inferences can be done efficiently

119

(c) Paul Fodor (CS Stony Brook)

Programming Languages
 Languages:

 Imperative = Turing machines

 Functional Programming = lambda calculus

 Logical Programming = first-order predicate calculus

 Prolog (Programming in logic) and its variants make up the

most commonly used Logical programming languages.

 One variant is XSB → developed at Stony Brook

 Other Prolog systems: SWI Prolog, Sicstus, Yap, Ciao, GNU

Prolog, etc.

120

(c) Paul Fodor (CS Stony Brook)

Association for Logic Programming
 http://www.cs.nmsu.edu/ALP/

 the current state of logic programming technology

 Many other groups (start from news://comp.lang.prolog)

 XSB: http://xsb.sourceforge.net

 system with SLG-resolution, HiLog syntax, and

unification factoring

 SWI Prolog: http://www.swi-prolog.org

 Complete, ISO and Edinburgh standard, common

optimizations, GC including atoms. Portable graphics,

threads, constraints, comprehensive libraries for (semantic)

web programming, Unicode, source-level debugger

 Yap Prolog: http://www.ncc.up.pt/~vsc/Yap/
121

http://www.cs.nmsu.edu/ALP/
news://comp.lang.prolog/
http://xsb.sourceforge.net/
http://www.swi-prolog.org/
http://www.ncc.up.pt/~vsc/Yap/

(c) Paul Fodor (CS Stony Brook)

Extensions of Prolog
Flexibility of reasoning is one of the key property

of intelligence.

Commonsense inference is defeasible in its nature:

we are all capable of drawing conclusions, acting on

them to derive more conclusions, and then retracting

them if necessary in the face of new evidence or

resulting inconsistency.

 If computer programs are to act intelligently, they will need

to be similarly flexible.

122

(c) Paul Fodor (CS Stony Brook)

Flexible Reasoning Examples
Reiter, 1987: Consider a statement Birds fly. Tweety,

we are told, is a bird. From this, and the fact that

birds fly, we conclude that: Tweety can fly.

This is defeasible:Tweety may be an ostrich, a

penguin, a bird with a broken wing, or a bird whose

feet have been set in concrete.

Non-monotonic Inference: on learning a new fact

(that Tweety has a broken wing), we are forced to

retract our conclusion (that he could fly).

123

(c) Paul Fodor (CS Stony Brook)

Non-monotonic Logics
Non-monotonic Logic is a logic in which the

introduction of a new information (axioms) can

invalidate old theorems.

124

(c) Paul Fodor (CS Stony Brook)

Default reasoning
Default reasoning (logics) means drawing of

plausible inferences from less-then-conclusive

evidence in the absence of information to the

contrary.

Non-monotonic reasoning is an example of the

default reasoning.

125

(c) Paul Fodor (CS Stony Brook)

Auto-epistemic reasoning
Moore, 1983: Consider my reason for believing that I

do not have an older brother. It is surely not that one of

my parents once casually remarked, You know, you don't

have any older brothers, nor have I pieced it together by

carefully sifting other evidence.

 I simply believe that if I did have an older brother I would

know about it; therefore, since I don't know of any older

brothers of mine, I must not have any.

Closed-world vs. open-world assumption

126

(c) Paul Fodor (CS Stony Brook)

 "The brother" reasoning is not a form of default

reasoning nor non-monotonic. It is reasoning about

one's own knowledge or belief.

Hence it is called an auto-epistemic reasoning.

Auto-epistemic reasoning models the reasoning of

an ideally rational agent reflecting upon his beliefs or

knowledge.

Auto-epistemic Logics are logics which describe

the reasoning of an ideally rational agent reflecting

upon his beliefs.
127

Auto-epistemic reasoning

(c) Paul Fodor (CS Stony Brook)

Missionaries and Cannibals
McCarthy, 1985 revisits the problem: Three

missionaries and three cannibals come to a river. A

rowboat that seats two is available. If the cannibals

ever outnumber the missionaries on either bank of

the river, the missionaries will be eaten. How shall

they cross the river?

Traditionally the puzzler is expected to devise a

strategy of rowing the boat back and forth that gets

them all across and avoids the disaster.

128

(c) Paul Fodor (CS Stony Brook)

Traditional Solution: A state is a triple comprising

the number of missionaries, cannibals and boats on

the starting bank of the river:

The initial state is 331, the desired state is 000.

A solution is given by the sequence: 331, 220,321,

300,311, 110, 221, 020, 031, 010, 021, 000.

129

Missionaries and Cannibals

(c) Paul Fodor (CS Stony Brook)

Imagine now giving someone a problem, and

after he puzzles for a while, he suggests

going upstream half a mile and crossing on a

bridge.

What a bridge? you say. No bridge is

mentioned in the statement of the problem.

He replies: Well, they don't say the isn't a

bridge.

Open world assumption!
130

Missionaries and Cannibals

(c) Paul Fodor (CS Stony Brook)

So you modify the problem to exclude the

bridges and pose it again.

He proposes a helicopter, and after you exclude

that, he proposes a winged horse or that the

others hang onto the outside of the boat while

two row.

He also attacks your solution on the grounds that

the boat might have a leak or lack oars.

131

Missionaries and Cannibals

(c) Paul Fodor (CS Stony Brook)

Finally, you must look for a mode of

reasoning that will settle his hash once and

for all (Closed world assumption!)
McCarthy proposed circumscription

 He argued that it is a part of common knowledge that a boat can be used

to cross the river unless there is something with it or something else

prevents using it.

 If our facts do not require that there be something that prevents crossing

the river, circumscription will generate the conjecture that there isn't.

 Lifschits has shown in 1987 that in some special cases the

circumscription is equivalent to a first order sentence that can

be added to the predicate logic program to obtain closed world
132

Missionaries and Cannibals

(c) Paul Fodor (CS Stony Brook)

Logic Programming encompasses many

types of logic:

Horn clauses

Non-monotonic

Constraint solving

Satisfiability checking

Knowledge Representation-Object-oriented

Inductive logic programming

Transaction Logic, Probabilistic, etc.
133

Logic Programming

https://en.wikipedia.org/

wiki/Logic_programming

https://en.wikipedia.org/wiki/Logic_programming

(c) Paul Fodor (CS Stony Brook)

 Deductive databases, Model checking, Declarative

networking, Configuration systems, etc.

 Where? International Space Station, IBM Watson, US

Border Control, Windows user access, etc.

 Conferences: International Conference on Logic

Programming (ICLP), International Conference on

Logic Programming and Non-monotonic Reasoning

(LPNMR), International Web Rule Symposium

(RuleML) (in 2016 it was in Stony

Brook), International Conference on Web Reasoning

and Rule Systems (RR), etc.
134

Applications

(c) Paul Fodor (CS Stony Brook)

Knowledge Systems Lab, Stony Brook Univ.
Paul Fodor, Michael Kifer, IV Ramakrishnan, CR Ramakrishnan,

David S. Warren, Annie Liu

 Logic Programming and Deductive databases

 XSB Prolog (30+ years of research at Stony Brook)

 http://xsb.sourceforge.net and Flora-2, LMC, ETALIS, Ergo, …

 Knowledge Representation & Processing (decision support)

 Research Interests and Projects:
 Logic programming: Transaction Logic, F-logic, HiLog, Defeasible

Argumentation, Paraconsistency, etc.

 Knowledge representation

 NLP, NLU : IBM Watson Question Analysis with Prolog, Project Halo
(Vulcan Inc.) SILK

 Rule systems benchmarking: OpenRuleBench

 Stream processing: ETALIS/EP-SPARQL

 Access control policies and trust management languages

 Semantic Web

 Virtual expert systems , …
Paul Fodor, Stony Brook University

http://xsb.sourceforge.net/

(c) Paul Fodor (CS Stony Brook)

What is Tabling?

What is Datalog?

Socrates is a man.

All men are mortal.

Is Socrates mortal?

man(socrates).

mortal(X) :- man(X).

?- mortal(X).

Yes: X=socrates

Prolog

136

 Prolog has goal directed top-down resolution

 The not (\+) operator is a closed-world negation as failure: if
no proof can be found for the fact, then the negative goal succeeds.

 Example: illegal(X) :- \+ legal(X).

 Adding a fact that something is legal destroys an argument that it is illegal.

 Prolog's "Yes" means "I can prove it“, while Prolog's "No" means "I can't prove it"

FOL:

∀x, man(x)→ mortal(x).

(c) Paul Fodor (CS Stony Brook)

 Prolog pitfalls:
 redundant computations
 non-termination of otherwise correct programs

path (A , B): - path (A , C), edge (C , B).

path (A , B): - edge (A , B).

 not OO, not defeasible, closed world assumption, …

 Goal: Realize the vision of logic-based knowledge representation with
frames, defeasibility, meta, and side-effects, event streams, ...
 Tabling (efficiency, termination, Datalog and well-founded

semantics),
 F-logic (frames, path expressions and reification),
 Logic programming with defaults and argumentation theories,
 HiLog,
 Transaction Logic (and tabling for WFS),
 Event Condition Action rules and Complex Event Processing

(ETALIS) (complex events, aggregates, consumption policies, time
and count windows)

Logic Programming Extensions at Stony Brook

137

(c) Paul Fodor (CS Stony Brook)

Suspend computation when same goal is called again and Consume

answers of producers. XSB is sound and complete for LP well-

founded semantics.

Logic Programming Extensions at Stony Brook

138

(c) Paul Fodor (CS Stony Brook)

Logic Programming Extensions at Stony Brook:

F-Logic (Flora2)

Object description:

John[name -> ‘John Doe’, phones -> {6313214567, 6313214566},
children -> {Bob, Mary}]

Mary[name -> ’Mary Doe’, phones -> {2121234567, 2121237645},

children -> {Anne, Alice}]

Structure can be nested:

Sally[spouse -> John[address -> ‘123 Main St.’]]

Methods:?P[ageAsOf(?Year) -> ?Age] :-

?P:Person, ?P[born -> ?B], ?Age is ?Year–?B.

Type signatures: Person[| born => \integer,

ageAsOf(\integer) => \integer |].

Attribute

Attribute

Object Id

139

(c) Paul Fodor (CS Stony Brook)

stack(0,?X).

stack(?N,?X) :- ?N>0  move(?Y,?X)  stack(?N-1,?Y).

move(?X,?Y) :- pickup(?X)  putdown(?X,?Y).

pickup(?X) :- clear(?X)  on(?X,?Y)  t_delete{on(?X,?Y)}  t_insert{clear(?Y)}.

putdown(?X,?Y) :- wider(?Y,?X)  clear(?Y)  t_insert{on(?X,?Y)}  t_delete{clear(?Y)}.

 Can express not only execution, but all kinds of sophisticated constraints:

?– stack(10, block43)

/\ ?X,?Y (move(?X,?Y)  color(?X,red)) => ( ?Z color(?Z,blue)  move(?Z,?X))

Whenever a red block is stacked, the next block to be stacked must be blue

 Planning with Heuristics: Specifying STRIPS in Transaction Logic

achieve_unstack(?X,?Y) :-

(achieve_clear(?X) * achieve_on(?X,?Y) * achieve_handempty)

 unstack(?X,?Y).

 Tabling to stop infinite computation paths and defeasibility (ICLP2009)

Logic Programming Extensions at Stony Brook:

Transaction Logic

140

(c) Paul Fodor (CS Stony Brook)

 Common sense reasoning: rules can be true by default but may be defeated (policies,
regulations, law, inductive/scientific learning, natural language understanding): Logic
Programming with Defaults and Argumentation theories LPDA (ICLP2009) and
Transaction Logic LPDA (ICLP2011)

Argumentation theory:

Logic Programming Extensions at Stony Brook:

Defeasibility

141

(c) Paul Fodor (CS Stony Brook)

Natural Language Processing with

Prolog in the IBM Watson System

 Pattern Matching: question to candidate passages
 Coding Pattern Matching Rules Directly in a Procedural Language Like Java is

Not Convenient
 Prolog: well-established standard; straightforward syntax; very expressive;

development, debugging, and profiling tools exist; efficient, well-understood
implementations, proven to be effective for pattern-matching tasks; natural fit
for integration with UIMA (IBM R&D Journal 2012)

 We implemented Prolog rule sets for:
 Focus Detection
 Lexical Answer Type Detection
 Shallow and Deep Relation Extraction
 Question Classification

 Execution is Efficient to Compete At Jeopardy!
 A Question is analyzed in a fraction of a second

 Open NLP tooling at Stony Brook University
http://ewl.cewit.stonybrook.edu/sbnlp
 + Education: Stony Brook University courses:
Computers playing Jeopardy! (2011 - 2016)

142

http://ewl.cewit.stonybrook.edu/sbnlp

(c) Paul Fodor (CS Stony Brook)

Watson Question Analysis

Question Answer

CAS CAS

Parse,

PAS, Focus,

Answer Type,

Relations,

…

CAS

CAS

(c) Paul Fodor (CS Stony Brook)

 The focus is the “node“ that refers to the unspecified answer.
 Pattern: WHAT IS X ...?

“What is the democratic party symbol?”
“What is the longest river in the world?”

focus(QuestionRoot, [Pred]):-

getDescendantNodes(QuestionRoot,Verb),

lemmaForm(Verb,"be"),

subj(Verb,Subj),

lemmaForm(Subj,SubjString),

whatWord(SubjString), % "what","which“ ("this","these“)

pred(Verb,Pred),!.

 Pattern: “How much/many”:
“How many hexagons are on a soccer ball?”
“How much does the capitol dome weigh?”
“How much folic acid should an expectant mother get daily?”

focus(QuestionRoot, [Determiner]):-

getDescendantNodes(QuestionRoot,Determiner),

lemmaForm(Determiner,DeterminerString),

howMuchMany(DeterminerString),!. % "how much/many", "this much"

Focus Detection Rules

144

(c) Paul Fodor (CS Stony Brook)

Answer-type Computation Rules
 Time rule (e.g. when): Pattern: When VERB OBJ; OBJ VERB then

Example: When was the US capitol built? answerType => [“com.ibm.hutt.Year“]

answerType(_QuestionRoot,FocusList,timeAnswerType,ATList):-

member(Mod,FocusList),

lemmaForm(Mod,ModString),

wh_time(ModString), % "when", "then“

whadv(Verb,Mod),

lemmaForm(Verb,VerbString),

timeTableLookup(VerbString,ATList),!.

 “How … VERB” rule: Pattern: How … VERB?

Example: “How did Virginia Woolf die?” answerType => ["com.ibm.hutt.Disease",

"com.ibm.hutt.MannerOfKilling", "com.ibm.hutt.TypeOfInjury"]

answerType(_QuestionRoot,FocusList,howVerb1,ATList):-

member(Mod,FocusList),

lemmaForm(Mod,"how"),

whadv(Verb,Mod),

lemmaForm(Verb,VerbString),

howVerbTableLookup(VerbString,ATList), !.145

(c) Paul Fodor (CS Stony Brook)

Focus lexicalization (lexical chains using Prolog WordNet followed by a mapping

to our taxonomy)

Table lookup for the verb:

Table lookup for the focus:

Table lookup for the focus (noun) + the verb:

Answer-type Computation Rules

Question QParse 2 AnswerType

What American revolutionary general turned over
West Point to the British?

[com.ibm.hutt.MilitaryLeader]

Question QParse 2 AnswerType

How did Jimi Hendrix die? [com.ibm.hutt.Disease com.ibm.hutt.MannerOfKilling
com.ibm.hutt.TypeOfInjury]

Question QParse 2 AnswerType

How far is it from the pitcher's mound to home
plate?

[com.ibm.hutt.Length]

When was Lyndon B Johnson president? [com.ibm.hutt.Year]

Question QParse 2 AnswerType

What instrument measures radioactivity? [com.ibm.hutt.Tool]

What instrument did Louis Armstrong play? [com.ibm.hutt.MusicalInstrument]

146

(c) Paul Fodor (CS Stony Brook)

 Cascading rules in order of generality

 first rule that fires returns the most specific answer-type for the question

Look at the focus + verb:

Look at the focus + noun:

Look only at the focus:

Question QParse 2 AnswerType

How much did Marilyn Monroe weigh? [com.ibm.hutt.Weight]

How much did the first Barbie cost? [com.ibm.hutt.Money]

Question QParse 2 AnswerType

How many Earth days does it take for Mars to orbit the sun? [com.ibm.hutt.Duration]

How many people visited Disneyland in 1999? [com.ibm.hutt.Population]

Question QParse 2 AnswerType

How many moons does Venus have? [com.ibm.hutt.WholeNumber]

How much calcium is in broccoli? [com.ibm.hutt.Number]

Answer-type Computation Rules

Priority decreases

down the chain

(c) Paul Fodor (CS Stony Brook)

Relation Detection Rules

148

authorOf(Author,Composition) :-

authorVerb(Verb),

subj(Verb,Author),

validAuthor(Author),

obj(Verb,Composition),

validComposition(Composition).

authorVerb(Verb) :-

partOfSpeech(Verb,verb),

lemma(Verb,VerbLemma),

member(VerbLemma, ["write","publish",...].

authorOf(Author,Composition) :-

validComposition(Composition),

argument(Composition,Preposition),

lemma(Preposition, "by"),

objprep(Preposition,Author),

validAuthor(Author).

sameAs(X,Z) :-

authorOf(X,Y),

authorOf(Z,Y).

authorOf

authorOf

sameAs

(c) Paul Fodor (CS Stony Brook)

ETALIS/ EP-SPARQL Complex

Event and Stream Processing

 Data-driven continuous complex event processing:

 Event filtering, enrichment, projection, translation, and multiplication

 Declarative semantics

 Combines detection of complex events and reasoning over states

 Sliding windows (time and count-based)

 Aggregation over events (count, avg, sum, min, max, user-defined
aggregates)

 Processing of out-of-order events

 Visual development for sequential and aggregative patterns

 Open source: http://code.google.com/p/etalis

 Uses: stock market, health applications, transit applications, NLP
streaming applications (Twitter posts analysis)

 The Ford OpenXC Challenge: map as weighted graph and update road
weights from traffic events

149

http://code.google.com/p/etalis

(c) Paul Fodor (CS Stony Brook)

“The Fast Flower Delivery Use Case”, accompanying the book

“Event Processing In Action”, by Opher Etzion and Peter Niblett,

Manning Publications
% Phase 1: Bid Phase

% Multiplier: multiply the event "delivery_request_enriched" for each driver

delivery_request_enriched_multiplied(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime,

MinRank)<-

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates,

DeliveryTime,MinRank) event_multiply driver_record(DriverId,_Ranking).

% gps_location_translated/3

gps_location_translated(DriverId,Rank,Region)<-

gps_location(DriverId,coordinates(SNHemisphere,Latitude,EWHemisphere,Longitude)) where

(driver_record(DriverId,Rank),

gps_to_region(coordinates(SNHemisphere,Latitude, EWHemisphere,Longitude),Region)).

% bid_request/5

bid_request(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime)<-

delivery_request_enriched_multiplied(DeliveryRequestId,DriverId, StoreId,ToCoordinates,

DeliveryTime, MinRank) and

gps_location_translated(DriverId,Rank,Region)

where MinRank <= Rank, gps_to_region(ToCoordinates,Region).

% Phase 2: Assignment Phase

startAssignment(DeliveryRequestId,StoreId,ToCoordinates, DeliveryTime) <-

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates, DeliveryTime,_MinRank)

where trigger(start_assignment_time(Time)).

assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,DriverId,ScheduledPickupTime)<-

startAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) and

min(ScheduledPickupTime,

delivery_bid(DeliveryRequestId,DriverId,CurrentCoordinates, ScheduledPickupTime)).
150

(c) Paul Fodor (CS Stony Brook)

OpenRuleBench: Analysis of the

Performance of Rule Engines
 Performance tests: database tests (joins, indexing, inference), updates vs. querying, database

recursion, default negation in the body, real-data tests (Mondial, DBLP, Wordnet,

ontologies), AI puzzles.

 E.g., recursive stratified negation tests:

 Systems tested: highly optimized Prolog-based systems (XSB, Yap, SWI), deductive databases

(DLV, Iris, Ontobroker), rule engines for triples (Jena, BigOWLIM), production and

reactive rule systems (Drools, Jess, Prova), knowledge base systems (CYC).

http://rulebench.semwebcentral.org

151

http://rulebench.semwebcentral.org/

