Computers playing Jeopardy!

CSE 392, Computers Playing Jeopardy!, Fall 2011
Stony Brook University

http://www.cs.stonybrook.edu/~cse392
Last class: grammars and parsing in Prolog

Verb → thrills
VP → Verb NP
S → NP VP

A roller coaster thrills every teenager
Today: NLP ambiguity

• Example: books: NOUN OR VERB
 • You do not need books for this class.
 • She books her trips early.
• Another example: Thank you for not smoking or playing iPods without earphones.
 • Thank you for not smoking () without earphones 😊
• These cases can be detected as special uses of the same word
• Caveout:
 • If we write too many rules, we may write ‘unnatural’ grammars – special rules became general rules – it puts a burden too large on the person writing the grammar
Ambiguity in Parsing

S → NP VP
NP → Det N
NP → NP PP
VP → V NP
VP → VP PP
PP → P NP

S
 └── NP
 ├── Papa
 └── VP
 └── PP
 └── P
 └── Det
 └── N
 └── the
 └── caviar

(c) 2011 Pearson Education, Inc., MIT Press & P. Fodor (CS Stony Brook)
Ambiguity in Parsing

S → NP VP
NP → Det N
NP → NP PP
VP → V NP
VP → VP PP
PP → P NP

(c) 2011 Pearson Education, Inc., MIT Press & P.Fodor (CS Stony Brook)
Scores

Recent parsers quite accurate
… good enough to help NLP tasks!

(c) 2011 Pearson Education, Inc., MIT Press & P.Fodor (CS Stony Brook)
Speech processing ambiguity

- Speech processing is a very hard problem (gender, accent, background noise)

- Solution: n-grams
 - Letter or word frequencies: 1-grams: THE, COURSE
 - useful in solving cryptograms
 - If you know the previous letter/word: 2-grams
 - “h” is rare in English (4%; 4 points in Scrabble)
 - but “h” is common after “t” (20%)!!
 - If you know the previous 2 letters/words: 3-grams
 - “h” is really common after “(space) t?”
N-grams

- What are n-grams good for?
 - Useful for search engines, indexers, etc.
 - Useful for text-to-speech

- How to Build a N-gram?
 - Histogram of letters?
 - Histogram of bigrams?
Probabilities and statistics

- descriptive: mean scores
- confirmatory: statistically significant?
- predictive: what will follow?

- Probability notation $p(X \mid Y)$:

 $p(\text{Paul Revere wins} \mid \text{weather’s clear}) = 0.9$

- Revere’s won 90% of races with clear weather

\[
p(\text{win} \mid \text{clear}) = \frac{p(\text{win, clear})}{p(\text{clear})}
\]

syntactic sugar

logical conjunction predicate selecting of predicates

races where weather’s clear

(c) 2011 Pearson Education, Inc., MIT Press & P.Fodor (CS Stony Brook)
Properties of \(p \) (axioms)

\[p(\emptyset) = 0 \quad \text{p(all outcomes) = 1} \]
\[p(X) \leq p(Y) \text{ for any } X \subseteq Y \]
\[p(X \cup Y) = p(X) + p(Y) \text{ provided } X \cap Y = \emptyset \]

- example: \(p(\text{win} \& \text{clear}) + p(\text{win} \& \neg\text{clear}) = p(\text{win}) \)
Properties and Conjunction

• what happens as we add conjuncts to left of bar?
 p(Paul Revere wins, Valentine places, Epitaph shows | weather’s clear)
 • probability can only decrease

• what happens as we add conjuncts to right of bar?
 p(Paul Revere wins | weather’s clear, ground is dry, jockey getting over sprain)
 • probability can increase or decrease
 • Simplifying Right Side (Backing Off) - reasonable estimate
 p(Paul Revere wins | weather’s clear, ground is dry, jockey getting over sprain)
Factoring Left Side: The Chain Rule

\[p(\text{Revere, Valentine, Epitaph} \mid \text{weather’s clear}) \]

\[= p(\text{Revere} \mid \text{Valentine, Epitaph, weather’s clear}) \]

\[\times p(\text{Valentine} \mid \text{Epitaph, weather’s clear}) \]

\[\times p(\text{Epitaph} \mid \text{weather’s clear}) \]

True because numerators cancel against denominators
Makes perfect sense when read from bottom to top

Epitaph, Valentine, Revere? \(\frac{1}{3} \times \frac{1}{5} \times \frac{1}{4}\)
Factoring Left Side: The Chain Rule

\[p(\text{Revere} \mid \text{Valentine, Epitaph, weather’s clear}) \]

- conditional independence lets us use backed-off data from all four of these cases to estimate their shared probabilities.

If this prob is unchanged by backoff, we say Revere was CONDITIONALLY INDEPENDENT of Valentine and Epitaph (conditioned on the weather’s being clear).

(c) 2011 Pearson Education, Inc., MIT Press & P.Fodor (CS Stony Brook)
Bayes’ Theorem

- $p(A \mid B) = p(B \mid A) * p(A) / p(B)$

- Easy to check by removing syntactic sugar
- **Use 1:** Converts $p(B \mid A)$ to $p(A \mid B)$
- **Use 2:** Updates $p(A)$ to $p(A \mid B)$
Probabilistic Algorithms

- Example: The Viterbi algorithm computes the probability of a sequence of observed events and the most likely sequence of hidden states (the Viterbi path) that result in the sequence of observed events.

forward_viterbi(+Observations, +States, +Start_probabilities,
 +Transition_probabilities, +Emission_probabilities, -Prob, -Viterbi_path, -Viterbi_prob)

forward_viterbi(['walk', 'shop', 'clean'], ['Ranny', 'Sunny'], [0.6, 0.4],
 [[0.7, 0.3], [0.4, 0.6]], [[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]], Prob, Viterbi_path,
 Viterbi_prob) will return:

Prob = 0.03361, Viterbi_path = [Sunny, Rainy, Rainy, Rainy],
 Viterbi_prob=0.0094
Viterbi Algorithm

- A dynamic programming algorithm
- Input: a first-order hidden Markov model (HMM)
 - states Y
 - initial probabilities π_i of being in state i
 - transition probabilities $a_{i,j}$ of transitioning from state i to state j
 - observations x_0, \ldots, x_T
- Output: The state sequence y_0, \ldots, y_T most likely to have produced the observations
 - $V_{t,k}$ is the probability of the most probable state sequence responsible for the first $t + 1$ observations
 - $V_{0,k} = P(x_0 \mid k) \pi_i$
 - $V_{T,k} = P(x_T \mid k) \max_{y \in Y} (a_{y,k} V_{t-1,y})$
Viterbi Algorithm

- Alice and Bob live far apart from each other
- Bob does three activities: walks in the park, shops, and cleans his apartment
- Alice has no definite information about the weather where Bob lives
- Alice tries to guess what the weather is based on what Bob does
 - The weather operates as a discrete Markov chain
 - There are two (hidden to Alice) states "Rainy" and "Sunny"
 - start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
Viterbi Algorithm

- The transition_probability represents the change of the weather

\[
\text{transition_probability} = \{\text{Rainy'} : \{\text{Rainy'}: 0.7, \text{Sunny': 0.3}\}, \\
\text{Sunny'} : \{\text{Rainy'}: 0.4, \text{Sunny': 0.6}\}\}
\]

- The emission_probability represents how likely Bob is to perform a certain activity on each day:

\[
\text{emission_probability} = \{\text{Rainy'} : \{\text{walk'}: 0.1, \text{shop'}: 0.4, \text{clean'}: 0.5\}, \\
\text{Sunny'} : \{\text{walk'}: 0.6, \text{shop'}: 0.3, \text{clean'}: 0.1\}\}
\]
Viterbi Algorithm

• Alice talks to Bob and discovers the history of his activities:
 • on the first day he went for a walk
 • on the second day he went shopping
 • on the third day he cleaned his apartment
 ['walk', 'shop', 'clean']

• What is the most likely sequence of rainy/sunny days that would explain these observations?